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ABSTRACT Traffic offloading in cellular networks is considered an evolving application of unmanned aerial
vehicles (UAVs). UAVs have attractive characteristics for this application, such as the ease of deployment, the
relatively low cost and the line-of-sight signal propagation. This paper proposes a machine learning-based
deployment of UAVs as temporary base stations (BSs) to complement cellular communication systems in
times of excess traffic loads. In this role, the UAV is tasked with the proper sizing of the excess mixed
traffic demands on the terrestrial BSs and the subsequent offloading of this traffic, given its different
QoS requirements. We achieve this objective by optimizing the number of needed UAVs and their three-
dimensional (3D) positions. A traffic estimation technique based on the autoregressive integrated moving
average (ARIMA) model is utilized to estimate the mixed traffic demand. Our proposed machine-learning
approach, based on the reinforcement learning (RL) methodology, aims to obtain real-time results close to
the solution’s optimal bound. Simulation results show that the proposed RL solution achieves its close-to-
optimal real-time objectives. The proposed UAV deployment approach is also shown to clearly outperform
a commonly used generic technique for UAVs deployment in such situations.

INDEX TERMS Mixed traffic estimation, network traffic offloading, reinforcement learning,
UAV deployment.

I. INTRODUCTION
The unmanned aerial vehicles (UAVs) have attracted much
attention in the past few years for use in the different areas of
communication systems [1]. This is due to their highmobility,
flexible deployment, low cost, and line-of-sight (LoS) propa-
gation in air-to-ground communication links. In some public
events, the communication traffic demands may become
extremely high. This can also be the case when natural
emergencies strike as the communication infrastructure may
become unavailable or insufficient. In such cases, UAVs can
be used to augment or replace parts of the communications
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infrastructure. That is, the UAV acts as the radio access
station, or base station (BS), for the communication service
users. The UAVs can also collect or offload the network
data for the purpose of reducing the computational efforts of
some network devices as in the machine-to-machine (M2M)
communication applications [2], [3]. In these utilizations, the
UAV must be equipped with the needed hardware and com-
munication protocols to properly conduct its responsibilities.
It should also be appropriately positioned, with sufficient
bandwidth, in the area where the users need communication
services to fulfill its mission efficiently.

Offloading high traffic demands using UAVs has recently
been discussed extensively in the literature. The UAV-based
solutions proposed in the previous research efforts have
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focused mainly on a static approach by defining predeter-
mined fixed trajectories. It is worth noting that most of the
earlier studies addressed downlink communications, which
are typically less challenging than the case of uplink commu-
nications. This is due to the fact that the case of uplink traffic
involves considering the unpredictable traffic level and type
of each user.

In this study, we consider the deployment of UAVs to
offload excess uplink traffic in cellular networks due to
significant events with a temporary high density of users,
e.g., the case of large-scale exhibitions or sports/musical
events. As illustrated in Figure 1, both malfunctioning and
overloaded networks are modeled in our simulation sce-
narios while the UAVs are optimally deployed to support
the communications in these situations. Also, this study
evaluates the uplink performance of a mix of two traffic
types: enhanced mobile broadband (eMBB) and the traf-
fic of massive deployments of machine-type communication
devices (MTCDs). The traffic demand is estimated using
a traffic sizing model based on the autoregressive inte-
grated moving average (ARIMA) model. We focus our study
on fulfilling user requirements for each traffic type while
deploying a minimum number of UAVs. We use an optimiza-
tion technique to obtain the optimal bound of the solution
to this problem. Then, we propose a machine-learning-
based (ML) technique to obtain a real-time solution that
is close to the optimal bound but with significantly lower
complexity.

The novelty of our work lies in the dynamic deployment
of multiple UAVs in 3D space without having to rely on a
fixed trajectory. The UAVs move within the deployment area
according to the instantaneous excess uplink traffic demand
of the users. The traffic demand of the users is forecasted
using our developed traffic sizing model. Then, the proposed
online ML approach learns the uplink data rate pattern of the
users and determines the minimum required number of UAVs
and their locations to fulfill users’ demands and resource
requirements.

A. RELATED WORK
Several approaches have been discussed in the literature for
using UAVs in the downlink direction to provide communica-
tion services for excess traffic offloading. The UAV trajectory
design approach is discussed in [4], [5], [6], [7], and [8] to
achieve maximum downlink data rate for mobile users at
overloaded cells or the cell edges of cellular networks. The
study in [4] uses stochastic geometry to position multiple
UAVs in a chain-like topology as a bridge between the over-
loaded and underloadedBSs. In [5], multi-UAVs coordination
and offloading schemes are proposed to extend coverage to
the cell-edge users. This scheduling problem is also consid-
ered in [6] and [7]. In [6], the fairness between the scheduled
users is attained by maximizing the minimum rate according
to the users’ quality of service (QoS) requirements. This is
done using a successive convex optimization technique in
a configuration that positions a UAV at the edge of three

FIGURE 1. UAV-assisted coverage scenario.

adjacent cells. In [7], a spectrum sharing scheme is pro-
posed to partition the total bandwidth orthogonally between
the UAV and the BS in a UAV-assisted cellular offloading
scheme. The energy efficiency of a single deployed UAV is
maximized in [8] by jointly optimizing the resource alloca-
tion, user partitioning, and the UAV’s trajectory selection.

The UAV dynamic positioning for traffic offloading basi-
cally in the downlink direction is addressed in [9], [10],
[11], [12], and [13]. In [9], traffic offloading is done using
UAVs based on a contract designed by the BSs. This work
devises a two-stage contract optimization inmulti-UAV cellu-
lar networks, considering both the current traffic demands as
well as the required UAV energy consumption. Furthermore,
the authors in [10] use an unsupervised learning approach
combined with the concept of electrostatic forces of attraction
and repulsion to obtain the minimum number of required
UAVs and their 3D placements to fill the network downlink
coverage gaps in the areas with some failed BSs. In [11],
the minimization of the number of UAVs is done by using
an optimization model with three constraints, namely, the
ratio of covered users by each UAV, the downlink rate, and
the limited UAV availability due to the charging time. The
study in [12] proposes a deployment that limits the BSs to the
minimum power levels that are sufficient to provide the users’
minimum QoS demands with the help of UAVs. In [13],
the sum of downlink data rates is maximized by the joint
optimization of the UAVs’ altitude, transmission power and
the percentage of offloaded users.

Moreover, the traffic estimation-based UAV deployment is
discussed in [14]. The data rate estimation is done by cap-
turing the downlink traffic density using a Gaussian mixture
function. The authors also utilize the weighted expectation
maximization approach to estimate the areas of high traffic
demands with respect to the users’ distribution. The over-
loaded BS broadcasts a signal that contains information about
the downlink demand and the service area to request the assis-
tance of a UAV. The BS designs contracts for all UAVs and
then chooses the UAV that mainly fulfills the transmission
power requirements.

The studies discussed above investigate the use of UAVs to
support traffic offloading in the downlink direction. However,
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few other studies have investigated the uplink communica-
tions supported by deploying UAV-mounted BSs. The work
in [15] tests the performance of augmenting a network of
terrestrial BSs in both the uplink and downlink directionswith
a single UAV base station. The authors consider the problem
of maximizing the average data rate while controlling the
transmission power without considering traffic offloading
scenarios. TheM2M network deployments are studied in [16]
and [17]. The network performance is regulated by establish-
ing communications with the UAV-mounted BSs deployed
at optimal locations while considering the physical resource
allocation of the deployed UAVs in the absence of the terres-
trial infrastructure.

In this study, we address the shortcomings in previous
works by using a traffic estimationmodel to predict the differ-
ent traffic demands of the users in the uplink direction. Then,
we propose a low-complexity ML-based algorithm for the
dynamic deployment of multi-UAVs in a 3D space to serve
excess uplink traffic demands that the existing terrestrial BSs
cannot normally handle. The proposed technique is designed
to perform in real-time with performance close to the optimal
bound that is also determined in this study.

B. PAPER CONTRIBUTIONS AND ORGANIZATION
The main objectives of this study are summarized as follows.

• We formulate a traffic estimation model to size dynamic
uplink excess traffic demands using the ARIMA model.
This traffic is a mix of eMBB and MTCD users.

• We propose an algorithm that provides the optimal
bound for the 3D locations of the minimum required
number of UAVs to satisfy the overload traffic demands.

• We propose an ML-based technique for the dynamic
determination of the number and positions of the UAVs
to satisfy the instantaneous excess uplink traffic demand.

• We provide a detailed analysis and evaluation of the
computational complexity of the proposed ML-based
solution against that of the optimal solution to show the
relative merit from the real-time perspective.

• We perform a complete evaluation study for the pro-
posed techniques as well as a selected benchmark
technique to demonstrate the performance characteris-
tics of the proposed solutions under different operating
scenarios.

The rest of this paper is organized as follows. In Section II,
the system model and the problem formulation are presented.
Section III discusses the optimal solution to the problem
and the proposed ML-based approach with their complexity
analysis. Section IV introduces the evaluation results based
on several operational scenarios. Finally, SectionV concludes
this paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION
In this section, we present the system model that we use for
our problem. It mainly considers the channel model and the
network setup considered in this study. Then, we formulate

an optimization problem that depends on the excess traffic
prediction model that we also present in this section.

A. CHANNEL MODELLING
We consider an urban area where terrestrial BSs (TBSs) are
deployed to serve a population of cellular communication
users. It has been reported that the coverage of these TBSs
is not fulfilling the user communication needs under some
events. Let T denote a set of TBSs covering a certain geo-
graphical area. Let U be a set of UAV-mounted base stations to
be deployed to assist with handling the excess traffic demand
on the TBSs. The set of all combined BSs is G = T∪U . The
serving BS is denoted by the superscript x where x∈G. The
set of served users in the deployment area is denoted as E
such that each user of this set is represented by a subscript
i. The communication links between the BSs and users are
modeled as block fading channels. Each channel is assumed
to be constant within the fading block but generally changes
from one block to another. The time duration of each fading
block denoted as b is smaller than each time slot period, so the
number of fading blocks in one time slot is denoted as L such
that b ∈ L and L > 1. The UAVs at high altitudes are likely
to have LoS links with the users. The channel gain hxi (t, b)
between a user i and an aerial/terrestrial BS x in the fading
block b of a time slot t is

hxi (t, b) =
√
ρxi (t)g

x
i (t, b) , (1)

where ρxi (t) is the large-scale fading component of the aver-
age channel power gain that includes the channel attenuation
caused by the path loss and shadowing between the user i and
the serving BS x and gxi (t, b) is the small-scale fading which
is a function of the Rician factor kxi and is modeled as

gxi (t, b) =

√
K x
i (t, b)

K x
i (t, b)+ 1

g+

√
1

K x
i (t, b)+ 1

g̃, (2)

where g represents the deterministic LoS component of the
channel as |g| = 1, g̃ is a circularly symmetric complexGaus-
sian random variable that represents the random scattered
components and K x

i (t, b) is the Rician factor of the user i in
the fading block b of the time slot t . The Rician factor for each
user differs from one time slot to another. However, it is found
to be related to the elevation angle between the user i and
the serving BS x [18]. When the elevation angle increases,
the Rician factor increases because the communication link
would have less scattering and larger portion of the LoS
component. When the elevation angle in each time slot has
a small change, the Rician factors in different fading blocks
are assumed to be identical as K x

i (t, b) = K x
i (t) ,∀b ∈ L.

The elevation angle-based Rician factor is calculated as

K x
i (t) = λ1e

λ2θ
x
i (t), (3)

where λ1 and λ2 are environmental coefficients and θxi (t) =
180
π

tan−1 Hx (t)
Bxi (t)

is the elevation angle between the diagonal
distance dxi (t) and the horizontal ground projection distance
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Bxi (t) between the serving BS x and the user i at a time slot t .
This direct communication link distance can be calculated as

dxi (t) =
√
H2
x (t)+ B

x2
i (t), (4)

where Hx (t) is the altitude of the serving BS x. From the
direct channel distance dxi , the average large-scale channel
power gain ρxi (t) can be calculated as

ρxi (t) = ρ0
(
dxi (t)

)−σ
, (5)

where ρ0 is the channel gain at a reference distance of 1 meter

and can be calculated as ρ0 =
(
4π fc
c

)−2
as fc is the carrier

frequency, c is the speed of light, σ is the path loss exponent.
To formulate the channel capacity, the channel signal-to-

interference-plus-noise ratio (SINR) is calculated as follows

0xi (t) =

∑L
b

∣∣hxi (t, b)∣∣2Pi
N0 +

∑
z∈G\{x}

∑L
b

∣∣hzi (t, b)∣∣2 Pi , (6)

where Pi is the transmission power and N0 is the noise power.

B. PROBLEM FORMULATION
The problem that we try to solve is how to deploy a
UAV-assisted heterogenous network to offload excess traffic
of a cellular structure due to public events, for example, with
a temporary high population of users. By this heterogenous
aerial and terrestrial BSs deployment, we aim to size the
users’ traffic in the uplink direction to provide an acceptable
SINR level per user and ensure that excess user data traffic
demands are properly served. The instantaneous achievable
data rate is targeted to satisfy the estimated traffic demands of
the users. We consider a mix of two traffic types, namely, the
eMBB traffic and the massive machine-type communications
(mMTC) that consist of delay-tolerant camera devices with
large packet sizes and wireless sensors with smaller packet
sizes and lower arrival rate. The instantaneous achievable data
rate Rxi (t) of the user i associated with a serving BS x can be
calculated as

Rxi (t) = BW log2
(
1+ 0xi (t)

)
, (7)

where BW is the channel bandwidth.
The system can estimate the users’ traffic demands using

a periodic data traffic modeling approach. Depending on this
prediction, the formulated problem is solved to determine the
UAV deployment required to cover any excess traffic needs.
We use the multiplicative ARIMAmodel to predict the mixed
eMBB andmMTC traffic demands. The ARIMAmodel is the
most widely used approach in time series forecasting [19].
It predicts the future traffic depending on the previous infor-
mation known about the traffic using a linear combination of
predictors. The term autoregression (AR) indicates that the
changing traffic regresses on its own lagged, or prior, values.
The forecasted traffic using the ARmodel of order p at a time
instant t can be written as

yARi (t) = c+ β1yi (t − 1)+ . . .+ βpyi (t − p)+ εi (t) ,

(8)

where yARi (t) is the estimated traffic of a user i at time t using
the AR formulation, c is a constant, β1,...,p are the regres-
sion weights which are obtained from the prior observations
known about the concerned mixed traffic demands, yi (t) is
the traffic demand associated with a user i at a time instant
t and εi (t) is a white noise which is sampled from a normal
distribution at a time instant t . This AR model is similar to
the typical multiple regression models, but it uses the lagged
values of yi (t) as predictors.

If the time series data shows upward or downward trends,
the moving average (MA) model is integrated to the AR
regression model in (8) to enhance the estimation. The MA
part of the overall ARIMA model uses the prior error terms
of εi (t) to cope with the trends of the traffic data in the
regression model. The MA regression model of order q at
instant t can be written as

yMAi (t) = c+ εi (t)+ φ1εi (t − 1)+ . . .+ φqεi (t − q) ,

(9)

where φ1,...,q are the regression weights of the MA model.
Since the traffic data might hold an upward or downward
trend, the ARIMA model is obtained when the time series
is differenced by a degree of d to develop a stationary time
series with a constant mean for the AR regression equation.
The differenced traffic demand time series of the user i is
therefore written as

y′i (t) = c+ β1y′i (t − 1)+ . . .+ βpy′i (t − p)

+ φ1εi (t − 1)+ . . .+ φqεi (t − q)+ εi (t) , (10)

where y′i (t) is the differenced time series representing the
change between the consecutive data points by a degree of
d . This differenced time series can then be written as

y′i (t)=yi (t)−yi (t − 1)− . . .− yi (t − d − 1)− yi (t − d) ,

(11)

If the time series holds a seasonality trend of the observation
data, the ARIMA model degrees (p, d, q) are repeated con-
sidering the seasonality trend of degrees (P,D,Q) where
is the degree at which the data trend is repeated. The overall
ARIMA model that is used to predict each user’s traffic
demands yi (t) from the prior observations that are known
about the mixed users’ traffic demands can be represented as
ARIMA (p, d, q) (P,D,Q) .
Based on the quantified traffic demands of the ARIMA

model, the UAV deployment problem is formulated. The
objective function of this problem is to minimize the total
number of deployed UAVs to provide communication ser-
vices to the anticipated excess traffic demands. The optimiza-
tion problem can therefore be written as

min
Xx ,Yx ,Hx ,u

|U |,∀x ∈ U , (12)

s.t. Bxi (t) ≤ rx(t),∀i ∈ E, (12a)

Rxi (t) ≥ yi(t),∀i ∈ E, (12b)

0xi (t) ≥ 0
min,∀i ∈ E, (12c)
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u ≤ umax, u ∈ N, (12d)

Dmin
≤ [Xx ,Yx ,Hx] ≤ Dmax

∈ R3, (12e)

where |U | is the length of the set of UAVs such that U =
{1, 2, . . . , u, umax is themaximum allowable number of UAVs
that can be deployed, Xx and Yx are the two-dimensional
(2D) coordinates of the serving BS x in U , rx is the ground
coverage cell radius of the associated BS x in G, 0min is
the SINR minimum threshold and Dmin and Dmax are the
boundaries of the deployment area. The constraint in (12a)
defines the user associations to the BSs to ensure that all
users are covered by at least one BS. Then, the constraint in
(12b) controls the UAVs deployment using the instantaneous
achievable data rate to cover the estimated overall traffic
demand yi (t) at each time instant t for all users in E . Finally,
the constraint in (12c) limits the air-to-ground channel atten-
uation and the possible interferences among the deployed
BSs.

III. PROPOSED UAV DEPLOYMENT APPROACHES
In this section, we introduce a novel ML-based technique
to address the uplink traffic sizing problem that properly
deploys the UAV-mounted BSs to satisfy the excess traf-
fic loads. The objective is to deploy the minimum possible
number of UAVs to achieve this purpose at a cost close
to the optimal minimum value. In order to calculate the
optimal bound of this deployment, we also introduce an
optimization-based algorithm that establishes this bound.
This optimal algorithm cannot produce its results in real-time
fashion in such dynamic environments due to its high com-
plexity. Hence, our proposed ML technique, based on the
reinforcement learning methodology, is devised to produce
real-time results at a near-optimal deployment cost.

A. THE OPTIMAL BOUND OF THE SOLUTION
The optimization problem formulated in (12) is found to be
a mixed-integer nonlinear programming (MINLP) problem
that becomes intractable in high-dimensional spaces. There-
fore, the optimal bound of the solution can be obtained using
the branch and bound (BnB) algorithm [20] that branches
along the integer variable of the problem. This integer vari-
able represents the number of the deployed UAV BSs. The
resulting subproblem is adopted to be a nonlinear programing
(NLP) problem that can be solved using a non-differentiable
optimization technique since the derivatives of the constraint
functions cannot always be guaranteed along the search space
dimensions. Hence, we utilize the particle swarm optimiza-
tion (PSO) algorithm [21] to add some heuristics in the
search for a suboptimal solution for the nonlinear subprob-
lem. These added heuristics allow the problem to be solved
within the class of NP-complete problems that use polyno-
mial algorithms to find near-optimal solutions. Otherwise, the
optimization problem becomes exponentially intractable with
high dimensional spaces when we solve with highly dense
network deployments.

To implement this optimization algorithm, the penalty
method proposed in [22] is used to formulate an uncon-
strained objective function that represents the constraints of
the problem in (12). Then, the NLP subproblem is reformu-
lated as follows.

min
Xx ,Yx ,Hx ,u

f (Xx ,Yx ,Hx)

= min
Xx ,Yx ,Hx ,u

∑
i∈E

ψiCi (Xx ,Yx ,Hx),∀x ∈ U , (13)

where f (Xx ,Yx ,Hx) is the exact penalty function and ψi> 0
is the penalty coefficient that is chosen to give some pri-
orities and tolerances to the infeasible constraints of the
original problem in (12) and control the constraint penalties
Ci (Xx ,Yx ,Hx). These priorities and tolerances are givenwith
respect to each user’s traffic demands such that the eMBB
traffic is given the highest priority to access the deployed
network since the eMBB is associated with the most urgent
traffic transmissions in our network configuration. The con-
straint penalties are given as

Ci (Xx ,Yx ,Hx) = max
(
0,Bxi (t)− rx (t)

)2
+max

(
0, yi (t)− Rxi (t)

)2
+max

(
0, γth − γ xi (t)

)2
,∀i ∈ E, x ∈ G,

(14)

These constraint penalties will be driven to zero if the loca-
tions of the serving UAV BSs satisfy the constraints of
the problem in (12). Accordingly, each particle of the PSO
algorithm represents a potential location of the UAVs. The
heuristic learning exemplars of this technique utilize the
information gathered by the global, local, and personal best
positions obtained by the whole swarm particles. Algorithm 1
provides the details of the PSO procedures while the number
of the UAV-BSs is obtained according to the branching rule
of the BnB algorithm, as illustrated in the procedures of
Algorithm 2.

B. THE MACHINE LEARNING-BASED SOLUTION
This algorithm is based on the Q-learning [23] technique
which is an ML-based technique under the category of rein-
forcement learning. The algorithm is used to find the optimal
policy that maximizes the total reward in successive steps.
Q-learning is quite suitable for our dynamic UAV deployment
problem because it mainly seeks to find the best set of UAV
deployment actions by predicting the level of fulfillment of
the excess traffic demands in successive algorithm iterations.
Our adopted ML model aims to speed up reaching the best
deployment scenario to meet the excess traffic demands (i.e.,
maximize the reward) of the UAV deployment calculator
(i.e., agent) over the course of the progress of the algorithm.
The adopted Q-learning model consists of four elements: the
Q-value, the state space, the action space, and the reward [23],
[24]. At each time slot t, the deployment agent chooses a UAV
positioning action according to the Q-value to maximize the
long-term reward.
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1) Q-VALUE
As the UAVs’ positions change to a given state s by a given
deployment action a, the state-action value function Qπ (s, a)
represents the expected demand-fulfillment reward for select-
ing the action a in state s and then the following deployment
policy π . The optimal Q-value function can be calculated for
st and at by

Q (st , at) = Q (st , at)+ α
[
rt + γ max

a
Q (st+1, at)

− Q(st , at )
]
, (15)

where α is the learning rate and γ is the discount factor. The
deployment agent observes a UAV positioning state st from
a state space S. The agent carries out a deployment action
at from the discrete action space A. The taken action at at the
time instant t updates the current state st to a new deployment
state st+1. The Q-value is updated Q(st+1, at ) and the agent
receives a traffic demand fulfillment reward rt .

The optimal policy π is the epsilon-greedy action selection
policy [25] which discovers the next best action, according to
the current state, to maximize the Q-function at each step.
The selection policy has a decision parameter ϵ such that ϵ ∈
[0, 1]. The agent sometimes picks random actions in order to
visit new states and actions to explore the environment. The
epsilon-greedy action is determined as

at =

{
rand, if δ > ϵ

argmax
a∈A

Qπ (st , a), otherwise , (16)

where δ is a uniform random variable updated at each step
from the range 0 ≤ δ ≤ 1.

2) STATE REPRESENTATION
The state of the environment is represented by the positions
of UAVs defined as [Xx ,Yx ,Hx] ,∀x ∈ U . The boundaries of
the state space of each UAV are defined in Dmin and Dmax .

3) ACTION SPACE
At each time step, the agent carries out an action at where
at ∈ A, which involves picking a direction for each UAV.
The action space has all the combinations for the possible
directions for the UAVs to take which could be either an
incremental or a decremental step in any of the 3D directions.

4) REWARD
The reward function is formulated in terms of the constraints
in (12), representing the ratio of active users within the cover-
age of the associated cell and the ratio of users with satisfied
data rates and the SINR. When the number of satisfied active
users increases, the reward increases, indicating that the solu-
tion converges. The increase in the number of UAVs causes
a negative reward because we aim at minimizing the number
of deployed UAVs. The reward function is adapted from the
exact penalties given in (14) such that

rt =
∑

i∈E
−Ci (Xx ,Yx ,Hx),∀x ∈ G. (17)

Algorithm 1 Heuristic Solution of the NLP Subproblem

Input:f (Xx ,Yx ,Hx) ,Dmin,Dmax

Output: X∗x ,Y
∗
x ,H

∗
x ,∀x ∈ U

1. set PSO parameters
//swarm size, unification factor, inertia and acceleration
constants, neighbors ring size, the maximum iterations
itermax

2. initialize a swarm of size | |
//uniformly distributed swam with upper and lower
bounds Dmin,Dmax of P : P = [Xx ,Yx ,Hx] ,∀x ∈
U , ∈ S

3. initialize stagnant counters st = 0 and cnt = 0
4. initialize refresh cycle rc = 0.05× itermax

5. calculate f (P ) ,∀ ∈
6. obtain the global, local and personal best locations of

each particle in
// let the global best position be denoted as Pg

7. set the maximum penalty bound of f (Xx ,Yx ,Hx)
// such that f max = f

(
Pg

)
8. initialize random particle velocities V = rand,∀ ∈
9. for iter ← itermax

10. if cnt > rc, then
11. if st == 0, then
12. set st and reset cnt
13. reinitialize V = rand,∀ ∈
14. else
15. break
16. end if
17. end if
18. update P : P ∈

[
Dmin,Dmax

]
given V ,∀ ∈

19. compute f (P ) ,∀ ∈
20. update the global, local and personal best positions of
21. update particles’ velocities V ,∀ ∈

22. if f
(
Pg

)
== f max , then

// particles’ stagnation detection
23. increment cnt
24. else

//update the penalty bound
25. reset st, cnt
26. f max = f

(
Pg

)
27. end if
28. end
29.

[
X∗x ,Y

∗
x ,H

∗
x
]
,∀x ∈ U = Pg

The max function in (14) allows the summation of the
differences between the served traffic and the demand
to be unbiased towards the users with satisfied requests.
Algorithm 3 shows the steps of the proposed technique to
obtain the minimum number of required UAVs and their
respective positions. Based on the value of umax , the agent’s
discrete action space is defined. Initially, only one UAV is
deployed with its state (3D position) that is determined ran-
domly. On each episode, the agent takes actions to place the
UAV in the deployment area while observing the value of
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Algorithm 2 BnB Technique for the Optimal Bound

Input: f (Xx ,Yx ,Hx) ,Dmin,Dmax

Output: X∗x ,Y
∗
x ,H

∗
x , u
∗,∀x ∈ U

1. set an upper bound to the constraint penalty function
f max

2. branch to the first node u = 1
start at the first branch

3. while u ≤ umax

4. formulate the unconstrained objective function
in (13)

5. solve the resulting NLP subproblem at u
6. get X∗x ,Y

∗
x ,H

∗
x ,∀x ∈ U by calling the function

detailed in Algorithm 1
7. calculate f (Xx ,Yx ,Hx) : Xx ,Yx ,Hx ,∀x ∈ G
8. if f (Xx ,Yx ,Hx) < f max , then //optimal solution is

found
9. break
10. else
11. bound the branch u
12. go to branch u+ 1
13. end if
14. end
15.

[
X∗x ,Y

∗
x ,H

∗
x , u
∗
]
= [Xx ,Yx ,Hx , u] ,∀x ∈ U

the reward which indicates the fulfillment of the constraints
in (12). The agent starts by exploring the environment. After
several iterations, it would have improved its knowledge
about the environment, allowing it to choose the next action
that maximizes the reward. This process is iterated until the
agent reaches the locations with the maximum reward in the
deployment area. If the users are not satisfied after a defined
number of episodes epmax , the number of UAVs is increased
by one, and the agent starts trying to satisfy the constraints
with the new set of UAVs. Once the constraints are met, the
agent returns the number of UAVs, which is the minimum
possible number along with their 3D locations. The algorithm
returns the solution with the highest reward if the constraints
are not met.

C. COMPUTATIONAL COMPLEXITY ANALYSIS
In the following, we analyze the computational complexity of
the optimal algorithm as well as that of the Q-learning based
algorithm that we introduced earlier in this section.

1) COMPLEXITY OF THE OPTIMAL SOLUTION
The optimal solution is obtained by the procedures imple-
mented in Algorithm 2. The worst-case complexity of the
algorithmic steps can be analyzed using the big-O notation,
and the overall complexity of Algorithm 2 can be expressed
by summing up each step time complexity as:

• The parameter setting functions in the steps from 1 to
3 need a constant time complexity O (1).

Algorithm 3 Q-Learning Method for the UAV Deployment

Input:f (Xx ,Yx ,Hx) ,Dmin,Dmax

Output:X∗x ,Y
∗
x ,H

∗
x , u
∗,∀x ∈ U

1. set an upper bound to the constraint penalty function
f max

2. initialize state space S and action space A for u = 1
3. initialize Q (s, a) ,∀s ∈ S, a ∈ A
4. while u ≤ umax

5. for ep← epmax

6. initialize state st //place U randomly in the
deployment

7. for t ← tmax //tmax is the maximum number of
episode time steps

8. find action at from st
9. apply the policy π

10. execute the action at
11. observe st+1
12. calculate rt
13. update Q (s, a)
14. save st ← st+1
15. end
16. end
17. if f (Xx ,Yx ,Hx) < f max , then
18. break
19. elseif u < umax , then
20. u = u+ 1 //add one UAV to the set U
21. increase the state-space S and the action space A
22. Update Q (s, a) ,∀s ∈ S, a ∈ A //add actions,

states
23. endif
24. end
25.

[
X∗x ,Y

∗
x ,H

∗
x , u
∗
]
= [Xx ,Yx ,Hx , u] ,∀x ∈ U

• The steps from 3 to 14 are iterated n := umax times.
Then, the linear time complexity O (n) is required for
steps 3 to 14 except for step 5.

• The complexity of step 5 that runs the PSO procedures of
Algorithm 1 contributes to the following accumulative
complexities in a loop of n iterations O (n)+ O (nm)+
O (nm log (m)) + O (n logm) + O (nl) + O (nml) +
O (nml log (m)) + O (nl logm) such that m := |S|,
l := itermax .

The typical BnB algorithm runs in exponential time com-
plexity O ((n− 1) !) = O

(
2n−1

)
. Therefore, we adapted

the solution of the optimal bound by utilizing the constraint
that specifies a maximum number of UAVs to limit the BnB
branches over the integer variable u := |U |. Since the branch-
ing rule runs over a single variable only, the complexity
of the BnB step can be reduced to linear time complex-
ity, as stated in each algorithmic step complexity. However,
the multiple iterations of step 5 in Algorithm 2 derive the
overall time complexity to be exponential due to the term
of O (nml).
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Since the problem dimension n is bounded by the con-
straint concerning the maximum number of UAVs and the
other PSO parameters, m and l, are also bounded, the overall
complexity of this optimization algorithm is concluded to be
exponentially bounded.

2) COMPLEXITY OF THE Q-LEARNING-BASED SOLUTION
The Q-learning time complexity analysis is also evaluated
using the big-O notation for each step in the learning process
given in Algorithm 3 in the worst-case scenario when all
the learning episodes are executed. Therefore, the overall
complexity of this solution can be stated as the augmentation
of each step complexity as follows:

• The parameters initialization steps from 1 to 3 require a
constant time complexity O (1).

• The episodes loop from step 4 to step 16 require linear
time complexity O (nML) where M := epmax and L :=
tmax that multiplies each step complexity within this
loop. These steps within the learning iterations mainly
perform in a constant time complexity O (1) except for
steps from 8 to 14.

• The search process that runs in step 9 requiresO (z log z)
as z := |A| adding the looping complexity of O (nML).

• The steps from step 17 to step 22 require a constant time
complexity inside a loop producing a linear time O(n).

Hence, the highest complexity term is noticed in the execu-
tion of the steps from 6 to 13. These step complexities are
expressed asO (nML)+O (z log z). This time complexity can
be observed as linear in the bounded Q-learning parameters,
such as the episodes count ep, the learning time steps t and the
action space size z. Therefore, the overall algorithmic com-
plexity does not primarily depend on the formulated problem
space size. This results in a much lower complexity than the
optimization algorithm proposed in Section III-A, especially
when solving in dense and large network deployments.

IV. EVALUATION RESULTS
In this section, we discuss the simulation results to evaluate
the performance of the proposed optimal and ML solutions.

A. NETWORK SETUP
The deployed network consists of one TBS that is located at
the center of the deployment area. Due to the excess traffic
demand on the TBS, multiple UAV-mounted BSs are to be
deployed within the area according to the functionality of
the algorithm being evaluated. The network and algorithm
parameters are given in Table 1. The simulated traffic is a
mix of eMBB, MTCD camera and monitoring sensors traffic
types. Due to the unavailability of real traffic data, we mod-
eled the transmission requests of the different traffic profiles
using the random Poisson distributions with the parameters
in Table 2. For real network operations, the ARIMA model
introduced in Section II can be used to anticipate the expected
size of network users’ data traffic.

TABLE 1. Network and algorithm parameters.

TABLE 2. Traffic configurations [17], [28].

The model parameters model can be determined following
the analysis discussed in Section II-B. The available physical
resource blocks are scheduled among the users according to
a delay-based scheduler [27] in which the users with urgent
deadline requirements have higher service priority. Because
of the non-existence of any work in the literature concerning
the deployment of multiple UAV-BSs serving in the uplink
direction, we used a benchmark technique that has commonly
been used in the literature [5], [6], [7] in which the UAVs are
deployed along the cell edge of the TBS to serve the users
with the worst channel quality conditions. In this setup, the
UAVs fly in a circular trajectory with a constant speed equal
to 30 m/sec at a fixed altitude of 100 m [7]. As the UAVs
move, the users are associated with either the TBS or one of
the UAVs according to the closest distance. This integrated
deployment is named ‘‘the generic solution’’ in the rest of
this discussion.

B. PARAMETERS SELECTION FOR THE ML SOLUTION
The learning rate, α, is normally selected to assume a small
value between 0.1 and 0.3 while the discount factor, γ ,
is selected to assume a large value between 0.7 to 0.9 [24].
In order to determine the combination of parameter values
that best suits our setup, we conduct parameter selection
experiments such that we fix the learning rate at 0.1, which
indicates slow learning from the previous actions, and the
discount factor at 0.9, which allows the agent to look for
high rewards in the long term. The epsilon-greedy decision
parameter, ϵ, which indicates the exploration index, is then
varied until we get the highest possible average reward.

We then repeat this procedure by fixing the decision param-
eter at this obtained value and the learning rate at 0.1 while
trying different discount factor values. Finally, we repeat this
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procedure for the selection of the learning rate. Based on these
experiments, the best combination is given in Table 1.

C. PERFORMANCE EVALUATION OF THE PROPOSED
SOLUTIONS
We now analyze the performance of the proposed optimal and
ML solutions and compare their results against the generic
solution. The evaluation metrics are mainly based on the
cost of the solution in terms of the number of needed UAVs.
Then, the network performance under this cost is represented
in the deadline missing ratio and the network aggregate
throughput. Therefore, we set the maximum allowed number
of UAVs that can be used by the optimal and ML solutions
to three, i.e., umax = 3, to represent the limitation of the
available resources. Since the generic solution has no control
on the number of deployed UAVs, the maximum number of
three UAVs is used for all different network configurations
under the deployment that places the UAVs at the cell edge
of the TSB. The generic solution is simulated under the
same network configurations and setup of the other proposed
solutions. The network configurations include deploying the
UAVs to serve an overloaded terrestrial network with differ-
ent numbers of users, starting from 50 to 250 users that are
uniformly distributed in the deployment area with a distribu-
tion density of 50 users/km2. The presented results are the
average of several simulation runs. Hence, we indicate the
95% confidence interval limit bars with each of the result
points.

1) THE NUMBER OF DEPLOYED UAVS
The average number of UAVs is an indication of the cost
incurred by a solution to cover the excess traffic demand in
the different user deployment configurations. The average
number of UAVs is presented in Figure 2 for the different
deployment solutions. The generic solution has a fixed num-
ber of UAVs hovering along the edge of the main TBS’s cell
such that the number is always equal to three, as indicated
earlier. In both the optimal and ML solutions, the average
number of deployed UAVs increases as the number of users
increases, but it does not reach the limit of three UAVs in
the simulated scenarios. This is due to the objective stated in
(12) that tries to get the minimum number of UAVs required
to satisfy the excess traffic demands. Both the optimal and
ML solutions apparently use two UAV-mounted base stations
along with the overloaded TSB to handle the traffic requests
of the network users. The solutions of the optimization and
ML algorithms guarantee a minimal cost of the deployment
since these approaches control the locations of the UAVs with
respect to the traffic demands of the users quantified by the
formulated ARIMA estimation model.

2) THE DEADLINE MISSING RATIO
Figure 3 shows the deadline missing ratio as a percentage
of the transmissions that missed their deadlines to the total
number of communication requests for the different traffic
profiles. The optimal and ML solutions guarantee a reduced

FIGURE 2. Average number of deployed UAVs.

deadline missing percentage in all user configurations when
compared to the generic solution although the generic solu-
tion incurs a higher deployment cost than the optimal and
ML solutions. In Figure 3(a), the network deadline miss-
ing ratio is presented for the three solutions. The proposed
techniques provide an approximately zero deadline missing
ratio in the network deployments of 50 and 100 users. The
trend increases as the number of users increases since the
proposed solutions maintain a minimum number of resources
represented by the number of deployed UAV-BSs. Figure 3(b)
shows the deadline missing trend for the eMBB traffic that
exhibits a trend that is similar to the trend of Figure 3(a) since
the eMBB traffic is 50 percent of the deployed network users.

In addition, in the simulated scenario, we utilize the
delay-based scheduler that prioritizes the users with the low-
est delay bound, such as the eMBB traffic, as given in
the traffic characteristics of Table 2. The camera traffic in
Figure 3(c) has a deadline missing ratio trend that is compa-
rable to that of the eMBB traffic although the camera traffic
is more delay-tolerant than the eMBB traffic. The reason
behind this performance is that the proposed solutions tend
to serve the traffic with respect to the anticipated demand
according to the constraints in (12), and only the delay-based
scheduler considers the delay bounds of the users. It is worth
mentioning that the sensor traffic has zero deadline missing
percentage at all the configurations because the modeled
scenarios simulate the sensor MTCDs with much smaller
arrival rate traffic and tolerant delay bound, shown in Table 2,
depending on the features of sensors sending datawithin fixed
time intervals.

3) THE ACHIEVABLE THROUGHOUT
Figure 4 shows the system aggregate throughput demonstrat-
ing that the optimal and ML solutions outperform the generic
solution although a greater number of UAVs is deployed
all the time in this generic setup. The overall network
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FIGURE 3. The average percentage of deadline misses for (a) the overall network (b) eMBB users (c) camera MTCDs.

FIGURE 4. The aggregate throughput of (a) the overall network (b) eMBB users (c) camera MTCDs (d) monitoring sensor MTCDs.

aggregate throughput, in Figure 4(a), shows that the 3D
UAV deployments of the optimal and ML solutions consider
the measured traffic of the users. In addition, the proposed
techniques prioritize the users with resources allocated by
the delay-based scheduler. On the other hand, the generic
solution might enhance the channel gains of the cell edge
users without affecting the network throughput. The reason
behind this behavior is that the generic algorithm only tries to
maintain sufficient channel conditions regardless their traffic
demands or even without considering whether there are phys-
ical resources assigned to the served users by the scheduler.

This generic deployment of the UAV-BSs does not guaran-
tee effective utilization of the overall network resource since
three UAVs are used in such deployment. The achievable
throughput of the eMBB users is indicated in Figure 4(b).
This traffic profile is characterized by larger packet sizes
than the MTCDs’ traffic. Thus, the eMBB traffic contributes
more to the network aggregate throughput. The throughput

of the camera traffic profile in Figure 4(c) demonstrates
the insufficient utilization of the available resource of the
generic solution. Although the camera throughput under the
generic deployment is higher than that is obtained from
the optimal and ML solutions, the deadline missing ratio
increase has encountered for the same traffic profile under
the generic solution, as shown in Figure 3(c). One can infer
that the dynamic UAV deployment of the optimal and ML
solutions accounts for the uncertain traffic demands and their
associated data traffic measure using the minimum possible
resources.

However, considering only the cell-edge users’ channel
capacity is found to be inadequate, as in the case of the
generic solution. This is because the other characteristics of
the users’ traffic, such as delay bounds, data packet sizes and
the available allocated resources, become congested in the
access network requesting services. Similarly, the throughput
of the monitoring sensor MTCDs, shown in Figure 4(d), has
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FIGURE 5. Simulation time of the proposed solutions.

comparable rates along the different solutions since this traf-
fic profile is characterized by low arrival rates, small packet
sizes and relaxed delay bounds. These characteristics do not
contend much for network resources unless there are high
demands by the intolerant traffic.

D. THE COMPUTATIONAL COMPLEXITIES OF THE
PROPOSED SOLUTIONS
We now verify the complexity analysis of the optimal and
ML solutions presented in Section III.C. This is done by
examining the average simulation time of the experimental
runs of each solution. Figure 5 shows the solutions’ run-
ning simulation time. The running time of the ML algorithm
increases linearly with a relatively small slope. This slope is
mainly controlled by a tolerant termination criterion that can
be selected when no significant improvements are observed
between the successive iterations of theML algorithm. Hence
the complexity term O (nML) can be easily bounded by the
proper selection of the algorithm parameters and termination
conditions.

In addition, the linear time complexity of the ML solution
can be considerably influenced by the discrete step sizes
chosen to define the state space S and the action space A.
By regulating these discrete step sizes, the complexity term
O (z log z) of the search algorithm can be maintained at low
levels. These two control conditions directly impact the speed
of convergence of the ML algorithm which can lead to a
real-time performance depending on the size of the involved
network.

On the other hand, the time complexity of the optimal
solution is found to be increasing exponentially. The rea-
son behind this performance is that the algorithm solves
a subproblem with a linear complexity of O (nml) at each
branching node of the BnB algorithm. These observations of
Figure 5 coincide with our analysis in Section III.C. To con-
clude this analysis, the advantage of the ML solution is that
it allows for relatively fast convergence that can be used as a

practical solution in real-time arrangements. For the different
evaluation metrics, the results of the ML solution are found
to be close to those of the optimal solution in all simulated
network configurations.

V. CONCLUSION
In this paper, we proposed optimal andmachine learning-based
UAV deployments as temporary BSs to offload the excess
traffic demands that a terrestrial base station might encounter
during certain events. For this purpose, uplink traffic sizing
is carried out to determine the excess traffic that needs to
be serviced by the UAV-mounted BSs. This excess traffic
offloading goal is achieved by optimizing the number of
deployed UAVs and their 3D positions in the area of inter-
est. A traffic estimation technique was proposed based on
the ARIMA model to estimate the excess traffic demands.
We devised an optimal algorithm to determine the optimal
bound of the solution and an ML algorithm to provide a prac-
tical implementation of the problem. Simulation experiments
showed that the results obtained by the proposedML solution
are close to the optimal bounds while providing real-time
performance. The resulting dynamic network outperforms
that of the generic technique that deploys the UAV BSs at the
cell edges when compared in terms of the achieved through-
put and the traffic deadlines. A potential future direction for
the field of traffic offloading using UAVs is to study the
dynamic 3D UAV localization considering some other UAV
deployment constraints that challenge flying UAVs in a given
area such as the UAV transmission power constraints, and the
effects of stormy weather/wind and some unreachable areas
in the deployment space. In addition, there is an important
future extension which is to consider the backhaul links of
the deployed UAVs to the nearest sane infrastructure in the
traffic offloading application. All these considerations should
be included in the problem formulation as constraints or
objectives of the UAV deployment problem.
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