
Received 18 May 2023, accepted 30 June 2023, date of publication 10 July 2023, date of current version 17 July 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3293734

Beyond 0-1: The 1-N Principle and Fast
Validation of N-Sorter Sorting Networks
ROBERT B. KENT , (Life Member, IEEE), AND MARIOS S. PATTICHIS , (Senior Member, IEEE)
Department of Electrical and Computer Engineering, The University of New Mexico, Albuquerque, NM 87131, USA

Corresponding author: Robert B. Kent (rkent@unm.edu)

ABSTRACT The well-known 0-1 principle for traditional data-oblivious sorting networks states that a
network with L inputs can be fully validated with an input vector set consisting of all 2L unique vectors
containing only the values 0 and 1 in each vector’s L inputs. Researchers providing proofs of this principle
tend to ignore the fact, which is emphasized here, that 0-1 vectors provide all distinct orderings of the two
inputs to the 2-sorters which perform all of the sorting operations in the networks. The authors have recently
described single-stageN-sorters, withN>2, andmultiwaymerge sorting networkswhich use theseN-sorters.
The new N-sorters and their networks are also data-oblivious. It is easily shown that 0-1 vectors are not
sufficient to fully verify even a single-stage 3-sorter, the smallest such N-sorter, as the 0-1 vectors are unable
to produce all distinct orderings of the 3 inputs. In order to verify these N-sorters, the authors propose the 1-N
principle, which states that testing an N-sorter with all distinct orderings of N input values is necessary and
sufficient to prove the N-sorter’s correctness. An algorithm is defined which generates a vector set consisting
of all distinct orderings of N inputs, which is then used to fully verify the associated single-stage N-sorter.
In order to validate the authors’ L-input sorting networks which use these N-sorters, methods have been
created which produce validation vector sets that are dramatically reduced in size versus the unsorted vector
sets they are derived from. For example, the ratios of the number of L! permutation vectors to the equivalent
reduced vectors are >1,000,000 for L=12, and are much higher as L increases.

INDEX TERMS 0-1 principle, zero-one principle, sorting networks, 2-sorter, N-sorter, data-oblivious.

NOMENCLATURE
data-oblivious Refers to a fixed sorting method

whose internal operation is inde-
pendent of its input values.

N The number of inputs and outputs
in a single-stage sorting device.

single-stage N-sorter A data-oblivious hardware device
consisting of one set of N inputs,
one set of N outputs,
and the internal logic required to
transfer the inputs to the outputs
in sorted order.

distinct ordering A unique ordered sequence of all
N values in an N-sorter’s list of
input values.

The associate editor coordinating the review of this manuscript and

approving it for publication was Ilaria De Munari .

verification Confirmation that a single-stage N-
sorter correctly sorts all distinct order-
ings of its N inputs.

L The number of inputs and outputs in a
multistage sorting network.

sorting network A data-oblivious multistage L-input
hardware sorting device, in which a
network of single-stage N-sorters is
used to provide a sorted list of the L
inputs to the network’s L outputs.

validation Confirmation that an L-input sort-
ing network correctly sorts a set of
L-valued input vectors.

vector A set of N input values for an N-
sorter, or L input values for a sorting
network, which are applied together to
the sorting device in order to test its
functionality.

70574
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0002-1189-4295
https://orcid.org/0000-0002-1574-1827
https://orcid.org/0000-0002-9872-1695

R. B. Kent, M. S. Pattichis: Beyond 0-1: The 1-N Principle and Fast Validation

RC-sorted rectangle A rectangular set of values in
which each row and each column
is sorted.

I. INTRODUCTION
The 1st edition of Donald Knuth’s ‘‘Sorting and Searching’’
textbook [1] is generally cited as the original publication
which presented the ‘‘zero-one’’ principle. Knuth stated that
this principle is a special case of a theorem proposed byW.G.
Bouricious in 1954. In the many papers that refer to this prin-
ciple, the list of words used to name it include ‘‘zero-one’’,
‘‘0-1’’, ‘‘zero/one’’ and ‘‘0/1’’, at a minimum.

The 1st edition of the ‘‘Introduction to Algorithms’’ text-
book, by Cormen et al. [2], refers to the 0-1 principle.
However, by the 3rd edition, the 0-1 principle was replaced by
the 0-1 sorting lemma [3]. The phrase 0-1 principle is used
here.

Traditional sorting networks consist of a fixed, hard-wired
set of interconnected 2-sorters. As shown in Fig. 1, a 2-sorter
is a fixed hardware device, whose operation does not depend
on its inputs’ values. A 2-sorter is therefore said to be
data-oblivious. Likewise, the operation of a traditional sorting
network, which contains only a hard-wired set of 2-sorters,
is independent of the network’s input values, and is also data-
oblivious.

The 0-1 principle states that the operation of a traditional
data-oblivious sorting network with L inputs is fully validated
using a set of 2L vectors, where the L inputs in each vec-
tor contain a unique ordering of the binary values 0 and 1.
Mathematical proofs of this principle are found in [1] and
[2] and in other publications. These proofs do not tend to
focus on how the 0-1 vectors are processed by the only logic
sorting structures utilized in the networks, the data-oblivious
2-sorters.

What is emphasized here is the concept that the 0-1 prin-
ciple works for traditional sorting networks because the 0-1
vectors applied to the two inputs of each network 2-sorter
fully verify all distinct orderings of those two inputs. The
input distinct orderings for a 2-sorter, such as the one shown
in Fig. 1, are shown below:

In_1 > In_0.
In_1 == In_0.
In_1 < In_0.

Note that an ordering does not depend on the specific input
values. The In_1>In_0 ordering is true for (In_1,In_0) pairs
(1,0), (2,1), (347,221), etc.

A 2-sorter is called by many different and often confusing
names in the technical literature, too many to mention here.
The simple and direct name 2-sorter is used here.

As shown in Fig. 1, a single-stage hardware 2-sorter has
two inputs, here labelled In_1 and In_0, and two outputs,
Out_1 and Out_0. The two inputs are compared in a block
which determines if In_1≥In_0. The comparison result is
then used as the select line for two 2-to-1 multiplexers, one

FIGURE 1. Typical single-stage hardware 2-sorter.

TABLE 1. Truth Table for a 2-sorter’s 22=4 0-1 Vectors.

which selects the max input to go to output Out_1, and the
other which selects the min input to go to output Out_0.

Table 1 shows that a 2-sorter’s three distinct orderings are
fully verified by the 22=4 0-1 vectors for the 2-sorter. The
In_1==In_0 ordering is tested twice, in vectors 1 and 4.

The authors have recently described the design of
single-stage hardware N-sorters, with N>2 [4], [5], and
sorting networks which use these N-sorters [6]. Like the
2-sorter shown in Fig. 1, an N-sorter design is fixed, indepen-
dent of the values of its inputs, and is therefore data-oblivious.
The multiway merge sorting networks described in [6] are
also data-oblivious, as they are hard-wired devices consisting
of a set of interconnected N-sorters and 2-sorters.

It can be easily shown that 0-1 vectors are not sufficient
to fully verify an N-sorter with N>2. In fact, it will soon be
shown that the 23=8 0-1 vectors for a 3-sorter, the smallest
N-sorter, cannot fully verify the 3-sorter’s operation. There-
fore, it should be obvious that 0-1 vectors are not sufficient
to fully validate sorting networks containing these N-sorters.

An important contribution of this work is the introduction
of the 1-N principle, which states that testing all distinct
orderings for an N-sorter’s N inputs are necessary and suf-
ficient to fully verify the N-sorter’s operation. In addition,
a method is defined here which produces the set of 1-N
distinct ordering vectors that satisfy this principle.

An N-sorter can be verified with a vector set that contains
all NN sequences of N input values, but such a vector set tends
to contain many duplicate orderings, which the 1-N principle
states are not required for fully verifying the N-sorter’s cor-
rectness. It will be shown that for a 10-sorter, the 1010 vector
set is nearly 100 times larger than the distinct orderings vector
set that fully verifies the 10-sorter.

VOLUME 11, 2023 70575

R. B. Kent, M. S. Pattichis: Beyond 0-1: The 1-N Principle and Fast Validation

Although the 1-N principle can be used to create validation
vector sets for L-input sorting networks using N-sorters, such
1-N sorting network vector sets tend to be very large. For
the L-input N-sorter networks introduced by the authors [6],
methods are defined here which produce validation vector
sets that are much smaller than the 0-1 and L! source vector
sets that the reduced vector sets are derived from.

The ratio of the number of 9! vectors to an associated
reduced vector set is 8640. Ratios for several 12! vector sets
versus the comparable reduced sets are all over one million.
As L increases, the ratios continue to increase dramatically.
Defining themethods used to produce these impressive vector
set reductions is a major contribution of this work.

The rest of this paper is organized as follows: Section II
presents an extensive background analysis and critique of
many of the publications which refer to the 0-1 principle.
A detailed presentation of N-sorter distinct orderings is found
in Section IV, starting with an analysis of the input orderings
for a single-stage 3-sorter versus those of a 3-input traditional
sorting network. Section IV-C defines the 1-N principle,
specifies how an N-sorter’s distinct ordering vector set is
constructed, and presents data on vector set sizes for N-sorters
up to 10-sorters. Section V contains a detailed discussion
concerning validation of sorting networks using N-sorters,
and introduces the methods for constructing the very small
vector sets which have been used to validate sorting networks
defined in [6] and [7]. In Appendix A, the details of construct-
ing the distinct ordering vectors for a 3-sorter are shown.

More discussion and data concerning the construction of
the small vector sets used for sorting network validation are
presented in the supplemental material linked to this paper.
The supplemental material also includes a detailed discussion
of the accompanying video, which shows several examples of
how the dramatically reduced vector sets are produced.

II. BACKGROUND
Asmentioned in the Introduction, DonaldKnuth’s first ‘‘Sort-
ing and Searching’’ text [1] is typically cited as the original
publication which proposed the 0-1 principle. Knuth stated
that this principle is a special case of a theorem proposed by
W.G. Bouricious in 1954. A short, single-paragraph, proof of
the 0-1 principle was also presented in [1].

At least one earlier publication by David Van Voorhis
presented a version of the 0-1 principle [8]. However, Van
Voorhis presents a proof for the principle which he says was
suggested by Knuth, so it seems that defining and proving
the 0-1 principle at that time was somewhat of a communal
project at Stanford. In a later publication by Van Voorhis [9],
he states that several researchers have independently proven
the 0-1 principle, but then specifically references only [1], not
his own earlier [8].

Researchers who have joined [1] and [8] in presenting
proofs for the 0-1 principle include [2], [10], [11], [12],
and [13]. In general, these proofs and similar discussions
tend to ignore the main concept emphasized here, that the
0-1 principle works correctly because traditional comparison-

based sorting networks exclusively use 2-sorters in the sorting
process, and a 2-sorter’s 0-1 vectors fully test all distinct
orderings of the 2-sorter’s two inputs.

It is suggested in [1] that, instead of using the full 0-1
vectors set, a traditional L-input sorting network can be fully
validated using an L! permutation vector set in which each
of L distinct numbers occurs once and only once in each
vector’s input list. In fact, the main reason stated in [1] for
using the full 0-1 vector set, versus the L! vector set, is that
there are typically many fewer vectors in the 0-1 vector set.
The suggested superiority of the L! vector set has often been
repeated, but never challenged [14], [15], [16], [17], until
now.

Although every valid L-input sorting network must be
able to pass the L! vector set, passing this set of vec-
tors is not sufficient to fully validate the network. The
problem is that none of L! vectors contains any duplicate
values, so none of the 2-sorters in the network are ever pre-
sented with the both-inputs-equal ordering, found in vectors
1 and 4 in Table 1. The 2-sorters only see Table 1 vectors
2 and 3 distinct orderings. The 2L 0-1 vector set is therefore
superior and sufficient, because the four 0-1 vectors for a
2-sorter test the both-inputs-equal ordering, as well as the two
inputs-not-equal orderings.

It should be clear that the Fig. 1 2-sorter correctly processes
the both-inputs-equal ordering, but it is possible to build a 2-
sorter that correctly sorts the inputs-not-equal orderings, but
does not correctly sort all both-inputs-equal input vectors.
An example of such a (deliberately ?) defective 2-sorter is
one that correctly sorts the two inputs-not-equal orderings,
but always sets the outputs of a both-inputs-equal ordering to
0. This defective 2-sorter will pass Table 1 vector 1, but fail
vector 4.

The all-inputs-equal ordering becomes more serious for
the single-stage N-sorters defined in [4] and [5], with N> 2,
as the input-to-output mapping is dependent onmultiple com-
parisons, not just one comparison. In fact, it can be shown
that the sort-3a 3-sorter in [18] fails a full all-inputs-equal
test. When all 3 inputs are equal, sort-3a sets the max and
min outputs to 0, no matter what the common value is on
the inputs.

A number of publications extend the 0-1 principle to
circuits other than sorting networks. These extensions are
presumably all valid, as long as all operations in the circuit
are performed by 2-sorters. An example of this type of 0-1
extension is proposed for comparison-based switching net-
works in [19].

A number of researchers have proposed building sorting
networks using single-stage devices which sort more than
2 values, typicallywithout dealingwith how such single-stage
devices could be built. The sorting networks using these
single-stage devices cannot be fully validated using only 0-1
vectors, and the various researchers have dealt with this issue
in a number of ways. The proposed single-stage devices have
a number of different names, usually similar to N-sorter, but
with a different letter used instead of N.

70576 VOLUME 11, 2023

R. B. Kent, M. S. Pattichis: Beyond 0-1: The 1-N Principle and Fast Validation

In a later printing of his classic text [20], Knuth discusses
single-stage m-sorters, 4-sorters in particular. In the m-sorter
network discussion, only 0-1 values are used, even though
the 0-1 principle doesn’t apply to networks using single-stage
4-sorters. The discussion in [20] using 0-1 values appears
to be based on the flawed k-sorter network 0-1 discussion
in [21]. Other publications which incorrectly use 0-1 vectors
for N-sorter network validation include [22], [23], and [24].

The Cubesort researchers [25] state that single-stage
N-sorters, which they do not define, can be used to sort more
than 2 values at a time. However, they note that the 0-1 vectors
can be used to validate the networks using these N-sorters,
as long as the single-stage N-sorters are replaced during
the validation process with equivalent 2-sorter networks that
sort N values. Once the network containing only 2-sorters
is validated, the original network containing verified single-
stage N-sorters has been validated as well.

III. DATA-OBLIVIOUS FPGA SORTING STRUCTURES
The authors’ data-oblivious sorting devices [4], [5], [6]
are not limited to a particular type of hardware, but the
target hardware used in these papers were modern AMD-
Xilinx FPGAs. Traditional sorting networks, such as Kenneth
Batcher’s Odd-Even Merge Sort and Bitonic Merge Sort [7],
are also easily implemented in these FPGAs.

All of these data-oblivious devices can be fully imple-
mented in combinatorial logic, using the 6-input FPGA
look up tables (LUTs). Thus, no internal clocking or mem-
ory is used in the sorting device operation. The primary
metrics used to judge the device performance are LUT
usage and the combinatorial propagation delay of the slow-
est input-to-output signal. These base combinatorial logic
designs were used to produce the data reported in the authors’
3 papers.

These data-oblivious devices can also be easily imple-
mented in fully pipelined designs. In this case, clocking is
used to capture LUT output signals in associated flip-flops
(FFs), as needed. There is one neighboring FF available for
each LUT output in the FPGA, so no addressable memory is
required. For an L-input device implemented in the FPGA,
a new set L inputs can be applied to the pipeline inputs every
clock cycle, e.g., every 2 nS when using a 500 MHz clock.
Likewise, a set of L outputs can be read out of the device
every clock cycle.

The number of LUTs used for both the combinatorial and
fully pipelined implementations is the same. The FFs used in
the fully pipelined design are simply not used in combinato-
rial logic design. The speed performance metrics for the fully
pipelined design are throughput and latency. Throughput is
now L values every clock cycle, e.g., every 2 nS as noted
above, for any L-input device that can be constructed in the
FPGA.

Latency is the number of clock cycles required between
the application of the L unsorted inputs and the read out
of the fully sorted set of L outputs. Latency is minimized
in these designs by minimizing the number of LUTs in

series between input-to-output signals. Minimizing the num-
ber of series LUTs in input-to-output paths is the primary
goal in designing fast combinatorial networks, so latency is
minimized simply by using the paths already optimized for
combinatorial network speed.

Software/CPU sorting algorithms can be data-oblivious
or they can respond to the data values of particular inputs
in order to speed up the sorting process. In either case,
the designs will be implemented using CPU clocking, and
algorithmmetrics becomememory usage and the time to fully
sort a list of inputs.

It is difficult for a CPU sorting algorithm to match the
parallelism found in hardware sorting networks. Furthermore,
it does not seem possible for a Software/CPU algorithm to
match the fully pipelined hardware implementation, particu-
larly its very high throughput, so it is difficult to reasonably
compare software/CPU sorting performance to that of the
data-oblivious sorting hardware which has been discussed
here and in the authors’ recent papers.

Data-oblivious software/CPU algorithms may make use of
the 0-1 principle, as long as all operations in the algorithm
are 2-sorter operations. Should future software/CPU algo-
rithms attempt to implement the authors’ N-sorters [4],
[5] or multiway merge sorting networks [6], the verifi-
cation and validation methods described in the following
Sections IV and V should prove valuable in proving the
correctness of such algorithms.

IV. DISTINCT ORDERINGS OF N VALUES
The sorting networks that are covered by the 0-1 principle
only use 2-sorters as the hardware sorting devices in each
stage of the sorting process. The success of the 0-1 principle
is based on the fact that the 0-1 vectors for a 2-sorter fully test
all distinct orderings of the two inputs.

Passing a 0-1 vector set is not sufficient to verify the
correctness of the single-stage hardware N-sorters defined
in [4] and [5], with N>2. This is because the N-sorter 0-
1 vectors do not cover all distinct orderings of the N input
values. In Section IV-A, this fact will be shown for the
smallest N-sorter, the 3-sorter. Section IV-B presents the
sequential operation of a multistage 2-sorter network which
sorts 3 values, which is then compared to the single-stage 3-
sorter behavior discussed in Section IV-A.
The authors have developed an algorithm and matching

software program, which are used to generate the full distinct
ordering vector set for an N-sorter. Test vectors produced
by the program have been used to verify the correctness of
all N-sorters from 3-sorters up to 10-sorters. The algorithm
basics are presented in Section IV-C, as well as data showing
the vector reduction of an N-sorter’s distinct ordering vector
set versus an NN comprehensive vector set.

A. SINGLE-STAGE 3-SORTER INPUT ORDERINGS
To verify the correctness of an N-sorter, all distinct orderings
of theN inputsmust be tested. A vector set with all NN vectors
containing values 1 to N will include vectors with all distinct

VOLUME 11, 2023 70577

R. B. Kent, M. S. Pattichis: Beyond 0-1: The 1-N Principle and Fast Validation

TABLE 2. All 27 Vector States and Orderings of the Single-stage 3-sorter Input Value Sets (0, 1, 2) and (1, 2, 3).

orderings, but the NN vector set will tend to include multiple
vectors whose ordering is a duplicate. For the 2-sorter’s 22

vectors shown in Table 1, both vectors 1 and 4 exhibit the all-
inputs-equal ordering. Since vector 1 is the first vector with
this ordering, it is defined as the distinct ordering vector, and
vector 4 is marked as a duplicate.

In [4], it was shown that its single-stage 3-sorter passed
a vector set of the 33=27 vectors that contain all orderings
of 3 input values. The 3-sorter’s set of 27 vectors are shown
in Table 2, with the 2nd through 4th columns containing all
possible (In_2, In_1, In_0) orderings of values (0,1,2). The
values in the 2nd through 4th columns are used in the 0-1
discussions in this section, and in Section IV-B. The last
3 columns in Table 2 contain (In_2, In_1, In_0) orderings
of values (1,2,3). The values in the last 3 columns are used
in the 1-N discussions in Section IV-C.

Table 2 has two columns with no data, highlighted in
blue. The blue columns indicate the two states of the three
comparison result signals, (ge_2_1, ge_2_0, ge_1_0), which
are not possible.

In Table 2, all vectors having a duplicate ordering are high-
lighted in green, and marked as a duplicate in the Comment
column. The first vector with a particular ordering, a distinct
ordering, is not marked as a duplicate, and that vector’s row
is not highlighted in green. For example, the first 3 vectors all
exhibit the all-inputs-equal ordering. Vector 1, with all inputs

equal to 0, is the first vector with this ordering, and is not
highlighted. Vectors 2 and 3, with all inputs equal to 1 and
2 respectively, are highlighted and identified as duplicates.

Vectors 10 to 21 have various duplicate orderings of vec-
tors 4 to 9. For example, vectors 10 and 16 have the same
ordering as vector 4, with In_2 equal to In_1, and In_0 higher
than In_2 and In_1. While the 2-sorter only had 1 duplicate in
4 vectors, the 3-sorter has 14 duplicates in 27 vectors. As will
be seen, the number of duplicate ordering vectors increases
dramatically as N increases.

The 0-1 vectors for the 3-sorter are the 23=8 vectors
1-2 and 4-9. Only vector 2, the all-inputs-are-1s vector is a
duplicate. This behavior is a constant for all N: the (2N−2)
0-1 vectors with both 0 and 1 input values are distinct ordering
vectors, the all-inputs-are-0s is also a distinct ordering vector,
but the ordering of the all-inputs-are-1s vector is a duplicate
of the all-inputs-are-0s vector.

The final 6 vectors in Table 2 are the 3! vectors in which
each of the input values (0,1,2) appears once and only
once. The last vector, vector 27, is highlighted in yellow.
The (In_2, In_1, In_0) input order is uniformly increasing
for this vector, and it is the only vector with each of the 3
(ge_2_1, ge_2_0, ge_1_0) comparison signals equal to 0.

Note that none of the 0-1 vectors can produce this
(ge_2_1, ge_2_0, ge_1_0) comparison signal state. When
there are 3 0-1 input values in a vector, at least two inputs

70578 VOLUME 11, 2023

R. B. Kent, M. S. Pattichis: Beyond 0-1: The 1-N Principle and Fast Validation

FIGURE 2. Sorting network of 3 values using 2-sorters.

must have the same input value. Because of this, at least one
of the (ge_2_1, ge_2_0, ge_1_0) signals will be a 1. It is clear
that 0-1 vector inputs are incapable of testing the uniformly
increasing input distinct ordering for the 3-sorter. In short,
0-1 vectors are not sufficient to verify all distinct orderings
of a 3-sorter, the smallest N-sorter with N>2.

B. SORTING 3 VALUES IN A 2-SORTER NETWORK
The previous section defined a set of 13 vectors whose
3 inputs produced all distinct orderings of those 3 inputs.
A single-stage 3-sorter must produce a correctly sorted output
list for each of the 13 vectors in order to pass verification.

This section presents a 3-stage sorting network, using
2-sorters, which sorts 3 inputs. The operation of this 3-stage
network is compared to that of the single-stage 3-sorter, with
a particular focus on how it deals with the full 0-1 vector set.

Just as [1] is considered the original 0-1 principle publica-
tion, it was also the first to present a type of diagram used
to define a 2-sorter sorting network, often called a Knuth
diagram. Fig. 2 is a Knuth diagram for a 3-stage sorting
network used to sort 3 values. The arrows in the 2-sorter
vertical lines point to where the max of the 2 values will be
placed.

As with the single-stage 3-sorter, there are 3 comparisons
in this network. However, the 3-sorter comparisons are all
concurrent, and operate on the input values directly. In the
Fig. 2 network, only one comparison is performed at a
time. The set of network comparisons form a sequence over
3 stages in series.

For the Fig. 2 network, only the first comparison,
ge_2_1=(In_2≥In_1), operates directly on the network
inputs. The second comparison, ge_L1A_0=(Line 1A≥In_0),
operates on one input and one value internal to the network,
and the last comparison, ge_L2A_L1B=(Line 2A≥Line 1B),
operates on two internal values.

Table 3 shows results for the 8 0-1, plus the 6 (=3!) input
vectors when applied to the Fig. 2 sorting network. These
14 vectors consist of the distinct ordering vectors shown in
Table 2, plus vector 2. Vector 2 is a duplicate ordering vector
but is a part of the 8 0-1 vectors. The 8 0-1 vectors, 1-2 and
4-9, are separated by a horizontal line from the 3! vectors

in Table 3. Once again, there are two blue empty columns,
which indicate that comparison sequence for that column is
impossible to achieve.

Since the 3-input sorting network uses only 2-sorters,
it should be fully validated by using the 8 0-1 vectors. At first
glance, it may appear that 0-1 vectors are not sufficient,
as the vector 27 comparison sequence is not found in the
0-1 vectors. This is the same vector that was shown to have
a problem for the 3-sorter in Table 2. However, unlike the
single-stage combined state of the 3 comparisons shown in
Table 2, the comparison sequence in the 3 stages in Table 3
does not matter. Only the single comparison state in each of
the 3 sequential stages is important.

Each comparison result for vector 27, whose inputs are
uniformly increasing, is a 0. But vectors 5 and 6 test the
same (In_2≥In_1)== 0 comparison state found in the first
vector 27 comparison. Vectors 4, 6, and 8 test vector 27’s
(Line 1A≥In_0)== 0 second comparison state, and vector
4 tests vector 27’s (Line 2A≥Line 1B)== 0 final comparison
state.

It is also easy to see that the 3-input Fig. 2 network cor-
rectly sorts the uniformly increasing input vector, as shown
in the sequential steps listed below:

(0,1,2): The (In_2 , In_1 , In_0) inputs. Increasing.
(1,0,2): In 1st 2-sorter, 0 and 1 swap.
(1,2,0): In 2nd 2-sorter, 0 and 2 swap.
(2,1,0): In last 2-sorter, 1,2 swap. Sorted. Decreasing.

C. THE 1-N PRINCIPLE AND DISTINCT ORDERINGS
A single-stage N-sorter can be verified using an input vector
set containing all NN orderings of N input values. Table 1
displays all 4 22 input orderings containing values 0 and 1,
the 0-1 vectors, for a 2-sorter. Table 2 displays the 27 33 input
orderings for a 3-sorter. The 1-N discussion in this section
uses the (1,2,3) value set found in the rightmost 3 columns
of Table 2.

A set of NN vectors contain duplicate orderings, which
are not required to verify the correctness of the sorter. The
2-sorter’s 22 0-1 vectors only contain 1 duplicate ordering
out of 4 vectors, but over half of the 3-sorter’s 33 vectors,
14 of 27, are unneeded duplicate orderings. As will be seen,
the number of duplicate orderings increases dramatically as
N increases.

A major contribution of this work is the introduction of
the 1-N principle, which states that a single-stage N-sorter is
fully verified when it is successfully tested with all distinct
orderings of N input values. In support of the 1-N principle,
an algorithm and matching software program have been cre-
ated, which are used to produce the complete set of distinct
orderings for an N-sorter’s N input values.

Each execution of the software program, called
distinct_orderings_J_in_N, produces the complete set of
distinct ordering vectors which contain J distinct values in
each vector’s list of N inputs. The program is executed N
times, with J ranging from 1 to N, and the N output vector

VOLUME 11, 2023 70579

R. B. Kent, M. S. Pattichis: Beyond 0-1: The 1-N Principle and Fast Validation

TABLE 3. The 8 0-1 Vectors and 6 (=3!) Vectors for the 3-input Sorting Network Using 2-sorters.

sets are then concatenated into a complete distinct ordering
vector set, which is then used to verify the N-sorter operation.

Generation of the distinct ordering vectors for a 3-sorter
requires 3 executions of the program, such as in a bash shell,
as shown below. The first program execution creates vector
file vecs_3_sorter, when J=1. The second and third program
executions append their J=2,3 vector lists to vecs_3_sorter,
resulting in the final complete distinct ordering vector set.

distinct_orderings_J_in_N 1 3 > vecs_3_sorter
distinct_orderings_J_in_N 2 3 >> vecs_3_sorter
distinct_orderings_J_in_N 3 3 >> vecs_3_sorter
These three program executions create the 13 unique

distinct orderings shown in the last 3 columns of Table 2,
using the 1-N input values (1,2,3). The first 3-sorter program
execution above creates the single all-1s vector. The second
3-sorter program, with J=2, creates the 6 1-2 vectors listed in
vectors 4 to 9. The third 3-sorter program, with J=3, creates 6
1-2-3 vectors, the 3! permutation vectors, from vectors 22 to
27.

A simplified distinct_orderings_J_in_N program flow is
shown in Algorithm 1, and the details of how the program
generates the vectors for each of the 3-sorter runs shown
above are given in Appendix A. The program creates all input
vectors in which values J down to 1, and only values J to 1,
occur at least once in a vector of length N. Each complete
vector is a distinct ordering vector for an N-sorter, and it is
sent to the program’s standard output.

In Algorithm 1, each call to recursive subroutine
SET_VEC_LOC processes one of the (N-1) down to 0 loca-
tions (VecLocs) in a vector. For a particular VecLoc vector
location, each value from J down to 1 is sequentially tested
to see whether, if it is the value at location VecLoc, a distinct
ordering vector can still be created.

If a distinct ordering vector is not possible when a value is
tested at a specific VecLoc, the program flow moves on. If a

Algorithm 1 Program distinct_orderings_J_in_N
▷ This program creates and outputs distinct ordering vectors.
▷ A distinct ordering vector contains each value from 1 to J.
▷ A distinct ordering vector contains N total values.

Input: J, number of distinct values in each input vector.
Input: N, total number of values in each input vector.

1: vector = empty
2: SET_VEC_LOC((N-1), vector)

▷ VecLoc location in vector ranges from (N-1) to 0
3: procedure set_vec_loc(VecLoc,vector)
4: for distinct_value = J downto 1 do
5: vector[VecLoc]=distinct_value
6: if distinct ordering vector still possible then
7: if VecLoc == 0 then
8: write vector to standard output
9: else
10: SET_VEC_LOC((VecLoc-1), vector)
11: end if
12: end if
13: end for
14: end procedure

distinct ordering vector is possible, and VecLoc>0, the sub-
routine is recursively called, this time to process theVecLoc-1
vector location. If a distinct ordering vector is possible, and
VecLoc=0, the distinct ordering vector is not only possible,
it is now complete, and it is then written out to program’s
standard output.

For example, when J and N are both 3, the recursive
subroutine SET_VEC_LOC is first called with VecLoc=2,
the leftmost vector location, and an empty vector. In the first
iteration of the distinct_value loop, the value 3 is added to the

70580 VOLUME 11, 2023

R. B. Kent, M. S. Pattichis: Beyond 0-1: The 1-N Principle and Fast Validation

TABLE 4. N-sorter Distinct Orderings: J Distinct Values in Input Vectors with N Total Values.

leftmost vector location, VecLoc 2, and then SET_VEC_LOC
is called in order to move onto VecLoc 1.

For VecLoc 1, the distinct_value 3 is first tested to see if it
may be added to the vector at location 1. The answer is no.
When J and N are both 3, each value from 3 down to 1 must
occur once and only once in the vector, and 3 has already been
added to the vector at location 2.

In the next loop iteration for VecLoc 1, distinct_value 2 is
tested to see if it can be correctly added to the vector at
location 1. Since 2 is not yet in the vector, the answer is
yes. It is added to the vector and SET_VEC_LOC is called
to process VecLoc 0, the rightmost vector location, now with
a vector containing 2 out of the 3 values.

For VecLoc 0, values 3 and 2 are rejected, as they are
already in the vector, but value 1 is accepted and written into
the vector at location 0. This distinct ordering vector is then
written to the standard output.

In order to confirm that the distinct ordering algorithm
and program work correctly, a second program was created
which also produces the complete distinct ordering vector set
for an N-sorter. This second confirmation program initially
produces the NN vectors containing all possible vectors with
N inputs, in which the input values range from 1 up to N.
Each vector’s ordering is then mapped to a base ordering
vector. If the base ordering vector is new, it is added to the
set of distinct ordering vectors. If the base ordering vector is
a duplicate, nothing is done and the program moves onto the
next one of the NN vectors.

In order to create a base ordering vector from a selected
NN vector, all of the minimum values in the selected vector
are mapped to value 1 in the base ordering vector. The values
in the selected vector that are the next highest above the
minimum are mapped to value 2 in the base ordering vector,
and so on.

Referring to the 33 vectors in Table 2, vectors 1-3 all map to
an all-1s base ordering vector when using the (1,2,3) values
in the table’s last 3 columns. Vector 1 is this base ordering

vector, so it is kept by the confirmation program, but vectors
2 and 3 are ignored.

Likewise, vectors 4, 10, and 16 all have the same base
ordering vector, in which In_2 and In_1 are both 1s, and
In_0 is a 2. The confirmation program will keep vector 4 as
the base ordering vector, and ignore vectors 10 and 16. In a
similar manner, all vectors 10 to 21 can be shown to have the
same base ordering vector as one of vectors 4 to 9, so vectors
10 to 21 will all be ignored.

The distinct ordering vector sets created by the
distinct_orderings_J_in_N program and the confirmation
program have been compared for 3-sorters up to 9-sorters.
In all cases, the two vector sets are identical.

Table 4 shows the counts of the distinct ordering vectors
produced by the distinct_orderings_J_in_N program men-
tioned just above. The data for the first two columns, with
N=2 and N=3, have already been discussed in the Introduc-
tion and in Section IV-A.

In the J=1 row, the single distinct ordering vector is always
the all-1s vector. In the J=2 row, the distinct ordering vectors
are the 2N−2 vectors containing only values 1 and 2.

The lowest data value in a column’s yellow highlighted
section of results is the count of vectors when J=N, where
each vector contains 1 and only 1 of the values 1 to N. This
N! vector set is the type of permutation vector set that has
been discussed earlier.

Although the total number of distinct ordering vectors
grows significantly as N increases, the number of NN vectors
grows even more dramatically. While the number of NN

vectors is roughly twice as many as the distinct ordering
vectors when N=3, the ratio is almost 100 for N=10.

V. VALIDATING N-SORTER SORTING NETWORKS
As has been stressed earlier, the 2L 0-1 vector set fully
validates a traditional L-input sorting network, because the
0-1 input values applied to each 2-sorter in the network fully
cover all possible distinct orderings of 2 inputs. For sorting

VOLUME 11, 2023 70581

R. B. Kent, M. S. Pattichis: Beyond 0-1: The 1-N Principle and Fast Validation

networks using N-sorters with N>2, such as the authors’
multiway merge sorting networks [6], a similar validation
principle holds.

When an L-input sorting network uses N-sorters with
N> 2, the largest N-sorter in the network is called theNlargest -
sorter. The network can be fully validated with a vector set
comprised of all distinct N L

largest vectors containing values
1 to Nlargest .

For the merge processes in the type of sorting networks
described in [6], the input sorted lists to be merged are com-
bined into a rectangular structure, with each of theNcols input
sorted lists becoming a column in the structure. The process
of merging Ncols sorted lists into a single sorted output list is
here called an Ncols-way merge.

For an Ncols-way merge process, 2-sorters and N-sorters
up to Ncols-sorters are implemented in the network. There-
fore Nlargest=Ncols, and the L-input Ncols-way merge
network will be fully validated using a vector set containing
all NcolsL vectors with L inputs, with the input values ranging
from 1 to Ncols.

For example, a 16-input 4-way merge network will be
fully validated using a vector set with 416, over 4 billion,
vectors. A traditional 16-input sorting network, using only
2-sorters, will require a much more manageable 216, 64K,
vectors. It should be easy to see that validating an Ncols-way
network using NcolsL L-length input vectors, with values
ranging from 1 to Ncols, becomes unworkable as Ncols and
L increase.

However, as suggested in [25], the number of vectors
required to validate a network using N-sorters can be reduced
to the number of required 0-1 vectors, if each of the N-sorters
in the network is replaced by an N-input sorting network
which sorts the N values using 2-sorters. For example,
a replacement 3-way L-input [6] network, using 2-sorters and
3-sorters, will have its single-stage 3-sorters replaced by the
3-input sorting network shown in Fig. 2, and then validated
using the 2L 0-1 vector set.

If the replacement 2-sorter network passes validation, then
the network design itself is proven valid. The original network
using N-sorters is therefore also valid, once the N-sorters
themselves have been verified using the 1-N principle.

In short, L-input N-sorter networks can be fully validated
using the 2L 0-1 vector sets used for traditional 2-sorter
network validation. However, the number of vectors required
is an exponential function of L, and validating these networks
using 0-1 vectors also eventually becomes unmanageable as
L increases.

A. USING RC-SORTED RECTANGLES TO CREATE VERY
SMALL VECTOR SETS FOR N-SORTER SORTING NETWORK
VALIDATION
As noted just above, neither the 1-N principle nor [25]’s
replacement of N-sorters with N-input 2-sorter networks are
able to enable L-input N-sorter network validation using
small vector sets as L increases. In order to solve this issue,
the authors have developed methods which produce dramat-

ically smaller vector sets for validation of their Ncols-way
merge sorting networks with Ncols>2 [6].

These much smaller vector sets still validate the sorting
network operation as fully as the unsorted vector sets from
which they are derived. Although the authors’ Ncols-way
merge networks are novel when Ncols>2, they are equivalent
to Kenneth Batcher’s 2-way Odd-Even Merge Sort networks
when Ncols=2 [7], and therefore Odd-Even Merge networks
can also be validated with the very small vector sets that are
introduced here.

In the authors’ Ncols-way merge networks [6], Ncols
sorted lists are arranged as the columns in a rectangle, and
then several stages of operations are performed on the rect-
angle in order to put the rectangle values in final sorted order.
When a rectangle is constructed, the max value in each sorted
column goes to the top of rectangle, and themin column value
goes to the rectangle bottom, at row 0.

In the first merge stage operation, the rectangle rows are
sorted. It has long been known that, after such an operation,
each column of this modified rectangle is still sorted, in
addition to the just-sorted rows [26]. The rectangles after this
row sort stage are here called RC-sorted rectangles. After row
sort, the RC-sorted rectangles are processed in the remaining
stages of the merge methodology, producing the final rectan-
gle with the values in the defined sorted order.

Batcher’s 2-way Bitonic Merge Sort [7] can also be imple-
mented in a 2-column rectangular structure, with the first
stage operation also being a row sort stage. In the case of
BitonicMerge Sort rectangles, however, one of the lists has its
min value at the top of the rectangle, and its max value at the
bottom row 0. Because of this, the RC-sorted state described
in [26] does not apply to Bitonic Merge rectangles after the
rows are sorted.

Instead of working with parent lists of unsorted input
vectors, the method described here creates a complete set
of RC-sorted rectangles, in which the rectangle values are
derived from the definition of the parent vector set. The num-
ber of RC-sorted rectangles is much smaller than the number
of unsorted parent vectors that the RC-sorted rectangles are
derived from, even though none of the information from the
set of parent unsorted vectors has been lost.

For example, there are 9!=362, 880 permutation vectors
with values 9 down to 1 occurring only once in each vector.
But if each vector is broken into 3 groups of 3, each group is
sorted, each sorted group becomes a column in a 3 × 3 rect-
angle, and each rectangle row is subsequently sorted, there
are only 42 distinct rectangle orderings. When the remaining
network sorting steps are applied to each of the 42 RC-sorted
rectangles, a valid sorting network process always produces
the same final rectangle, in fully sorted order.

Program create_all_RC-sorted_rectangles uses Algo-
rithms 2 and 3 to create all RC-sorted rectangles for a list of
L values, where each value from L down to 1 occurs once and
only once in the rectangle. For the set of 42 3× 3 rectangles,
the first rectangle created using this program is the left rect-
angle shown in Fig. 3. One of the RC-sorted rectangles will

70582 VOLUME 11, 2023

R. B. Kent, M. S. Pattichis: Beyond 0-1: The 1-N Principle and Fast Validation

Algorithm 2 Program create_all_RC-sorted_rectangles
▷ Creates all RC-sorted rectangles, with Ncols columns and
▷ L values, L to 1 occurring only once in each rectangle.
▷ Rectangle columns from left (Ncols-1) down to right 0.
▷ Rectangle rows from top (Nrows-1) down to bottom 0.
▷ Each column max is at the top, min at the bottom.
▷ Each row max is at the left, min at the right.
▷ L is an integer multiple of Ncols.

Input: L, the number of distinct values in the rectangle.
Input: Ncols, the number of columns in the rectangle.

1: Nrows = L / Ncols
2: Create empty Ncols x Nrows rectangle
3: Set upper left rectangle location to L
4: ADD_NEXT_VALUE((L-1), rectangle)
5: procedure ADD_NEXT_VALUE(value,rectangle)
6: if value == 1 then
7: Set lower right rectangle location to 1
8: Write rectangle or vector to standard output
9: Set lower right rectangle location to empty

10: else
11: CREATE_LOCS_LIST(rectangle,Ncols,Nrows)
12: ForEach location in the locations list do
13: Set location to value
14: ADD_NEXT_VALUE((value-1), rectangle)
15: Set location to empty
16: end ForEach
17: end if
18: end procedure

FIGURE 3. Two RC-sorted 3 × 3 rectangles and vectors.

match the final sorted rectangle order, and this is the rectangle
shown to the right in Fig. 3.

A 1-D vector is associated with each rectangle, and the
vector is constructed using the final rectangle sorted order.
In the system described in [6], the rectangle order is a row
major order, with the max of each row at the left row edge,
and the max column value at the highest row. Each Fig. 3
rectangle has its 9-value vector shown below the rectangle.
The Fig. 3 rectangle colors and the hi/lo labels are discussed
below.

When targeting specific locations in the sorted output
list, even fewer RC-sorted validation rectangles can be con-

Algorithm 3 Function CREATE_LOCS_LIST
▷ Using input PartRect, a partially populated rectangle array,
▷ and rectangle parameter inputs Ncols and Nrows,
▷Create/output list of valid rectangle locations for next value.

Input: PartRect, partially populated rectangle.
Input: Ncols, the number of columns in the rectangle.
Input: Nrows, the number of rows in the rectangle.
Output: list of valid rectangle locations for next value

1: For c = (Ncols-1) downto 0 do
2: r = (Nrows-1) ▷ The top row
3: select PartRect[r][c]
4: while (PartRect[r][c] is populated) AND (r > 0) do
5: r = r - 1
6: select PartRect[r][c]
7: end while
8: if PartRect[r][c] is NOT populated then
9: if c == Ncols-1 then
10: add PartRect[r][c] to the valid location list
11: else if PartRect[r][c+1] is populated then
12: ▷ [r][c+1] is immediately to the left of [r][c]
13: add PartRect[r][c] to the valid location list
14: end if
15: end if
16: end For

FIGURE 4. Six 3 × 3 median RC-sorted rectangles.

structed and processed with the final stages of the sorting
process. For example, using 3 × 3 rectangles, all possible
RC-sorted rectangles with 4 9s, 1 5, and 4 1s, are easily con-
structed. There are 6 such rectangle orderings after the row
sort operation, as shown in Fig. 4. The value 5 is the median
of the 9 values, and will be at the center of the 3×3 rectangle
in the final sorted order, which is the order found in the lower
right of the 6 Fig. 4 rectangles.
These six rectangles are constructed in a manner similar

to that shown in Algorithms 2 and 3, except that the two
algorithms produce rectangles in which values L down to
1 are found once and only once in the rectangle. The Fig. 4
rectangles have only 3 distinct values, 9, 5, and 1.

VOLUME 11, 2023 70583

R. B. Kent, M. S. Pattichis: Beyond 0-1: The 1-N Principle and Fast Validation

TABLE 5. L! / RC-sorted Vector Reduction Ratios (log10).

Note that the 3 × 3 rectangle median value is always
found along a diagonal from the lower left to the upper right
rectangle locations, and the overall rectangle median is equal
to the median of the 3 values along this diagonal. In the next
sorting network stage, this diagonal is sorted, and the median
value 5 is then placed in the 3 × 3 rectangle middle location,
for each of the 6 RC-sorted rectangles.

In Figs. 3 and 4, the blue color is used to highlight the cells
where the values are greater than the median value of 5. Pink
is used for the median 5 cell, and yellow is used for the cells
in which the values are less than 5. The shapes enclosing the
four hi cells, the cells with values > 5, are labelled hi_left_col
when the left column has only hi values, hi_tl_square when
the hi values form a 2×2 square in the top left of the rectangle,
and hi_top_rowwhen the top row contains only hi values. The
three lo labels are defined in a similar manner.

In the video accompanying this work, the construction
steps of all six Fig. 4 rectangles are shown, as well as the steps
in the construction of all 42 Fig. 3-style rectangles in which
the values 9 down to 1 occur only once. The coloring of the set
of 42 rectangles in the video shows that each one falls into one
of the six Fig. 4 color patterns. More information concerning
the construction of these small rectangle/vector sets is found
in the supplemental material associated with this work.

The ratio of the 9!=362, 880 9-sorter permutation vectors
to the comparable 42 RC-sorted vectors, 8640, is here called
the 9! RC-sorted vector reduction ratio for the 3 × 3 rect-
angles. Additional L! vector reduction ratios are shown in
Table 5, listed in log10 format. These values clearly increase
dramatically as L increases. For higher L values, it is also
clear that Ncols=2 has the highest vector reduction ratios.

For the 3 × 3 9! vector sets, as well as for the 12! vec-
tor sets with Ncols=2,3,4 listed Table 5, analyses were run
using the full unsorted L! vector set, then dividing each
vector in Ncols equal lists, sorting each list, constructing
rectangles with each sorted list as a column, and then sort-
ing the rectangle rows. In each case, the unique RC-sorted
rectangles produced by this comprehensive process were
identical to the RC-sorted rectangles quickly produced by the
create_all_RC-sorted_rectangles program.
The accompanying supplemental material and video con-

tinue the create_all_RC-sorted_rectangles discussion and

TABLE 6. Creating 3-sorter Vectors with 1 Distinct Value.

TABLE 7. Building 3-sorter Vectors with 2 Distinct Values.

show how the program directly creates RC-sorted rectangles,
including the 6 Fig. 4 rectangles, and the 42 rectangle set
from which the two rectangles in Fig. 3 were taken. The
supplemental material also shows that the 3 × 3 29=512 0-1
(really 1-2) vectors are reduced to 20 RC-sorted rectangles.

VI. CONCLUSION
The 0-1 principle states that a traditional L-input sorting
network can be fully validated with the 2L set of unique
input vectors containing only the values 0 and 1. It is stressed
here that this is due to the fact that 0-1 vectors fully verify
2-sorters, the only hardware sorting devices utilized in the
networks.

It is easily shown that 0-1 vectors cannot be used to fully
verify single-stage N-sorters with N>2, using the smallest
such N-sorter, a 3-sorter, as an example. Therefore, sorting
networks which use these N-sorters cannot be validated using
0-1 vectors.

The 1-N principle is introduced here in order to define the
distinct ordering vectors which are necessary and sufficient
to verify N-sorter operation. An algorithm and associated
software program have been created in order to build the
distinct ordering verification vectors for an N-sorter.

An NN vector set also fully verifies an N-sorter, but
this comprehensive vector set has many duplicate orderings,
which are not needed for verification. The NN vector set

70584 VOLUME 11, 2023

R. B. Kent, M. S. Pattichis: Beyond 0-1: The 1-N Principle and Fast Validation

TABLE 8. Building 3-sorter Vectors with 3 Distinct Values.

grows very rapidly as N increases, and the number of 1010

vectors is almost 100 times the number of distinct ordering
vectors produced by the 1-N algorithm for a 10-sorter.

The 1-N principle enables the creation of vector sets that
fully verify N-sorters, but unlike the 0-1 principle, the 1-N
principle does not enable creation of fairly small vector sets
that fully validate sorting networks which use N-sorters.
However, for the type of N-sorter sorting networks which
the authors have recently defined, RC-sorted rectangles are
used to dramatically lower the number of vectors required for
network validation.

An algorithm and software program have been defined
which quickly produce a full set of RC-sorted rectangles
and associated vectors, which have been used to validate
many L-input N-sorter sorting networks. The vector reduc-
tion ratios for L! unsorted vector sets, versus the equivalent
RC-sorted vector sets, are all over 1 million for L=12, and
increase dramatically for higher L values.

APPENDIX A
GENERATING THE DISTINCT ORDERING VECTORS FOR A
3-SORTER
The detailed operations for the 3 executions of program
distinct_orderings_J_in_N listed in Section IV-C are shown
in Tables 6 to 8. Each time this program is run, it writes to

standard output all distinct ordering vectors that contain J
distinct values (values 1 to J) in a vector length N=3.

Each table shows how Algorithm 1 creates the dis-
tinct ordering vectors. The operations in the three tables
are performed in Algorithm 1’s recursive subroutine
SET_VEC_LOC. The loop variable distinct_value in
SET_VEC_LOC is shortened in the tables to D_val.
For each location VecLoc in the vector to be created,

each D_val is tested to see whether a ‘‘distinct ordering
vector still possible’’ if D_val becomes the vector value
at VecLoc. In the tables, the global two-dimensional array
variable locs_remain is used to answer the ‘‘still possible’’
question.

A locs_remain[VecLoc][D_val] value indicates how
many remaining vector locations D_val can be written to,
after a distinct value has been specified at location VecLoc.
The locs_remain values from location VecLoc are used at
the next location, VecLoc−1. If the locs_remain value is 0,
D_val is not allowed to be written to the vector at location
VecLoc-1, as this would produce an invalid distinct ordering
vector. If the locs_remain value is > 0, D_val will be written
to the vector at the VecLoc-1 location.

The blue OUT in the Comment section indicates that a
distinct ordering vector, highlighted in light blue, has been
created by adding an allowed value at VecLoc 0. The vector
is then sent to the program’s standard output.

A red INV indicates that D_val, also in red and highlighted
in yellow, will produce an invalid distinct ordering vector if it
is added to the vector at this VecLoc. The program therefore
bypasses D_val at this VecLoc, and moves on.

When there is only 1 distinct value to be written to the
vector, Table 6 shows that the program very quickly creates
an all-1s vector. Table 7 lists the program steps when there are
2 distinct values in the vector input list, values 1 and 2, each of
which must occur at least once in each vector’s 3 total values.

When J=N, as in Table 8, each value from 1 to N must
occur once and only once in the vector list. This is the N!
permutation vector list discussed in the main text.

REFERENCES
[1] D. E. Knuth, The Art of Computer Programming: Sorting and Searching,

vol. 3. Addison Wesley, 1973.
[2] T. Cormen, C. Leiserson, and R. Rivest, Introduction to Algorithms, 1st ed.

Cambridge, MA, USA: MIT Press, 1990.
[3] T. Cormen, C. Leiserson, R. Rivest, and C. Stein, Introduction to Algo-

rithms, 3rd ed. Cambridge, MA, USA: MIT Press, 2009.
[4] R. B. Kent and M. S. Pattichis, ‘‘Design, implementation, and analysis

of high-speed single-stage N-sorters and N-filters,’’ IEEE Access, vol. 9,
pp. 2576–2591, 2021.

[5] R. Kent and M. Pattichis, ‘‘Use of carry chain logic and design system
extensions to construct significantly faster and larger single-stageN-sorters
and N-filters,’’ IEEE Access, vol. 10, pp. 79689–79702, 2022.

[6] R. B. Kent and M. S. Pattichis, ‘‘Design of high-speed multiway merge
sorting networks using fast single-stage N-sorters and N-filters,’’ IEEE
Access, vol. 10, pp. 77980–77992, 2022.

[7] K. E. Batcher, ‘‘Sorting networks and their applications,’’ in Proc. Spring
Joint Comput. Conf., 1968, pp. 307–314, doi: 10.1145/1468075.1468121.

[8] D. C. Van Voorhis, ‘‘A generalization of the divide-sort-merge strategy for
sorting networks,’’ Stanford Electron. Labs., Stanford Univ., Stanford, CA,
USA, Tech. Rep. 16, Aug. 1971.

VOLUME 11, 2023 70585

http://dx.doi.org/10.1145/1468075.1468121

R. B. Kent, M. S. Pattichis: Beyond 0-1: The 1-N Principle and Fast Validation

[9] D. C. Van Voorhis, ‘‘An economical construction for sorting net-
works,’’ in Proc. Nat. Comput. Conf. Expo., 1974, pp. 921–927, doi:
10.1145/1500175.1500347.

[10] G. Schnitger, Parallel and Distributed Algorithms. Frankfurt, Germany:
Institut Für Informatik. 2006.

[11] H. Casanova, A. Legrand, and Y. Robert, Parallel Algorithms, 1st ed.
Boca Raton, FL, USA: CRC Press, 2008, doi: 10.1201/9781584889465.

[12] J. R. Smith, The Design and Analysis of Parallel Algorithms. New York,
NY, USA: Oxford Univ. Press, 1993.

[13] G. Stachowiak, ‘‘Fast periodic correction networks,’’ Theor. Comput. Sci.,
vol. 354, no. 3, pp. 354–366, Apr. 2006.

[14] S.-S. Choi and B.-R. Moon, ‘‘A graph-based Lamarckian–Baldwinian
hybrid for the sorting network problem,’’ IEEE Trans. Evol. Comput.,
vol. 9, no. 1, pp. 105–114, Feb. 2005, doi: 10.1109/TEVC.2004.841682.

[15] S. W. Baddar and K. E. Batcher, Designing Sorting Networks: A New
Paradigm. Berlin, Germany: Springer, 2012.

[16] Z. Vasicek and V. Mrazek, ‘‘Trading between quality and non-functional
properties of median filter in embedded systems,’’ Genetic Program.
Evolvable Mach., vol. 18, no. 1, pp. 45–82, Mar. 2017.

[17] M. Bidlo and M. Dobes, ‘‘Evolutionary development of growing
generic sorting networks by means of rewriting systems,’’ IEEE
Trans. Evol. Comput., vol. 24, no. 2, pp. 232–244, Apr. 2020, doi:
10.1109/TEVC.2019.2918212.

[18] C. Chakrabarti, ‘‘Sorting network based architectures for median filters,’’
IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process., vol. 40, no. 11,
pp. 723–727, Nov. 1993, doi: 10.1109/82.251840.

[19] Y. Azar and Y. Richter, ‘‘The zero-one principle for switching networks,’’
in Proc. 36th Annu. ACM Symp. Theory Comput., New York, NY, USA,
Jun. 2004, pp. 64–71, doi: 10.1145/1007352.1007369.

[20] D. E. Knuth, The Art of Computer Programming: Sorting and Searching,
vol. 3, 2nd ed. Boston, MA, USA: Addison Wesley, Sep. 2017.

[21] M. Ajtai, J. Komlos, and E. Szemeredi, ‘‘Halvers and expanders (switch-
ing),’’ in Proc. 33rd Annu. Symp. Found. Comput. Sci., Oct. 1992,
pp. 686–692, doi: 10.1109/SFCS.1992.267782.

[22] B. Parker and I. Parberry, ‘‘Constructing sorting networks from k-sorters,’’
Inf. Process. Lett., vol. 33, no. 3, pp. 157–162, 1989, doi: 10.1016/0020-
0190(89)90196-8.

[23] L. Zhao, Z. Liu, and Q. Gao, ‘‘An efficient multiway merging algorithm,’’
Sci. China Ser. E, Technol. Sci., vol. 41, no. 5, pp. 543–551, Oct. 1998.

[24] F. Shi, Z. Yan, and M. Wagh, ‘‘An enhanced multiway sorting network
based on n-sorters,’’ in Proc. IEEE Global Conf. Signal Inf. Process.
(GlobalSIP), Dec. 2014, pp. 60–64.

[25] R. Cypher and J. L. C. Sanz, ‘‘Cubesort: A parallel algorithm for sorting
N data items with S-sorters,’’ J. Algorithms, vol. 13, no. 2, pp. 211–234,
1992, doi: 10.1016/0196-6774(92)90016-6.

[26] D. Gale and R.M. Karp, ‘‘A phenomenon in the theory of sorting,’’ in Proc.
11th Annu. Symp. Switching Automata Theory, Oct. 1970, pp. 51–59, doi:
10.1109/SWAT.1970.1.

ROBERT B. KENT (Life Member, IEEE) received
the B.S. degree in physics from the University
of Notre Dame, Notre Dame, IN, USA, in 1970,
and the M.S. degree in electrical engineering from
The University of Utah, Salt Lake City, UT, USA,
in 1983. He is currently pursuing the Ph.D. degree
with the Electrical and Computer Engineering
Department, The University of New Mexico.

He was with various semiconductor companies:
National Semiconductor, from 1983 to 1990, Intel

Corporation, from 1990 to 1998, Philips Semiconductor, from 1998 to 1999,

and Xilinx Inc., from 1999 to 2011. He was an Independent Contractor, also
in the semiconductor field, from 2012 to 2017. His main research interests
include the design of single-stage N-sorters and N-filters in hardware, partic-
ularly in FPGAs, and the use of these sorters and filters in sorting networks
or other hardware sorting systems.

MARIOS S. PATTICHIS (Senior Member, IEEE)
received the B.Sc. degree (Hons.) in computer sci-
ences, and the Bachelor of Arts degree (Hons.) in
mathematics and a minor in electrical engineering,
the M.S. degree in electrical engineering, and the
Ph.D. degree in computer engineering from The
University of Texas at Austin, in 1991, 1993, and
1998, respectively.

He was the lead PI and a Board Member of
the Configurable Space andMicrosystems Innova-

tions and Applications Center (COSMIAC), The University of New Mexico
(UNM). At UNM, he is also the Director of the Image and Video Processing
and Communications Laboratory (ivPCL). He is currently a Professor with
the Department of Electrical and Computer Engineering, UNM. His current
research interests include image and video processing, video communica-
tions, dynamically reconfigurable computer architectures, and biomedical
image analysis.

Dr. Pattichis was a fellow of the Center for Collaborative Research and
Community Engagement, UNM College of Education, from 2019 to 2020.
He was elected as a fellow of the European Alliance of Medical and
Biological Engineering and Science (EAMBES). He was a recipient of
the 2016 Lawton-Ellis and the 2004Distinguished TeachingAwards from the
Department of Electrical and Computer Engineering, UNM. For his develop-
ment of the digital logic design laboratories with UNM, he was recognized
by Xilinx Corporation, in 2003, and by the UNM School of Engineering’s
Harrison Faculty Excellence Award, in 2006. He was the General Chair of
the 2008 IEEE Southwest Symposium on Image Analysis and Interpretation
(SSIAI) and the General Co-Chair of the SSIAI, in 2020. He has served as a
Senior Associate Editor for the IEEE TRANSACTIONS ON IMAGE PROCESSING and
IEEE SIGNAL PROCESSINGLETTERS, an Associate Editor for IEEE TRANSACTIONS

ON IMAGE PROCESSING and IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, and
a Guest Associate Editor for two additional special issues published in the
IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, a Special
Issue published by Teachers College Record, a Special Issue published by
the IEEE JOURNALOFBIOMEDICALANDHEALTH INFORMATICS, and a Special Issue
published in Biomedical Signal Processing and Control.

70586 VOLUME 11, 2023

http://dx.doi.org/10.1145/1500175.1500347
http://dx.doi.org/10.1201/9781584889465
http://dx.doi.org/10.1109/TEVC.2004.841682
http://dx.doi.org/10.1109/TEVC.2019.2918212
http://dx.doi.org/10.1109/82.251840
http://dx.doi.org/10.1145/1007352.1007369
http://dx.doi.org/10.1109/SFCS.1992.267782
http://dx.doi.org/10.1016/0020-0190(89)90196-8
http://dx.doi.org/10.1016/0020-0190(89)90196-8
http://dx.doi.org/10.1016/0196-6774(92)90016-6
http://dx.doi.org/10.1109/SWAT.1970.1

