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ABSTRACT In recent studies, convolutional neural networks (CNNs) aremostly used as dynamic techniques
for visualization-based malware classification and detection. Though vision transformer (ViT) proved its
efficiency in image classification, a few of the earlier studies developed a ViT-based malware classifier.
This paper proposes a butterfly construction-based vision transformer (B_ViT)model for visualization-based
malware classification and detection. B_ViT has four phases: (1) image partitioning and patches embeddings;
(2) local attention; (3) global attention; and (4) training and malware classification. B_ViT is an enhanced
ViT architecture that supports the parallel processing of image patches and captures local and global spatial
representations of malware images. B_ViT is a transfer learning-based model that uses a pre-trained ViT
model on the ImageNet dataset to initialize the training parameters of transformers. Four B_ViT variants are
experimented and evaluated on grayscale malware images collected from MalImg, Microsoft BIG datasets
or converted from portable executable imports. The experiments show that B_ViT variants outperform the
Input Enhanced vision transformer (IEViT) and ViT variants, achieving an accuracy equal to 99.49% and
99.99% for malware classification and detection respectively. The experiments also show that B_ViT is time
effective for malware classification and detection where the average speed-up of B_ViT variants over IEViT
and ViT variants are equal to 2.42 and 1.81 respectively. The analysis proves the efficiency of texture-based
malware detection as well as the resilience of B_ViT to polymorphic obfuscation. Finally, the proposed
B_ViT-based malware classifier outperforms the CNN-based malware classification methods in well.

INDEX TERMS Vision transformer, global attention, local attention, malware classification, visualization-
based malware classifier, parallel processing.

I. INTRODUCTION
Malware is malicious software created with the intent of
causing harm to a computer system, network, or cloud.
This can include viruses, worms, trojan horses, spyware,
ransomware, and more. Malware is usually spread through
malicious emails, malicious websites, and malicious down-
loads [1]. For example, business email compromise (BEC) is
an increasingly common form of cyber attack which targets
businesses, organizations, and governments, according to
Symantec’s threat report (2020) [2]. LokiBot is a malicious
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piece of software that is designed to steal passwords,
cryptocurrency wallets, and other sensitive data by placing
malicious code into files that are hosted on cloud-based
services. It was first discovered in 2019 and is believed to
be related to other malicious programs like TrickBot and
Azorult. LokiBot is also capable of evading detection by
using encrypted communication and hiding its malicious
code within legitimate applications [3]. Ryuk is a dangerous
form of ransomware that can be used to extract large sums of
money from victims. It typically targets large organizations,
encrypting all of their data and demanding a ransom in
exchange for its release. Ryuk is also known for its ability
to spread quickly [4]. Malware detection techniques can
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be classified into two categories, each providing a distinct
perspective. The first classification, known as static, dynamic,
and hybrid, focuses on the analysis approach employed [5].
The second classification, signature-based and anomaly-
based, focuses on the detection strategy utilized [6]. The
analyzing techniques for malware detection are classified
into 3 methods: static, dynamic, and hybrid. Static malware
detection involves analyzing the code and metadata of
malware such as size, developer information, number of
downloads, and other relevant details to identify malicious
behavior. It is a quick initial step that can detect suspi-
cious code without execution. However, code obfuscation
and reverse-engineering make it time-consuming and pose
challenges in identifying threats [5]. In contrast, Dynamic
malware detection uses controlled execution of malicious
code to analyze its behavior and capabilities. It provides
detailed insights into the code’s actions and risks. Dynamic
analysis is often used as a second step in malware detection.
However, it can produce false positives, reducing detection
accuracy. [5]. Hybrid malware detection combines both static
and dynamic methods [5]. The most common approaches that
are used to detect malware are signature-based methods [7].
Signature-based malware detectors rely on a database of
known malware to identify and prevent malicious activities.
They compare file characteristics to known signatures and
take action if a match is found. It is an effective method
to detect and prevent malware threats [8]. Signature-based
malware detection has limitations. It cannot detect new
or modified threats and can be computationally intensive
due to processing large amounts of data [8]. Anomaly-
based malware detectors identify malicious activities by
detecting deviations from normal behaviour, aiming to detect
unknown or zero-day malware that may evade traditional
signature-based methods. These techniques employ machine
learning algorithms [8]. Though machine learning-based
malware detectors are effective and have good accuracy,
the features should be manually and carefully collected
by subject matter experts to make sure that the ML-based
detectors would perform well [9]. Also, it may generate false
positives or miss sophisticated attacks that mimic normal
behaviour [7].

Recently, image visualization-based malware detection
is becoming increasingly popular as it effectively detects
malicious activities on a computer system. It is an effective
way to detect sophisticated and complex malware that can
bypass traditional methods of detection [5]. Instead of focus-
ing on code analysis or behavioural patterns, this approach
leverages the visual representation of malware samples to
uncover potential malicious activities. The executable files or
network traffic are converted into grey-scale or RGB images,
and then these images are analyzed by the classification
model to decide whether malware or not using visual
features [10]. Image visualization-based malware detection
has several advantages over traditional security techniques.
First, it is more accurate in detecting malicious activities.
Second, it is faster and easier to use than traditional methods.

Lastly, it is more cost-effective than traditional methods,
as it requires less human resources and time to set up and
maintain [9].

Most of the recent studies focus on using convolu-
tional neural networks (CNNs) as dynamic techniques for
visualization-based malware detection [1], [5], [11], [12].
CNNs can analyze the visual representation of malware codes
which are collected from executable files or network traffic,
and identify malicious patterns based on the features that are
extracted from the input image. However, CNNs are limited
in their ability to identify subtle differences between malware
variants [12]. As a result, they may not be able to detect
small changes in malicious code that could affect the way the
malware behaves [12].

The transformers-based approaches were only applied
in natural language processing applications [13]. Some
transformer-based approaches like Vision Transformer
(ViT) [13] are currently applied in image classification tasks
such as plant diseases classification [14], [15], chest X-ray
image classification [16], etc. Though ViT outperforms the
CNNs in terms of accuracy and image processing such that
the spatial information of the image is retained in ViT [17],
a few of the earlier studies developed a ViT-based malware
classifier. However, some limitations should be tackled in
ViT architecture to improve its performance in malware
classification. ViT is able to process images at a much
higher resolution than traditional CNNs, but processing very
large images can still be computationally intensive. From the
shallow layers of ViT, only the global representation of the
input image is obtained but local representation should be also
considered. it also requires large amounts of data in order to
be trained accurately. Additionally, it can be computationally
expensive, requiring powerful hardware and long training
times [17].

This paper builds a B_ViT butterfly construction-based
vision transformer model for visualization-based malware
classification and detection. Themain contributions of B_ViT
are summarized as follows:

• B_ViT is an enhancedViT architecture captures the local
spatial representation and global spatial representation
of malware images.

• All the variants of B_ViT such as BViT/B16, BViT/B32,
BViT/L16, and BViT/L32 are experimented and evalu-
ated on the MalImg [9], Microsoft BIG [18] datasets,
and top-1000 PE imports. Then, they are compared with
the performance of IEViT and ViT.

The following sections in this paper are organized as
follows: Section II describes the related works and classifies
the malware detection and classification approaches as per
their functions. Section III discusses the grayscale malware
image generation and the architecture of the proposed
model B_ViT in detail. The materials and datasets are
discussed in section IV. Section V analyzes the robustness
of the proposed model to obfuscation. The performance
analysis of B_ViT and the comparative analysis with the
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other ViT-based architectures are presented in section VI.
In addition, section VI shows a parallel analysis of B_ViT
over IEViT, and ViT. A discussion and results interpretation
are provided in section VII. Finally, the conclusion and
limitations are provided in section VIII.

II. RELATED WORK
Static malware detection techniques are used to detect
malicious software (malware) without actually executing
it. This type of detection is based on analyzing the code
statically or other static characteristics of the malware.
Naik et al. [19] proposed a static malware detection method
namely, fuzzy-import hashing. This method relies on two
combined hashing techniques: fuzzy and import, each can
be cooperative to improve the rate of malware detection.
Liangboonprakong and Sornil [20] used N-grams sequential
pattern features to build a malware classification approach.
The N-grams are extracted by disassembling the binary
executable into a hexadecimal string. The next step is
sequential pattern extraction, which looks for frequently
occurring sequences and uses them to build a feature vector
to classify data. Narouei et al. [21] proposed a static malware
detection technique to detect malware accurately and resist
packing and injection of malware into legitimate software.
Avdiienko et al. [22] mined the data flow for benign android
apps, and used them to detect the android malicious apps.
MUDFLOW tool is developed to mine and classify the
dataflow in apps using FlowDroid. Static malware detection
techniques are useful in terms of performance analysis due
to identifying suspicious code without having to run it.
However, these techniques can not resist code obfuscation
or code packing besides, they require domain experts and
reverse engineering [5].

Dynamic malware detection techniques are used to detect
malicious code as it is running and can provide insights
into the code’s behavior within the operating system such
as system calls and system resources. These behavioral
features collected from the malware behavior can be used
to implement machine learning or deep learning-based
frameworks for malware detection [5]. Li et al. [23] proposed
a DMalNet dynamic malware detection technique based on
API semantic features and graph learning. The semantic
features are extracted from API arguments and names
by a hybrid encoder. The relationship between API calls
is then converted into the graph’s structural data using
an API call graph that is derived from the API call
sequence. Li et al. [24] implemented a malware detection
framework using deep learning models that extract intrinsic
features by capturing and combing significant features. API
calls-based detection approaches have good accuracy in
malware detection but their complexity is high and there is
hardship to be used in a real-time environment that needs
high capabilities. Recently, many state-of-arts suggested
using hardware-based detection approaches that enhance the
performance of model or framework [11]. Tian et al. [11]
proposedMDCHD, a detection approach based on the control

flow of target software at run-time that is collected from
Processor Traces. Chen et al. [25] used the control flow traces
of the target software to implement a malicious software deep
learning-based detector. For minimal overhead execution
tracing, Chen et al. [25] used processors with Intel Processor
Trace enabled. There are some limitations in dynamic
malware detection techniques such as selecting a proper
environment to execute the software in it, the behavior of
malware changing, or generating false sequences. Dynamic
analysis-based methods are also non-scalable because they
need a lot of resources and are environment-specific [5].

In recent studies, visualization-based malware detec-
tion is popular for complex and sophisticated malware
detection that can bypass traditional malware detection
techniques [5]. These methods are accurate, cost-effective,
and require no feature extraction and fewer human
resources [9]. Falana et al. [26] proposed amalware detection
virtualization-based approach that converts the binary
files of malware into RGB images and then extracts the
features from these images using an ensemble method
containing two neural networks: Deep-CNN and Deep-
GAN. Landman et al. [1] detected unknown malware in a
cloud environment based on Linux. Landman et al. [1] built
a framework called Deep-Hook that extracts the memory
dump sequences of a virtual machine while it is working
and then reforms them into visual images. Finally, the
CNN-based classifier is used to detect the malware based
on the visual image. Kumar et al. [5] proposed a DTMIC
method for malware classification based on deep transfer
learning i.e., a pre-trained CNN model on the ImageNet
dataset. DTMIC converts the portable executable files into
grayscale images then, each image is processed by pre-trained
deep CNN to classify to which malware family belongs.
Vasan et al. [12] proposed an IMCFN approach that uses
fine-tuning with the CNN model to classify image-based
malware. IMCFN converts the binary sequences of malware
into RGB images and then, processed them by a fine-tuned
CNN model that is trained previously with the ImageNet
dataset. Tian et al. [11] proposed MDCHD, a visualization-
based malware detection in virtual machine environments.
MDCHD collects the control flow of the target software at the
run-time using the IPT technique and then converts them into
RGB images to be processed byCNN architecture that detects
the malware. Makandar et al. [27] use the image processing
concepts for malware classification based on SVM multi-
class. Using the discrete wavelet transform GIST, Gabor
wavelet, and other features, the multi-resolution wavelets
are utilized to construct an efficient texture feature vector.
Narayanan et al. [28] visualize the viruses and malware in an
image. Then, the features are extracted from the images using
principal component analysis (PCA), and hybrid techniques
are used such as ANN along with SVM and KNN to classify
the malware.

Convolutional neural networks (CNNs) are dynamic
technology that is mostly used in related studies to detect
malware. CNNs have a limited ability to distinguish minute
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variations among malware types. They might therefore be
unable to identify minute alterations in malicious code that
might have an impact on how the malware behaves [12].
Recently, most of the studies applied attention mechanisms
along with the CNN model to enhance the performance of
CNN. Xu et al. [29] proposed Malbert, a malware detection
approach that depends on a pre-trained deep learning
model using 12 transformers, each transformer contains
an attention layer followed by a deep neural network.
Zhang et al. [30] proposed a static ransomware detection
technique that uses N-gram opcodes and self-attention-based
CNN. In 2021, Dosovitskiy et al. [13] proposed a vision
transformer (ViT) approach which is an attention-based
approach, to be used as an image-based classifier. ViT was
applied in several fields and achieved high performance in
all studies. Xu et al. [31] created a multi task classification
framework using ViT that is capable of simultaneously
predicting four glioma molecular expressions based on MR
images. Okolo et al. [16] enhanced the architecture of ViT
that can perform better for classifying chest X-ray images.
Haurum et al. [32] proposed a multi-scale hybrid ViT to
classify sewer defects. Sheynin et al. [33] proposed a method
that provides simultaneous coarse-grained local interactions
and global interactions.

For malware classification and detection, CNNs may not
be able to detect small changes in malicious code that could
affect how the malware behaves. ViT is a better solution
for capturing the spatial information of malware images.
Park et al. [34], proposed an enhanced ViT for malware clas-
sification. This method incorporates multiple patch encod-
ings which capture both the location information of local
features and global features. Seneviratne et al. [35] introduce
SHERLOCK, a novel approach for Android malware detec-
tion. The method utilizes a Self-Supervised ViT, which is
trained on a large corpus of Android application (APK) files.
SHERLOCK captures the representations of APK files and
based on that, decides whether a given APK file contains
malware or not. In this paper, we proposed a B_ViT archi-
tecture, a butterfly construction-based vision transformer
for malware image classification. The proposed architecture
B_ViT tackles the limitations of ViT architecture and image
malware-based studies. The proposed malware classifier
captures the local spatial representation and global spatial
representation of malware images. It does not require domain
experts. It supports parallel processing for malware images.
Moreover, it is scalable, time-effective, and data-satiable.

III. METHODOLOGY
In this paper, a visualization-based malware classi-
fier/detector namely, butterfly construction-based vision
transformer (B_ViT) is proposed. The input of B_ViT
model could be any grayscale malware image or a portable
executable import after being converted into a grayscale
image. As output, B_ViT model classifies the malware image
or detects the malware in the input image.

TABLE 1. Notation descriptions used in this paper.

FIGURE 1. Malware and benign samples converted from PE imports.

Prior to delving into the methodology sub-sections, a table
of notations 1 will be provided for reference and clarification
purposes.

A. GRAYSCALE IMAGE GENERATION PHASE
In this phase, the binary sequence of portable executable (PE)
import is converted into a 2-dimensional grayscale image.
Then, the image would be used by the proposedmodel B_ViT
to classify or detect the malware. The steps of the PE imports
conversion into grayscale images are shown in Algorithm 1.
Firstly, the binary sequence of PE import {0, 1}M ; M is the
number of bits, is split into s octets. Each octet of portable
executable import PE[i ∗ 8 + 1], . . . .PE[i ∗ 8 + 8]; i is the
index of the octet, represents the pixel valueP in the grayscale
image x so, s is equal to the number of image pixels. Then, the
pixel values Pi are converted from binary to an 8-bit unsigned
integer where the new values P′i ∈ [0, 255]. P′i are normalized
to be in the range [0, 1]. The normalized pixels’ values P′i are
organized into a vector awith S values. Finally, the vector a is
reshaped to a 2-dimensional grayscale image x with (H x W)
dimensions and one channel C = 1; S = H ∗ W . Figure 1
shows some samples of malware and benign images after
applying algorithm 1 on the PE imports that are collected
from Cuckoo Sandbox reports.

B. THE PROPOSED BUTTERFLY CONSTRUCTION-BASED
VISION TRANSFORMER B_ViT
B_ViT is an enhanced vision transformer (ViT) architecture
that relies on the parallel processing of image segments and
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Algorithm 1 Conversion Malware Portable Executable
Import Into Grayscale Image

1: Input : Malware PE import: {0, 1}M

2: output : x ∈ RH×W×C .
3: S ← M/8
4: a← []
5: For i : 0→ (s− 1) do
6: Pi← PE[i ∗ 8+ 1], . . . .,PE[i ∗ 8+ 8]
7: P′i← uint(P) ;P′i ∈ [0, 255]
8: P′′i ← Norm(P′i) ;P

′′
i ∈ [0, 1]

9: a← [P′′0,P
′′

1, . . . .,P
′′

s−1]
10: [ x] H×W ← [ a] S×1 ; x ∈ RH×W , a ∈ RS×1

captures local and global spatial representations of malware
images. B_ViT utilized local and global positional encoding
of malware images. Local and global transformer encoders
are also included in B_ViT. The architecture of the proposed
malware classifier B_ViT is shown in Figure 2. B_ViT
has four phases: image partitioning & patches embeddings;
local attention; global attention; and training and malware
classification. The details of each phase are shown in the
following sections.

1) IMAGE PARTITIONING & PATCHES EMBEDDINGS PHASE
The grid partitioning is followed in the proposed model,
the malware image x ∈ RH×W×C is partitioned into N
non-overlapping square patches in this phase as shown in
equation 1 where (H ,W ) is the malware image resolution,
C is the channels number, (P×P) is patch resolution andN =
H×W
P2

. Then, each patch x(i); i = 1, . . . ,N is flattened i.e,
reshaped into a sequence of feature vectors with size (P ×
P × C). A trainable linear projection is used to map the
flattened patchesP(i) to D dimensions, which are named patch
embeddings P(i)E as shown in equation 2.

x → [x(1), x(2), . . . .., x(N )] ; x(i) ∈ RP×P×C and

i = 0, . . . ,N (1)

P(i)E = LP(F(x(i))) = DenseD(F(x(i))); i = 1, . . . ,N (2)

where F is the flatten function and LP is the linear projection
function i.e, dense layer with D units. The steps from 3 to 8
in Algorithm 2 show the overall process of image partitioning
and patch embedding phase. All these steps could be
performed simultaneously because there is no dependency
between the image patches.

2) LOCAL ATTENTION PHASE
Unlike the original ViT, B_ViT applies self-attention-
based transformers to process the malware image in
segments simultaneously, where more focus is placed on
local features and local representation. k local transformer
encoders LTE are used where k is the parallelism degree
i.e, the number of threads. The steps of this phase are
shown in lines 12-21 in Algorithm 2. To generate the local
representation ofmalware image Zi, the patch embeddingsPE

are grouped into k segments, and each segment’s patch

embeddings [P
(i−1)×N

k +1
E , . . . ..,P

(i)×N
k

E ] are added to the
local positional embeddings [LposE (1), . . . .,LposE (k)];
˜LposE ∈ R(

N
k )×D which are used to provide information

on where each patch was located in the segment then,
Zi is generated as shown in equation 3. The local positional
embeddings of each segment are produced by mapping the
local patch position into a vector with size D. A trainable
linear projection function i.e., a dense layer is used to map
the local patch position to D dimensions. After that, for each
segment, the learnable embedding x(0)class is mapped into a
vector with D size by using linear projection and added to
the positional embedding of zero LposE (0). The outcome is
prepended to each segment’s Zi as shown in equation 3.

Zi = [P
(i−1)×N

k +1
E + LposE (1), . . . . . . . . . ,P

(i)×N
k

E

+LposE (
N
k
)]

Zi← [x(0)class.Linerar_projection+ LposE (0) || Zi]
(3)

where ˜LposE ∈ R(
N
k )×D, i = 1, . . . , k is the index of

the segment which is addressed by the i-th local transformer
encoder.

Finally, as shown in line 20 of Algorithm 2, each
segment Zi is fed to the corresponding local transformer
encoder with LH heads, which produce Z̃i ∈ R(

N
k +1)×D. The

structure of the transformer encoder is shown in equation 4.{
a = MhSah(Norm(Z ))+ Z
Z̃ = MLP(Norm(a))+ a

;Z ∈ RN×D (4)

where MhSah is a multi-head self-attention function with
h heads. MLP is a multi-layer perceptron with two hidden
layers: 128, 64 units. Z̃ is the N transformer embeddings, each
of which has a D size.

3) GLOBAL ATTENTION PHASE
In this phase, the input image is processed in one block
by one global transformer encoder, with more focus on
global features and representation. The steps of this phase are
shown in lines 22-33. To generate the global representation
of malware image Z̃ , the local transformer embeddings Z̃i are
concatenated to form one vector {Z̃1 || Z̃2, . . . || Z̃k}, these
vector embeddings excluding the first member from each Z̃i
are added to patch embeddings P(j)E and the global position
embeddings GposE (j);GposE ∈ RN×D which are used to
provide information on where each patch was located in the
malware image, then, Z̃ is generated as shown in equation 5.
The global positional embeddings of the input image are
produced by mapping the global patch position into a vector
with size D.

Z̃ ← {Z̃1 || Z̃2, . . . || Z̃k}\{Z̃
(0)
i } + P

(j)
E + GposE (j);

GposE ∈ RN×D; j = 1, . . . ,N ; Z̃ ∈ R(N+k)×D

(5)
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FIGURE 2. Butterfly construction-based vision transformer (B ViT).

where i = 1, . . . , k is the index of the segment which is
addressed by the i-th transformer encoder.

After that, as shown in line 28 of Algorithm 2,
Z̃ is fed to the global transformer encoder with GH heads,
to produce ˜̃Z ∈ R(N+k)×D. The structure of the transformer
encoder is shown in equation 4.

Finally, the global transformer embeddings ˜̃Z are parti-
tioned into k segments, each which ˜̃Zi has N+K

k embeddings
as shown in equation 6. As shown in line 31 of Algorithm 2,
each segment ˜̃Zi is fed to the transformer encoder with LH
heads to produce Ẑi ∈ R(

N
k +1)×D. The transformer

encoders address the ˜̃Zi’s simultaneously. The structure of the

transformer encoder is shown in equation 4.

˜̃Zi← [ ˜̃Z
(i−1)×N+k

k +1
i , . . . . . . . . . ,

˜̃Z
(i)×N+k

k
i ] (6)

4) TRAINING AND MALWARE CLASSIFICATION PHASE
B_ViT model implements same ViT-adopted variants [13]
and IEViT-adopted variants [16]. Therefore, four variants
of B_ViT such as BViT/B16, BViT/B32, BViT/L16, and
BViT/L32 have been experimented. Table 2 shows the
details of ViT-adopted, IEViT-adopted, and B_ViT-adopted
variants. More details in all the variants of B_ViT such
as BViT/B16, BViT/B32, BViT/L16, and BViT/L32 are
provided as follows:
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Algorithm 2 B_VIT: Butterfly Construction-Based Vision Transformer Algorithm

1: Input : [x] ∈ RH×W×C ,P,LH ,GH ,D,MLP_Size
2: output : ( B_ViT ) optimal classifier.
3: N ← (H ∗W )/P2

4: [x(1), x(2), . . . .., x(N )]← x ; x(i) ∈ RP×P×C

5: For i : 1→ N
6: P(i)← x(i).flatten ;P(i) ∈ RP.P.C×1

7: P(i)E ← P(i).Linear_projection ;P(i)E ∈ R
(P.P.C×D)

8: END For
9: Transformer_No← k
10: L ← 0
11:While B_VIT is not trained
12: L = L + 1
13: For i : 1→ Transformer_No
14: IF L == 1 Do
15: Zi← [P

(i−1)×N
k +1

E + LposE (1), . . . . . . . . . ,P
(i)×N

k
E + LposE (Nk )] ; ˜LposE ∈ R(

N
k )×D

16: Zi← [x(0)class.Linerar_projection+ LposE (0) || Zi] ;Zi ∈ R
(Nk +1)×D

17: ELSE
18: Zi← Ẑi
19: ENDIF
20: Z̃i← LTELH (Zi) ; Z̃i ∈ R(

N
k +1)×D

21: END For
22: L = L + 1
23: IF L == 2 Do
24: Z̃ ← {Z̃1 || Z̃2, . . . || Z̃k}\{Z̃

(0)
i } + P

(j)
E + GposE (j);GposE ∈ R

N×D
; j = 1, . . . ,N ; Z̃ ∈ R(N+k)×D

25: ELSE
26: Z̃ ← [Z̃1 || Z̃2, . . . || Z̃k ] ; Z̃ ∈ R(N+k)×D

27: ENDIF
28: ˜̃Z ← GTEGH (Z̃ ) ;

˜̃Z ∈ R(N+k)×D

29: L = L + 1
30: For i : 1→ Transformer_No

31: ˜̃Zi← [ ˜̃Z
(i−1)×N+k

k +1
i , . . . . . . . . . ,

˜̃Z
(i)×N+k

k
i ]

32: Ẑi← LTELH (
˜̃Zi) ; Ẑi ∈ R(

N
k +1)×D

33: END For
34: ENDWhile

TABLE 2. A description of ViT, IEViT, and B_ViT variants.

• BViT/B16 is a medium-sized Vision Transformer with
a patch size of 16 × 16 pixels. It is suitable for tasks
with fewer classes or limited computational resources.
Each 16 × 16 patch is linearly projected and processed
by 12 Transformer encoder layers executed in 4 rounds.
The local transformer encoders have 4 headers and the
global transformer encoders have 12 headers. These
transformer encoders generate embeddings with a size
of 768.

• BViT/B32 is a medium-sized Vision Transformer with a
patch size of 32×32 pixels. It captures a coarser-grained
representation by reducing the number of patches com-
pared to BViT/B16. It is suitable for lower-resolution
images or when spatially localized features are more
prevalent. Each 32 × 32 patch is linearly projected and
processed by 12 Transformer encoder layers executed in
4 rounds. The local transformer encoders have 4 headers
and the global transformer encoders have 12 headers.
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These transformer encoders generate embeddings with
a size of 768.

• BViT/L16 is a larger Vision Transformer with a patch
size of 16 × 16 pixels. It has a higher capacity for
capturing fine-grained details and complex patterns in
images. It is suitable for tasks with many classes or
when higher accuracy is prioritized over computational
efficiency. Each 16× 16 patch is linearly projected and
processed by 24 Transformer encoder layers executed in
8 rounds. The local transformer encoders have 4 headers
and the global transformer encoders have 16 headers.
These transformer encoders generate embeddings with
a size of 1024.

• BViT/L32 is a larger Vision Transformer with a patch
size of 32×32 pixels. It captures a more holistic view of
the input image, considering broader context and global
dependencies. It is advantageous for higher-resolution
images or those with large-scale spatial structures. Each
32 × 32 patch is linearly projected and processed
by 24 Transformer encoder layers executed in 8 rounds.
The local transformer encoders have 4 headers and the
global transformer encoders have 16 headers. These
transformer encoders generate embeddings with a size
of 1024.

For training all B_ViT variants, the local attention and
global attention phases are iterated several rounds to fine-tune
the training parameters of transformer encoders. In each
round, three transformers’ layers are performed where l =
1, 2, 3 are performed in round 1; l = 4, 5, 6. are performed
in round 2, and so on. The local attention phase has one
transformer encoders layer, in which either the local represen-
tation of the malware image Zi is addressed in the first round
i.e, l = 1, or the output of transformer encoders in the global
attention phase Ẑi is addressed for the upcoming rounds
i.e, l = 4, 7, 10, . . . as shown in line 18 of Algorithm 2.
The global attention phase has two transformer encoders
layers, in the first one either the global representation of the
malware image along with the output of local transformer
encoders {Z̃1 || Z̃2, . . . || Z̃k}\{Z̃

(0)
i } + P(j)E + GposE (j) is

addressed in the first round i.e, l = 2 or, the only output of
local transformer encoders {Z̃1 || Z̃2, . . . || Z̃k} is addressed
for the upcoming rounds i.e,$ l = 5, 8, 11, . . . as shown
in line 26 of Algorithm 2. In the second one, the output of
the global transformer encoder ˜̃Z is addressed for all rounds
i.e., l = 3, 6, 9, 12, . . ..

B_ViT is a transfer learning-based model, whereby
the pre-trained ViT model on the ImageNet dataset [36]
(≥ 10 million images) is used to transfer and initialize
the training parameters of the transformers. B_ViT i.e, the
target model is then fine-tuned to better fit the malware
classification task. This can be done by adding MLP head
classifier to the proposed model. In context, B_ViT is time-
effective (training the model from scratch is not required),
and data-satiable (a reasonable size dataset is sufficient for
training along with overcoming the overfitting issue). MLP

head classifier is trained on three datasets i.e, MalImg [9],
Microsoft BIG [18], and top-1000 PE imports. Two dense
layers: 1024, 512 units are included in MLP head classifier
beside, one output layer withM units whereM is equal to the
number of classes for dataset being trained. Finally, the class
of malware image is determined by MLP head based on the
output of j transformer encoders ˜̃Zi as shown in equation 7.{

Ẑ = {Ẑ1||Ẑ2|| . . . .||Ẑk}
Pclass = MLPhead (Ẑ )

; Ẑ ∈ RN×D (7)

where Pclass are the probabilities of belonging the image to
classes.

The use of transfer learning in B_ViT, being an efficient
model, brings several benefits. Without transfer learning,
B_ViT would face the following challenges:

1) Training from scratch: B_ViT would require an
extensive amount of labelled malware images (ranging
from 14 million to 300 million) and significant
computational resources, leading to lengthy training
times spanning weeks.

2) Generalization limitations: B_ViT’s performance may
suffer when encountering new or unknown malware
samples since it lacks the knowledge and patterns
obtained from pretraining on a large-scale dataset.

3) Overfitting risks: In scenarios with limited training
data, B_ViT would be more susceptible to overfitting,
compromising its ability to generalize well to unseen
malware instances.

The proposed model B_ViT is experimented and trained
with different learning rates, optimizers, and batch sizes and
observed how they affect the model’s performance. The best
performance of B_ViT was achieved by using the following
parameters: learning rate = 10−4, optimizer = adam, batch
size = 16, the loss function is cross-entropy defined in
equation 8.

LCE = −
M∑
j=1

djlog(yj) (8)

whereM is the number of classes, dj is the target label for the
j-th class, yj is the predicted label for the j-th class.

Data augmentation is applied in deep learning-based
image classification approaches during the training phase
to increase the number of training samples and overcome
the overfitting issue [37]. Data augmentation includes some
methods such as shearing, scaling, flipping, shifting, rotating,
and zooming [38]. Table 3 shows the augmentation steps
that are followed in this paper to generate more training
data from the original malware images. Furthermore, the
testing images are excluded from the augmentation for getting
realistic results from the original images.

As shown in Figure 3, Figure 4, and Table 7, the three
datasets that are used for training B_ViT are imbalanced
i.e., some malware families images are significantly larger
or smaller compared to other malware families. However,
by increasing the malware images in some classes via data

69344 VOLUME 11, 2023



M. M. Belal, D. M. Sundaram: Global-Local Attention-Based Butterfly Vision Transformer

TABLE 3. Malware Images Augmentation steps.

TABLE 4. Malimg data augmentation details.

TABLE 5. Microsoft BIG data augmentation details.

augmentation, the impact of unbalanced data can be limited.
The details of data augmentation such as training samples
(before augmentation), training samples (after augmenta-
tion), and testing samples for Malimg, Microsoft BIG, and
PE imports are presented in Table 4, Table 5, and Table 6
respectively.

IV. DATASETS
The variants of the proposed model i.e, BViT/B16,
BViT/B32, BViT/L16, and BViT/L32 are trained and
evaluated on three publicly malware images datasets i.e, Mal-
Img [9], Microsoft BIG [18], and top-1000 PE imports [39].
Tables 7, 8, and 9 show details of MalImg, Microsoft BIG,

TABLE 6. PE imports data augmentation details.

FIGURE 3. Details of MalImg dataset.

and top-1000 PE imports respectively. Malimg contains
over 9,000 malware grayscale images distributed in 25
malware families as shown in Figure 3. Microsoft BIG
contains over 10,000 malware bytes files represented in
hexadecimal and distributed in 9 malware families as shown
in Figure 4. Top-1000 imported functions are applicable
for malware detection, containing over 47,000 portable
executable imports distributed in 2 classes benign, malware
as shown in Table 7, and collected from virusshare.com.
In experiments, the MalImg and Microsoft BiG, and PE
imports are divided into an 80:20 ratio for training and testing.

The implementation of the proposed architecture B_ViT
was performed using 64-bit windows 10 operating system,
Intel Xeon(R) CPU 4 GHz, NVIDIA Geforce GTX 1080 Ti
graphics card with CUDA 11.2, 64 GB RAM. Python 3.9.12
(Spyder IDE) with TensorFlow, Keras, and vit_keras libraries
are used for the implementation.

V. ANALYSIS OF OBFUSCATION RESISTANCE
Obfuscation is a variety of techniques such s code encryption,
code scrambling, and code packing used by malware
authors to make it evade detection and remain active on a
compromised system for a longer time. Polymorphic and
metamorphic obfuscations are two common circumvention
techniques [40].
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TABLE 7. Details of PE imports.

FIGURE 4. Details of Microsoft BIG dataset.

Polymorphic obfuscation alters the appearance and sig-
nature of malware using an encryption key. It uses a
self-replicating code and mutation engine to swiftly morph
malware’s code and continuously modify its shape by
changing the encryption keys, many signatures are generated
subsequently, it is a big challenge to prevent and detect
malware using signatures-based detection methods.

Metamorphic obfuscation rewrites the code of the malware
itself to generate different malware at each iteration. The
new malware’s generated without using an encryption key
and the functionality of them keeps same. Four methods
for metamorphic obfuscation are frequently used: instruction
substitution, register reassignment, dead-code insertion, and
code transposition.

Over than 80% of malware binary sequences employ
obfuscation techniques to evade detection. Obfuscation
techniques can be overcome by texture-based malware clas-
sification [12], [41]. The texture-based features of malware
images are obtained by converting the binary sequence into
a 2-dimensional grayscale image as shown in algorithm 1.
Then, B_ViT classifies the malware image based on texture
features. The proposed study considers the malware families
in three datasets i.e, MalImg, Microsoft BIG, and top-
1000 PE imports as well as focuses only on polymorphic
obfuscation. The results show the efficiency of texture-based
malware detection as well as the resilience of B_ViT to
polymorphic obfuscation. Some obfuscated malware samples
from the ObfuscatorAD family in malImg as shown in
Figure 5.

VI. PERFORMANCE ANALYSIS
The proposed model, B_ViT (butterfly construction-based
vision transformer) is experimented and evaluated for
visualization-based malware classification and detection.
Malware classification involves categorizing malware into
classes based on characteristics, behaviour, or attributes.

FIGURE 5. Obfuscated malware samples from the ObfuscatorAD family in
MalImg.

Malware detection identifies and alerts the presence of
malware. However, detection is the main goal of system
security but classification aids in developing detection
techniques. Malware detection entails a classification process
that distinguishes between malware data samples and benign
data samples.MalImg [9] andMicrosoft BIG [18] datasets are
used to evaluate all the variants of B_ViT such as BViT/B16,
BViT/B32, BViT/L16, and BViT/L32 for malware classifi-
cation. Moreover, we conducted an experiment on Microsoft
PE imports to detect malware, where the data samples were
categorized into two classes: ‘‘malware’’ and ‘‘benign’’.
Furthermore, in the three datasets, the B_ViT variants such
as BViT/B16, BViT/B32, BViT/L16, and BViT/L32 are
compared with the respective variants of IEViT and ViT. The
performance of B_ViT, IEViT, and ViT is measured using
the most common metrics such as accuracy, recall, precision,
and f1-score which are defined in equations 9, 10, 11,
and 12 respectively. Moreover, the parallel performance of
B_ViT variants is analyzed. Finally, B_ViT is compared with
the previous state-of-the-art visualization-based malware
classifiers.

Accuracy =
TP+ TN

FN + TN + TP+ FP
(9)

Recall =
TP

FN + TP
(10)

Precision =
TP

FP+ TP
(11)

F1− score =
2 ∗ Recall ∗ Precision
Recall + Precision

(12)

where FP(false-positive) is the number of malware that
are classified incorrectly as legitimate software, FN(false-
negative) is the number of legitimate software that are
classified incorrectly as malware, TP (true-positive) is
the number of malware classified correctly, and TN(true-
negative) is the number of legitimate software classified
correctly.

A. COMPARISON OF B_ViT WITH IEViT AND ViT FOR
MalImg DATASET
Comparative analysis of the proposed method B_ViT with
IEViT and ViT for image malware classification using
MalImg dataset is performed. Figure 6 shows the com-
parative analysis results of B_ViT variants with IEViT
and ViT variants. The accuracy of BViT/B16, BViT/B32,
BViT/L16, and BViT/L32 for 25 malware families compared

69346 VOLUME 11, 2023



M. M. Belal, D. M. Sundaram: Global-Local Attention-Based Butterfly Vision Transformer

FIGURE 6. comparative analysis of B_ViT variants with IEViT and ViT variants in terms of accuracy, recall, precision, and F1-score for malImg.

to IEViT/B16, IEViT/B32, IEViT/L16, and IEViT/L32 as
well as ViT/B16, ViT/B32, ViT/L16, and ViT/L32 is shown
in Figure 6 (a, b, c, d) respectively. The recall of BViT/B16,
BViT/B32, BViT/L16, and BViT/L32 for 25 malware fam-
ilies compared to IEViT/B16, IEViT/B32, IEViT/L16, and
IEViT/L32 as well as ViT/B16, ViT/B32, ViT/L16, and
ViT/L32 is shown in Figure 6 (e, f, g, h) respectively. The pre-
cision of BViT/B16, BViT/B32, BViT/L16, and BViT/L32
for 25malware families compared to IEViT/B16, IEViT/B32,
IEViT/L16, and IEViT/L32 as well as ViT/B16, ViT/B32,
ViT/L16, and ViT/L32 is shown in Figure 6 (i, j, k, l) respec-
tively. The F1-score of BViT/B16, BViT/B32, BViT/L16, and
BViT/L32 for 25 malware families compared to IEViT/B16,
IEViT/B32, IEViT/L16, and IEViT/L32 as well as ViT/B16,
ViT/B32, ViT/L16, and ViT/L32 as shown in Figure 6 (m,
n, o, p) respectively. It has been noted that B_ViT variants
outperform the IEViT and ViT variants in visualization-based
malware classification usingMalImg dataset where accuracy,

recall, precision, and F1-score are very close to 1 in most
malware families.

The confusion matrices of B_ViT variants i.e, BViT/B16,
BViT/B32, BViT/L16, and BViT/L32 for MalImg dataset
are shown in Figure 7 (a, b, c, d) respectively. The
Swizzor.gen!E and Swizzor.gen!I families are difficult to
identify from one another in MalImg datasets since they are
so similar as shown in Figure 8. The variants of the proposed
model BViT/B16, BViT/B32, BViT/L16, and BViT/L32
achieve 98.8%, 99.3%, 99.08%, and 98.72% accuracies for
Swizzor.gen!E respectively; and 98.5%, 99.0%, 98.76%, and
98.56% accuracies for Swizzor.gen!I respectively. Therefore,
B_ViT is an effective malware classifier even for malware
families that are difficult to distinguish.

The overall comparative analysis of malware classification
performance of the proposed method B_ViT variants with
IEViT and ViT variants for MalImg dataset is shown in
Table 8. It has been noted that B_ViT variants outperform
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FIGURE 7. The confusion matrices of B_ViT variants: (a) BViT/B16, (b) BViT/B32, (c) BViT/L16, and (d) BViT/L32 for malImg.

the IEViT and ViT variants in visualization-based malware
classification using MalImg dataset in terms of accuracy,
recall, precision, and F1-score.

B. COMPARISON OF B_ViT WITH IEViT AND ViT FOR
MICROSOFT BIG DATASET
Comparative analysis of the proposed method B_ViT with
IEViT and ViT for image malware classification using
Microsoft BIG dataset is performed. Figure 9 shows the
comparative analysis results of B_ViT variants with IEViT

and ViT variants. The accuracy of BViT/B16, BViT/B32,
BViT/L16, and BViT/L32 for 9 malware families compared
to IEViT/B16, IEViT/B32, IEViT/L16, and IEViT/L32 as
well as ViT/B16, ViT/B32, ViT/L16, andViT/L32 is shown in
Figure 9 (a, b, c, d) respectively. B_ViT variants consistently
achieve higher accuracy compared to IEViT and ViT variants
across all malware families, with accuracy scores nearing 1.
Among B_ViT variants, BViT/L16, and BViT/L32 have
more stable and higher performance, particularly for simda
and elihos_ver1 families because the number of global
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FIGURE 8. Samples of Swizzor.gen!E and Swizzor.gen!I malware famililes.

TABLE 8. Malware classification performance of B_ViT with IEViT and ViT
variants using MalImg dataset.

heads and the number of layers are higher. The recall
of BViT/B16, BViT/B32, BViT/L16, and BViT/L32 for
9 malware families compared to IEViT/B16, IEViT/B32,
IEViT/L16, and IEViT/L32 as well as ViT/B16, ViT/B32,
ViT/L16, and ViT/L32 is shown in Figure 9 (e, f, g, h)
respectively. B_ViT variants consistently achieve higher
recall compared to IEViT and ViT variants across all malware
families, with recall scores nearing 1. AmongB_ViT variants,
BViT/L16, and BViT/L32 have more stable and higher
performance, particularly for simda and elihos_ver1 families
because the number of global heads and the number of
layers are higher. The precision of BViT/B16, BViT/B32,
BViT/L16, and BViT/L32 for 9 malware families compared
to IEViT/B16, IEViT/B32, IEViT/L16, and IEViT/L32 as
well as ViT/B16, ViT/B32, ViT/L16, andViT/L32 is shown in
Figure 9 (i, j, k, l) respectively. B_ViT variants consistently
achieve higher precision compared to IEViT and ViT variants
across all malware families, with precision scores nearing 1.
Among B_ViT variants, BViT/L16, and BViT/L32 have
more stable and higher performance, particularly for simda

TABLE 9. Malware classification performance of B_ViT with IEViT and ViT
variants using Microsoft BIG dataset.

and elihos_ver1 families because the number of global
heads and the number of layers are higher. The F1-score
of BViT/B16, BViT/B32, BViT/L16, and BViT/L32 for
9 malware families compared to IEViT/B16, IEViT/B32,
IEViT/L16, and IEViT/L32 as well as ViT/B16, ViT/B32,
ViT/L16, and ViT/L32 is shown in Figure 9 (m, n, o, p)
respectively. B_ViT variants consistently achieve higher
F1-score compared to IEViT and ViT variants across all mal-
ware families, with F1-score scores nearing 1. Among B_ViT
variants, BViT/L16, and BViT/L32 have more stable and
higher performance, particularly for simda and elihos_ver1
families because the number of global heads and the number
of layers are higher. It has been noted that B_ViT variants
outperform the IEViT and ViT variants in visualization-based
malware classification using Microsoft BIG dataset where
accuracy, recall, precision, and F1-score are very close to 1 in
most malware families.

The confusion matrices of B_ViT variants i.e, BViT/B16,
BViT/B32, BViT/L16, and BViT/L32 for Microsoft BIG
dataset are shown in Figure 10 (a, b, c, d) respectively.
The simda and kelihos_ver1 families are difficult to iden-
tify from one another in Microsoft BIG datasets since
they are so similar. The variants of the proposed model
BViT/B16, BViT/B32, BViT/L16, and BViT/L32 achieve
98.10%, 98.43%, 100%, and 99.88% accuracies for simda
respectively; and 98.10%, 100%, 98.76%, and 99.77%
accuracies for kelihos_ver1 respectively. Therefore, B_ViT
in particular, BViT/L16, and BViT/L32 are effective malware
classifiers even for malware families that are difficult to
distinguish.

The overall comparative analysis of malware classification
performance of the proposed method B_ViT variants with
IEViT and ViT variants for Microsoft BIG dataset is shown
in Table 9. It has been noted that B_ViT variants outperform
the IEViT and ViT variants in visualization-based malware
classification using Microsoft BIG dataset in terms of
accuracy, recall, precision, and F1-score.

C. COMPARISON OF B_ViT WITH IEViT AND ViT FOR
TOP-1000 PE IMPORTS DATASET
Comparative analysis of the proposed method B_ViT
with IEViT and ViT for image malware detection
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FIGURE 9. comparative analysis of B_ViT variants with IEViT and ViT variants in terms of accuracy, recall, precision, and F1-score for Microsoft BIG dataset.

using the top-1000 PE imports dataset is performed.
Figure 11 (a, b, c, d) shows the confusion matrices of B_ViT
variants i.e, BViT/B16, BViT/B32, BViT/L16, and BViT/L32
for the top-1000 PE imports dataset. It has been noted
that most of the benign and malware samples are correctly
classified with a few FP and FN. Therefore, B_ViT is an
effective visualization-based malware detector.

The overall comparative analysis of malware detection
performance of the proposed method B_ViT variants with
IEViT and ViT variants for PE imports dataset is shown in
Table 10. It has been noted that B_ViT variants outperform
the IEViT and ViT variants in visualization-based malware
detection using PE imports dataset in terms of accuracy,
recall, precision, and F1-score.

Finally, Tables 11 and 12 show the improvement of B_ViT
variants over IEViT and ViT variants in terms of f1-score for
MalImg, Microsoft BIG, and PE imports. 11, 12, 13, 14
denote the improvement of B_ViT variants i.e, BViT/B16,

TABLE 10. Malware detection performance of B_ViT with IEViT and ViT
variants using top-1000 PE imports dataset.

BViT/B32, BViT/L16, and BViT/L32 over IEViT variants
i.e, IEViT/B16, IEViT/B32, IEViT/L16, and IEViT/L32
respectively. 15, 16, 17, 18 denote the improvement of
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FIGURE 10. The confusion matrices of B_ViT variants i.e, (a) BViT/B16, (b) BViT/B32, (c) BViT/L16, and (d) BViT/L32 for
Microsoft BIG dataset.

B_ViT variants i.e, BViT/B16, BViT/B32, BViT/L16,
and BViT/L32 over ViT variants i.e, ViT/B16, ViT/B32,
ViT/L16, and ViT/L32 respectively. It has been noted
that B_ViT variants outperform IEViT and ViT variants.
BViT/B16 achieves average improvement in terms of F1-
score over IEViT/B16 and ViT/B16 equal to 1.23% and
2.5% respectively. BViT/B32 achieves average improvement
in terms of F1-score over IEViT/B32 and ViT/B32 equal to
1.04% and 2.37% respectively. BViT/L16 achieves average
improvement in terms of F1-score over IEViT/L16 and
ViT/L16 equal to 1.4% and 2.55% respectively. BViT/L32
achieves average improvement in terms of F1-score over
IEViT/L32 and ViT/L32 equal to 1.16% and 2.48%
respectively.

TABLE 11. Improvement of B_ViT variants over IEViT in terms of f1-score.

D. PARALLEL ANALYSIS OF B_ViT AND COMPARISON
WITH IEViT AND ViT
B_ViT is a parallel-based architecture that supports the
parallel processing of images’ patches. Therefore, a parallel
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FIGURE 11. The confusion matrices of B_ViT variants i.e, (a) BViT/B16,
(b) BViT/B32, (c) BViT/L16, and (d) BViT/L32 for Microsoft PE imports.

TABLE 12. Improvement of B_ViT variants over ViT variants in terms of
f1-score.

analysis of B_ViT should be performed and compared
with the performance of IEViT and ViT in terms of speed
up S, overhead T0, efficiency E , and running cost C .
Speed up S refers to the improvement in performance
obtained by using multiple threads in comparison to a single
thread. Overhead T0 refers to the additional time required
to manage and coordinate the parallel processing, such
as communication and synchronization between processors.
Efficiency E refers to the proportion of the total running time
that is spent performing useful work, rather than overhead.
Running cost C refers to the total time required to run a
parallel program on multiple threads. It takes into account
both the improvement in performance and the overhead.
speed up S, overhead T0, efficiency E , and running cost C
are defined in equations 13, 14, 15, and 16 [42].

S =
ETS (s)
ETP(s)

(13)

T0 = (k × ETP)− ETS (14)

E =
S
k

(15)

C = k × ETP (16)

where ETP is the architecture epoch time running on multiple
threads,ETS is the architecture epoch time running on a single
thread, and k is the number of threads.

TABLE 13. Parallel analysis of B_ViT over sequential B_ViT, IEViT, and ViT.

Table 13 shows the parallel analysis of B_ViT over
sequential B_ViT, IEViT, and ViT. It has been noted that
an epoch time of B_ViT is smaller than sequential B_ViT;
the speed up is approximately equal to k (the number of
threads); the overhead is very less compared to running
cost; and the efficiency of B_ViT is approximately equal to
1 which is the optimal value. Therefore, the parallel-based
architecture of ViT i.e, B_ViT is time-effective for malware
classification and detection as well as training. Moreover,
the time performance of B_ViT is higher than IEViT and
ViT as shown in Table 13. The average speed-up of B_ViT
variants over IEViT and ViT variants is equal to 2.42 and
1.81 respectively.

E. PERFORMANCE COMPARISON OF B_ViT WITH RECENT
VISUALIZATION-BASED MALWARE CLASSIFIERS
Table 14 presents a comparison between the pro-
posed malware classifier/detector B_ViT and the recent
visualization-based malware classifiers in terms of four
major performance criteria i.e, accuracy, recall, precision,
and F1-score. Moreover, the comparison has been performed
with the recent visualization-based malware classifiers
that use the same datasets used in this paper. It has
been noted that the proposed method that uses B-ViT
architecture outperforms recent visualization-based malware
classificationmethods that use CNN architectures. Therefore,
it may be concluded that butterfly construction-based vision
transformer architecture has a higher performance than CNNs
in malware image classification because B_ViT obtains the
malware image’s local spatial representation and global
spatial representation and extracts the features without the
need for domain experts and feature engineering. In addition,
B_ViT detects the obfuscated malware and the packed
malware that is injected into legitimate software. Finally,
B_ViT is a scalable model, whereby the pre-trained ViT
model on the ImageNet dataset ( ≥10 million images) is
used to transfer and initialize the training parameters of the
transformers.

VII. DISCUSSION
Recent studies focus on using CNNs for dynamic
visualization-based malware detection, but they struggle to
detect subtle differences between malware variants. ViT
outperforms CNNs, but few studies explore ViT-based
malware classifiers. ViT still has limitations: computationally
intensive for large images, lacks local representation,
requires abundant training data, and demands powerful
hardware and long training times. Therefore, B_ViT
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TABLE 14. Comparasion of B_ViT malware classifier/detector with the
recent visualization-based malware classifiers.

butterfly construction-based vision transformer model for
visualization-based malware classification and detection is
proposed. All B_ViT variants i.e, BViT/B16, BViT/B32,
BViT/L16, and BViT/L32 are experimented and evaluated
using MalImg and Microsoft BIG datasets for image
malware classification and compared with the respective
variants of IEViT and ViT. The performance comparison
demonstrates the superiority of B_ViT architecture over
recent visualization-based malware classification methods
utilizing both CNN and ViT architectures, as indicated
in Table 14 because B_ViT captures the local spatial
representation and global spatial representation of malware
images. Moreover, B_ViT variants demonstrate enhanced
speed (S) improvement, reduced overhead (T0), improved
efficiency (E), and optimized running cost (C) compared to
IEViT andViT variants as indicated in Table 11, Table 12, and
Table 13. This is achieved through B_ViT’s parallel-based
architecture, which enables efficient parallel processing of
image patches. The comparative analysis of the proposed
method B_ViT with IEViT and ViT for image malware
classification and detection. B_ViT variants consistently
achieve higher accuracy, recall, precision, and F1-score
compared to IEViT and ViT variants across all malware
families, with values scores nearing 1 as shown in Figure 6
and 9. Among B_ViT variants, BViT/L16, and BViT/L32
have more stable and higher performance, particularly for
simda and elihos_ver1 families in Microsoft BIG as shown
in Figure 9, Swizzor.gen!E and Swizzor.gen!I families in
MalImg as shown in Figure 6. This is achieved through
the number of global heads and the number of layers is
higher. In Figure 7, it can be observed that 12% of the
tested samples originally classified as Swizzor.gen!I family
were misclassified as Swizzor.gen!E family, while 16% of
the tested samples belonging to Swizzor.gen!E family were
misclassified as Swizzor.gen!I family. This misclassification

can be attributed to the high similarity between these
two families, leading to challenges in distinguishing them
accurately. In Figure 10, it can be observed that 12% of the
tested samples originally classified as kelihos_ver1 family
were misclassified as simda family, while 0% of the tested
samples belonging to simda family were misclassified as
kelihos_ver1 family. This misclassification can be attributed
to the high similarity between these two families, leading to
challenges in distinguishing them accurately.

VIII. CONCLUSION
This paper proposes a butterfly construction-based vision
transformer (B_ViT) model for visualization-based malware
classification and detection. B_ViT is trained and evaluated
on grayscale malware images collected from MalImg or
Microsoft BIG datasets or converted from portable executable
imports. B_ViT has four phases: image partitioning and
patches embeddings; local attention; global attention; and
training and malware classification. In local attention phase,
self-attention-based local transformer encoders along with
local positional encoding process the input image’s patches
simultaneously to capture the local representation and
features of malware image. In global attention phase, one
self-attention-based global transformer encoder along with
global positional encoding process the input image as one
block, to capture the global representation and features of
malware image. B_ViT is a transfer learning-based model
that uses a pre-trained ViT model on the ImageNet dataset
to initialize the training parameters of transformers, then the
B_ViT is fine-tuned to fit malware classification task. All
B_ViT variants i.e, BViT/B16, BViT/B32, BViT/L16, and
BViT/L32 are experimented and evaluated usingMalImg and
Microsoft BIG datasets for image malware classification and
compared with the respective variants of IEViT and ViT. The
comparative analysis shows that B_ViT variants outperform
the IEViT and ViT variants in visualization-based malware
classification achieving accuracy equal to 98.65%, 98.28%,
99.32%, and 99.11% in MalImg; and 98.80%, 98.62%,
99.49%, and 99.26% in Microsoft BIG for BViT/B16,
BViT/B32, BViT/L16, and BViT/L32 respectively. Besides,
B_ViT variants are evaluated using portable executable
imports for image malware detection and compared with
the respective variants of IEViT and ViT. The comparative
analysis shows that B_ViT variants outperform the IEViT
and ViT variants in visualization-based malware detection
achieving accuracy equal to 99.84%, 99.87%, 99.99%, and
99.97% for BViT/B16, BViT/B32, BViT/L16, and BViT/L32
respectively. The results show that B_ViT achieves average
improvement in terms of F1-score over IEViT and ViT
equal to 1.21%, and 2.48% respectively. Since B_ViT is a
parallel-based architecture, a parallel analysis of B_ViT over
sequential B_ViT, IEViT, and ViT is performed. The results
show that B_ViT is time-effective for malware classifica-
tion and detection where the average speed-up of B_ViT
variants over sequential B_ViT, IEViT and ViT variants
are equal to 3.84, 2.42 and 1.81 respectively. Moreover,
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the analysis shows the efficiency of texture-based malware
detection as well as the resilience of B_ViT to polymorphic
obfuscation. The proposed malware classifier/detector is
visualization-based so, does not require domain experts
for feature extraction, feature engineering, etc. Finally, the
proposed method that uses B_ViT architecture outperforms
recent visualization-based malware classification methods
that use CNN architectures as well as ViT-based malware
classifiers. The utilization of the B_ViT-based malware
classifier/detector in practice presents certain limitations that
should be acknowledged. Firstly, its implementation neces-
sitates a high-resource platform, especially when employing
a high degree of parallelism because more local transformer
encoders should be run to capture the local representation
of malware images. Secondly, to ensure its effectiveness,
the proposed method must be thoroughly tested in an on-
site environment. To overcome these limitations, future work
should focus on further optimization and refinement of the
approach.
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