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ABSTRACT While user-oriented service industries are rapidly growing, various network devices provide
these services through different access paths. Accordingly, the network flow is also increasing explosively.
As demand for management related to limited network resources increases, the network traffic classification
grows to prominence. Usually, a quick classification task was possible with hundreds of data composed of
dozens of features. Afterward, deep learning models have proliferated owing to an outstanding performance
that overwhelms existing performance based on hundreds of thousands of features and data. However, the
deep learning models showing one of the best performances cannot be free from two facts. One is a lot
of time and resource consumption. The other is an uncertain explanation of the process. We solved these
problems. Firstly, we used two methods to overcome resource constraints. We modified the DistilBERT
applied with knowledge distillation for using a compressed model and securing a remarkable performance.
We used a lightweight packet with a header and partial payload for feature reduction. Consequently, our
XENTC can process four multi-attribute packets simultaneously and effectively by removing the superfluity
of features. And it achieved 97.0∼98.1% F1 scores. The required time to classify a packet using a trained
model is 0.0093 seconds. Therefore, it can be one of the feasible solutions. Secondly, to approach human-
understandable XAI, we analyzed the relationships between the features by associating them with the packet
structure. At the specific point of the model’s finished training, it was revealed what the important features of
the packet were by counting the Top-5 number of times among the attention values. In addition, we visualized
the classification performance of the model using t-SNE to enable intuitive understanding.

INDEX TERMS Encrypted network traffic classification, deep learning, NLP, BERT, knowledge distillation,
DistilBERT, XAI.

I. INTRODUCTION
A. MOTIVATION
While tremendous personal devices are connected to the
network for access to various services, service industries such
as SNS, health care, transportation, and energy management
are growing. So, the sharing scope of data and network
resources among these service industries is also rapidly
increasing. Such services are often established between users
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and cloud servers. A satisfactory solution to guarantee the
network Quality of Service (QoS), intelligent network opera-
tion andmaintenance, and network security of network-based
services is network traffic classification and identification
technology, which is continuously researched along with
the development of computer network technology [1], [2].
In the early days, port-based approaches tried to classify
traffic only with the port number of the transport layer.
Using the information registered with Internet Assigned
Numbers Authority (IANA) made it possible. However,
because application servers gradually began to use unknown
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ports and to allocate ports dynamically in real-time, using
port-based approaches was no longer an acceptable solution.

In consequence, payload-based approaches have been pro-
posed. These used a Deep Packet Inspection (DPI) technique
that more closely examines the contents of the received pack-
ets. It started with the premise that an application or protocol
has a signature, which is a specific pattern. Accordingly,
several algorithms capable of detecting the pattern have been
developed [3], [4]. However, as personal information security
became more critical, encryption technology [2] for network
traffic’s payload was applied. By encrypting the payload
among the header and payload of the packet, the services on
the network domain have ensured the security of the contents
by using only the necessary header information for packet
exchange. This development can be accepted as a growth
in the security area. But the DPI paradigm is no longer a
favorable solution owing to the unavailability of payload
in network traffic classification. So, Encrypted Network
Traffic Classification (ENTC) has become a blue-chip
challenge.

For this reason, Statistics-based approaches [5] newly
emerged. Statistics-based methods have been used in con-
junction with port-based methods. Departing from the
perspective of DPI techniques, statistics-based methods used
statistical characteristics of the network traffic’s flows. For
example, these are analytic data such as packet size, the
interval between packets, and flow continuity. Furthermore,
the various methods, which have utilized Machine Learning
(ML) algorithms concurrently, were proposed [2], [6],
[7], [8].

Over time, the tremendous network traffic of personal
devices and applications has exploded. And it was expected
to continue this trend consistently. So, advanced research has
begun to counteract the requirement for service assurance
in the manner of real-time [9], [10], or distributed comput-
ing [11].

Moreover, Artificial Intelligence (AI) methods utilization,
along with the success of the Convolutional Neural Network
(CNN) technique, has increased remarkably. For example,
CNN has symbolized a representative of deep neural
networks by successful optimal results in Computer Vision
(CV). In line with this, the DL method in other fields
has performed significantly higher than the existing ML
method. As a result, it has become generalized to utilize DL.
Moreover, finding unapplied areas is challenging.

In even the field of ENTC, DL-applied approaches [12],
[13], [14] are becoming a new trend. Lately, a Transformer
model [15], which is superior in sequential data processing
to Recurrent Neural Networks (RNN) in the field of Natural
Language Process (NLP), has emerged. Because packets are
characterized by time series continuity, it was expected that
the NLP mechanism could be suitable for network traffic.
Accordingly, approaches that apply the NLP mechanism to
ENTC problems have been in the limelight [16], [17], [18].

B. PROBLEM STATEMENT AND STRATEGY
The inference process behind conclusions drawn by artificial
intelligence models remains a black box. The eXplainable
Artificial Intelligence (XAI), which aims to bridge the
gap between the quantitative output of AI models and
human comprehension by opening an opaque black box,
has also become a new task to solve in this field of ENTC
continuously [19]. In addition, AI models are demonstrating
remarkable performance, but their problem of enormous
resource consumption remains. It may be impractical to
assume that high-performance devices, sufficient to cover the
burdensome computational cost, can be deployed in most
places. Therefore, it can be required to reduce the processing
burden, including latency, rather than managing the cost
of high performances devices with non-infinite resources,
which includes the memory footprint and electronic energy
consumption. For utilization in various areas, the AI
model’s feasibility would be needed to secure overcoming
computational cost through efficiency, which uses model
refinement [20] and fine-grained feature reduction.

In this paper, we aimed to ensure the feasibility of solving
the ENTC problem with an acceptable result through fewer
computations. Accordingly, we approached two kinds of
lightweight to reduce the model’s computation amounts. One
aspect concerns the input data, and the other concerns the
model.

As aforementioned, one aspect of lightweight was to
reduce input data. Therefore, we utilized the intuitive
perspective in the previous approach [21] as a precept. They
researched that the first few packets contain essential infor-
mation in the application’s negotiation phase. In addition,
it was believed that the characteristics of each traffic could
be found sufficiently with the header, which includes the
length information related to the payload and partial payload.
For this reason, it has become starting point to provide stark
contrast methods not to find patterns in encrypted parts that
occupymost of the input data [17], [18] in terms of input data.

As the other aspect of lightweight was removing the super-
abundant model’s layers, we selected the DistilBERT [22]
to apply the NLP mechanism in the ENTC field and
reduce the model’s layer. A tailored model of Bidirectional
Encoder Representations from Transformers (BERT) [23],
a large-scale model, does not have much meaning in the
language domain. However, in the ENTC area, where
network resources are limited, the lightweight model showing
remarkable performance could have considerable meaning.
The ensemble knowledge is obtained from a complicated
model and compressed to be suitable for mobile devices,
i.e., the superabundant values are distilled into compacted
values. The above process indicates Knowledge Distillation
(KD) [24]. Furthermore, the DistilBERT model has already
been verified in the NLP area for its fast and remarkable
performance by miniaturizing computationally expensive
BERT. It was expected that applying lightweight data to
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such a lightweight NLP model would positively improve the
inference speed of the model.

In summary, DL models with excellent performance
require both feasibility and interpretability regarding econ-
omy and usability. The above perspective, which means
that light-weight input data could contribute to reducing the
computation, was regarded as also helpful from the aspect of
the model simultaneously. In order words, we contemplated
that it can make a relation a virtuous circle. In addition
to reducing time consumption, we considered that the
significantly minimized input data could also support the
interpretability of the model. So, we thought the lightweight
data could be established as a concurrent baseline of
feasibility and interpretability.

Significantly, the method of the inputted packets
lightweight assumes below following preferentially. Input
data in the NLP field has a different characteristic from input
data in the ENTC field. In other words, it can be possible to
classify traffic even though all payload of the packets are not
used as input data [25].

In addition to the insightful method of applying lightweight
data to a lightweight model suitable for time-series con-
tinuous data, an intuitively perceivable explanation, which
uses corresponding direct relation between inputted byte and
packet structure, was presented in Sections III and IV.

C. CONTRIBUTION
In this paper, we proposed a method aliased as an eXplain-
able Encrypted Network Traffic Classifier (XENTC). The
proposed method has three main contributions to the ENTC
problem.

• Feasibility. We have presented a feasible alterna-
tive to limited network resources. Compared to
approaches [17], [18], which were proposed to allocate
a lot of computation time for inference to find patterns
in encrypted parts of network traffic, we have dealt
with not the whole data of the packet but header
information and partial payload. Our method has made a
remarkable performance result using both representing
of these data to be recognized each byte unit and
modifying the NLP model to fit in well with the
ENTC problem. Using traffic type data of 6 classes, the
classification result for the inputted packet was a 98.10%
F1 score. Using the application type data of 15 classes,
the classification result for the inputted packet was
a 96.99% F1 score. Regarding time consumption,
XENTC can be a distinguished traffic classification
model. DistilBERT, a compressed BERT applied with
Knowledge Distillation (KD) technique, and lightweight
input data were utilized simultaneously in our ENTC
field. In applying theNLPmodel, a tokenizer specialized
for network traffic was used, and no separate time was
allocated for tokenizer learning and pre-training. There
were no problems in the learning process, even though
the integers, the converted value from vocabulary in the
NLP field, were used as it is. Based on our general HW

and the preparations for our experiment, the time needed
to train the model for 20 epochs was only 1 hour and
40 minutes, and the time required to test with the trained
model was 0.0093 seconds/packet.

• Comparative Learning. The training and test process
was redesigned for only one packet to improve the
model’s accuracy. Specifically, our model was special-
ized to learn and classify the network traffic data of four
other packets simultaneously. Classifying several other
single packets simultaneously is named Comparative
Learning (CL) in the mechanism of our XENTC based
on a DistilBERT model. CL, based on a distinction
within reciprocal characteristics of input data, has a
productive effect, so the model completed training for
20 epochs showed an 0.82% higher F1 score than
not.

• Intuitive Interpretation. Explaining which factors
were used importantly for classification in the model
inference process has been applied. The self-attention
mechanism, which finds an attention value in the
individual element perspective, was improved to rec-
ognize elements considered important from an overall
point of view. For the explanation, each byte has
mapped in a unit of bytes according to a single
packet structure for permission of human intuitive
perception. So, our explanation method is differentiated
from an explanation method applied the CNN. Because
CNN provides a mechanical explanation using the
arithmetically calculated values passed through the
convolution layer as data, it is restricted to enable
an intuitive human understanding of the explanation.
Similarly, it should be noted that using the LIME [26],
[27] can provide a fragmentary superficial interpretation
of the inference process rather than overall semantic
reinterpretation. From a methodological point of view,
we have used the NLP model as the primary frame of
our model and did not conduct additional training on the
tokenizer. So, each attribute value was maintained in its
original state and can be used for analysis. As a result,
it enabled an intuitive interpretation of the inference
process.

This paper is organized as follows. Section II contains
related works which are used to solve the problems of
network traffic classification. Section III describes the per-
formed work. Section IV describes the obtained experimental
results and analyzes them. Section V provides additional
experiments and discussion. And Section IV describes the
conclusions.

II. RELATED WORKS
Feature selection by researchers has been performed even
before the advent of machine learning [1]. But the number
of features applicable to ML models may be limited
considerably compared to the DL models. And most of
the feature selection was made by the internal standard
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of the researchers or by a method devised independently
of the model process. Moreover, even though it is an ML
model, there have been exceptional cases in which the model
even directly intervenes in feature selection based on feature
importance [28], [29], [30].

After the appearance of the DL model, more numerous
features can be applied, which is a striking contrast to
the ML model. And the role of feature selection has been
transferred to the DL model, which determines almost
autonomously which features are important. However, fea-
tures not entered into the model after being refined according
to the researcher’s data engineering plan cannot be included
in the model’s consideration. In various fields, the utilization
availability of the DL model can be clearly distinguished
from the previous ones in research extent, which is related to
the number of features available. So, its results have worked
the same in the field of ENTC. Since there is little limit on
the number of features that can be input into the DL model,
numerous features have been entered into the DL model
at once [14], [31]. Port information, payload (regardless of
encryption or not), numerous statistical information that can
be extracted as it is sequential data, and various other data
have been included.

By the way, it can be that if more than hundreds of
thousands of parameters are used, the negative effect on the
model’s accuracy is not significant, but it is not negligi-
ble [32]. Exceptionally, the possibility that the performance
result can even differ depending on the model could not be
excluded. Back to the point, the features pass through the
affine layer and are increased on the layers. These are used as
parameters in the model. Therefore, it is unimpeachable that
the number of parameters the model handles is much greater
than the number of input features. In this regard, we examined
it in detail using our model. And it has been presented in
Section V, ‘Discussion.’

Concerning the viewpoint mentioned above, consideration
of the quantitative aspect corresponds to both features
and parameters. Therefore, the order of related work is
as follows. First, before the DL model, we investigated
early approaches (port-based, payload-based, statistics, and
ML-based), in which the number of applicable features
was relatively limited compared to the DL model. Then,
we explored the approaches concerning the DL model that
is less constrained by the available number of features.
Afterward, an approach to efficiently improving a huge DL
model has been researched. Finally, a recent method to insert
packets directly into the DL model and an investigation
concerning an advanced AI, i.e., XAI, has been executed.

A. METHOD USING RESTRICTIVE FEATURES
Generally, each method has been applied sequentially in the
order of port information, payload, statistics, and ML. And
approaches using a combination of several methods simul-
taneously have even appeared. The sublime combination of
methods also has resulted in improved performance.

1) PORT-BASED METHOD
The port-based approaches infer network traffic by finding
the port number in the SYN packet of the TCP 3-way
handshake and looking up the port number registered in
IANA. However, applications using ports unregistered with
IANA had emerged, and these approaches had been limited.

To overcome this disadvantage, an approach, which
classifies network traffic using both the port number and
analyzing the variation of continuous packet size [33], was
proposed instead of analyzing the payload itself. It used the
unique characteristics of maintaining a session through the
same port connection with each network traffic. As a result,
it achieved 96% accuracy due to utilizing different Packet
Size Distribution (PSD) information. This research method
has become a guiding light of good results by utilizing
summary information on payloads besides the port number.

2) PAYLOAD-BASED METHOD
Payload-based approaches are usually signature-based
methodologies grounded on whether the presence of a
known string exists in a packet’s unencrypted payload.
Reference [34] presented a method to improve accuracy by
classifying according to the following three steps. As a first
step, the port number was checked. As the next step, the
payload of the first packet was checked to find the known
signature. As the last step, the payload of the entire flow was
inspected. The performance result of each step showed an
accuracy of 69%, 79%, and almost 99%, respectively. It was
a prominent part that increased the performance by coping
with the computational burden step by step according to the
performance standard. The computational burden required
for high performance is a weakness.

Additionally, a limitation of the research then was that
sharing ground-truth public datasets was restricted [5] due
to personal security issues. Because the payload had not
been encrypted, it was using their collection of ground-truth
data that researchers classified network traffic for their
research [35]. Therefore, since the types of collected network
traffic were diverse, it took discrete work to compare each
result objectively.

3) STATISTICS-BASED AND ML-BASED METHODS
Starting with payload encryption [2], [36], network traffic
classification using the payload-based method has been
limited. Accordingly, a technique has been proposed using
the sequence signature of payload size as additional data [37].
They generated a sequence signature using the order,
direction, and payload size of the first N packets in each
network traffic.

Afterward, abundant approaches using statistical features
from network flow’s characteristics were proposed beside
header information. However, those approaches did not
access the internal data of the payload. Because the
time-series features were associatedwith exterior information
of the payload, such as length, it was applicable regardless of
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whether it was encrypted, so it was used with ML algorithms
such as Random Forest and K-Nearest Neighbor [38].
Reference [39] used various ML algorithms such as Naïve
Bayes, C4.5 Decision Tree, Bayesian Network, and Naïve
Bayes Tree. And the authors used 22 features obtained from
flows and compared each performance. All four algorithms
achieved over 95% accuracy. The various heuristic features
were applied equivalently to various ML algorithms to
compare their superiority. The research reflected the trend of
the times when ML algorithms were prospering.

In this period, features were selected according to the
researcher’s design or an algorithm separate from the ML
model or an algorithm applied inside the ML model. In most
cases, dozens of features were selectively used. However, the
allowable number of features compared to the DL model was
relatively limited.

B. METHOD USING LESS RESTRICTIVE FEATURES
1) REVIVAL OF THE DL MODEL
As mentioned before, the allowable number of features is
less restrictive, and feature selection is performed by a
model in DL [40]. The feature selection process is executed
by weighting the parameters related to important features
entered into the model to obtain the optimal solution. With
the activation of backpropagation [41] and the development
of memory technology, computational power using GPU has
substantiated DL merits. And its progress is still ongoing.
Hence, adjustingweight values relevant to finding the optimal
solution through training the DL model can be progressively
accelerated.

Reference [13] proposed a method of applying both CNN
and RNN, the representative deep learning techniques in CV
and NLP, to the ENTC problem. First of all, automatic feature
representation of network flowswas also applied. Six features
(source port, destination port, payload size, TCP window
size, packet arrival time, and packet direction) were selected
by mixing four header information and two statistical data.
Those were chosen from a flow composed of 20 consecutive
packets. The six features were rendered as 2D-image shapes,
and then CNNwas utilized to extract synthetic features. After
extracting features through CNN, the structure of the model
was designed to connect to the LSTM network. As a result of
inference, the performance value achieved 96.32% accuracy.
Their deep learning model used both a spatial property of
feature vectors and the time-series property of feature vectors.
Combining the CNN and the RNN is a strategic method that
utilizes the above two properties. It can be the noticeable
achievement of strengthening the strength and making up for
the weakness.

The self-attention mechanism of the Transformer
model [15], which has been proven to be dominant in
time-series data processing, has begun to be applied to the
ENTC problem [17], [25] from the field of NLP. Subse-
quently, approaches [18] that apply the BERT model [23]
using the Transformer structure to find features in encrypted

payload also appeared. As the name suggests, BERT uses
Transformer encoder layers to recognize input data from a
bi-directional perspective. BERT utilizes the three input
vectors simultaneously. The first is an embedding vector
in which each sentence is divided into token units. The
second one is a position vector for context. The last one is
a segmentation vector for which sentence each token belongs
to. It has a pre-learning mechanism using the three input
vectors in two ways. One of the two techniques is to select
15% of the inputted data. Then it generates a [MASK] token
and learns to predict the original word. Another technique is
to understand the relationship between two sentences using
comparison. And the other one is predicting whether the
following sentence belongs to the category of the identical
attribute of the former one.

In [18], the authors used five consecutive packets and a
single packet as input data for the pre-training and fine-
tuning. It utilized this BERT model by using 512 bytes
among the entire 1,500 bytes of a packet. It achieved 85.19%
and 99.62% accuracy on the classification for a session
and a single packet, respectively. Their study provided a
distinguished point to announce that it is possible to classify
network traffic by including packet headers and the partial
payload using the NLP model. However, the model used the
one-third packet during the training process. The resources
and time required for the computation were not disclosed
in their study for the pre-training process, but it could
be expected to be significant. Actually, the training time
measured using BERT with 512 bytes as input data was time-
consuming, as presented in Table 3 of this paper.

Accordingly, in the ENTC area where network resources
are limited. Even if a model shows significant performance,
it may be reasonable to question whether it can be a viable
alternative if it is heavy and consumes considerable time and
resources in the network traffic classification. In this regard,
we examined it in detail through comparison. And it has been
described in Section IV-D.

2) IMPROVING THE FEASIBILITY OF DL MODELS
Research on reducing the DL models has been explored to
prevent the enormous computation and processing time of
Deep Neural Networks (DNN). Even though it cannot avoid
a trade-off relationship between accuracy and the quantity of
computation, research is underway to overcome the adverse
effect, especially in restricted circumstances.

The reduction of the DL model can be classified into two
types. One of the two types is a method of using a lightweight
algorithm from the beginning [42], [43], and the other is a
method of lightening the trained model’s layer [24], [44].
Compared to the former, the latter may take considerable
time to train the model but may have the advantage of
obtaining good performance. The Knowledge Distillation
(KD) belonging to the latter is a mechanism that decreases
training and inference time by reducing the number of layers
of the student model to layers of the teacher model. Applying
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temperature to the soft-max function is used for it. As the KD
mechanism is a significant part of the baseline model used in
our method, we allocated a specific part for an explanation in
Section III, ‘Methodology.’

3) PUTTING PACKET INTO MODEL
References [25] and [27] selected several types of models
and demonstrated that the model’s performance could differ
depending on the packet’s various input lengths, even though
they were configured using similar models. So, from a broad
perspective, [25], [27] can be noticeable research on the fact
that different data can be used depending on the researcher’s
intent, even if the same model is used. In other words, the
model’s performance may vary depending on the selection of
the input length. The model can be determined by the purpose
of the researcher’s intended goal. Accuracy and efficiency or
both may be goals. But it should also have been concerned
that having a lot of data input to the model can also degrade
performance [32].

Based on the above lesson, the two aspects pre-considering
the final result of the model in the planning stage can be
organized as follows. Firstly, it needs to be focused on the fact
that increasing input features lead to increase processing time,
and the accuracy of the model even may not be improved.
On the contrary, the performance may even decrease [32].
Secondly, as the lightweight model can contribute to reducing
the massive computation and processing time of DNN,
it should also be focused on the fact that reducing the
inputted data can contribute to the model in the same
aspect. In this paper, focusing on the above two aspects,
we planned feature and model reduction for the model’s
feasibility within a 1 ∼ 2% lower performance. We regarded
that the degradation of the model’s performance can be a
manageable and acceptable problem under the condition that
the selected decision leads to reducing processing time or
resources.

Reference [31] dealt with a multimodal technique that
selects and applies multiple data simultaneously in terms of
input data. And [14] used both statistical features chosen by
researchers and features selected by deep learning models
simultaneously. In [21], over 80% accuracy was achieved
using the first five packets of each TCP flow. From a chrono-
logical point of view, the approach [21], which intuitively
pointed out that the first few packets are important in traffic
classification because they contain essential information in
the connection stage of the application, can be worth paying
attention to.

So, in this paper, we designated the first four packets as
input data in bi-directional flow (i.e., session). The number
of input packets is related to the size of bytes available for
input into our model, described in Section III-D.

In [25], Attempts to achieve real-time traffic classification,
which can be inevitable in network traffic classification, have
emerged at a new level in the viewpoint of input data. The
proposed model did not deal with flow-level data connected
with multiple continuous packets as input data. It is only

presented to use the specific part of a packet as input data by a
single packet unit. The particular part of the payload was used
in addition to the header information of a single packet unit.
A referential experiment was presented to find that optimal
value positively affects the classification performance among
the first 40, 50, and 60 bytes of the L4 payload. It achieved
an accuracy of 90.33% by selecting only 50 bytes of payload
as the optimal input data value. What is noteworthy in their
research is that they tried to find the optimal value under
the premise that good results can be obtained even if only a
small part of the payload is included in addition to the header.
In a different view, by applying Transformer’s self-attention
mechanism, attention weights of input data were calculated to
find the ranks of bytes important for classification. However,
as the CNN was used right before the model’s classifier
layer, finding the corresponding bytes among the input data
connectionally was impossible.

We analyzed the above result and evaluated that not all
data in the packet need to be entered into the model. So,
we considered an acceptable level of accuracy can also
be obtained using a partial packet payload beside header
information. So, in this paper, we designated the first 63 bytes
of a packet as input data into our model. And content
concerning the optimal selection of the payload size inputted
to our model is described in Section V-A.

Furthermore, other research finding on the critical input
data that influences the classification results of the model are
continued in the right next Section.

4) XAI IN ENTC PROBLEM
In various scientific research fields, DL models based on
ANNs (Artificial Neural Networks), which include hidden
layers, have been becoming relatively recommended solu-
tions by surpassing the performance of existing ML models.
By the way, the higher the performance of both ML and DL
models, the higher the black box-like opacity of the result’s
derivation process. Therefore, to increase reliability using
explanation, the necessity of research on both transparent
design and post-hoc explanation for AI was raised [45], [46].

To progress further from the classification result of the DL
model, finding how to interpret and utilize the final meaning
of the features weighted by the model is becoming the norm
even for interpretation in the ENTC area.

Reference [47] suggested the interpretation possibility of
ENTC with a model designed using a genetic algorithm
and the 1D-CNN. A dominant feature selection was pre-
ceded among the statistical flow features by adjusting
the hyper-parameters of the genetic algorithm. Confirm-
ing the classification result using the 1D-CNN to determine
the dominance of the weighted features was performed
later. By the way, their approach needs to be discussed in
the following two aspects. Firstly, although the method of
attempting to interpret the model was unusual, it was not
an interpretation of a pure deep learning model. Because
the genetic algorithm was used in adjusting the weights
of the features based on the pre-trained model, this is an
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interpretation of the feature selected by not the DL model
but the genetic algorithm. There was a difference from the
interpretability of the general DL model because their DL
model adjusted the previously selected features again within
its limited domain range. A general DL model conducts
feature selection and weighting features simultaneously.
Secondly, since the features applied to the model are
statistical values, additional utilization from the user’s point
of view may be optional. While the original packet field has
meaning, selecting the post-interpretive statistical values has
a heuristic characteristic for each researcher. Therefore, the
range of statistical features set in advance may change at any
time heuristically. In this regard, we used both the utilization
of DL’s feature selection and the original value of the packet
field as it is in our research.

Reference [25] that applied both the self-attention mech-
anism of the Transformer model [15] and the 1D-CNN
mechanism to model simultaneously was presented for the
possibility of interpreting the model for the ENTC problem.
They used a first packet as input data for online network
traffic classification and divided a single packet by a byte
unit. Each byte had gone through the Transformer layer. After
that, the clustered bytes composed of an adjacent byte were
represented using the 1D-CNN before a classifier layer [40].
But the attentive weight of the model has been separated
from the intrinsic value after passing through the CNN layer.
Even though the above process of going through the CNN
layer comprised partially, only the possibility of superficial
interpretation related to byte, which played an important role,
could be presented. That is because the interpretation using
representative values, not such as a part of a picture that
people can see at a glance, is the ambiguous context beneath
human perception in other areas not related to the perceivable
image.

Generally, each feature recognized by the model can be
increased and represented by passing the affine layer, and the
model optimizes the related weights. The CNNmechanism in
the CV can suggest an explanation by finding that the features
of the represented middle layer refer to a specific part of the
original image [46]. But the byte value represented by the
subset of packet header fields may be an unknown computed
value in the ENTC area.

To wrap it up, feature interpretation concerning the model
using a convolution layer cannot be appropriate for human
comprehension according to the applied area. That is because
the input data’s features represented by group units were at
a level humans could not perceive directly, at least in the
ENTC area. Accordingly, adopting the XAI technique can
be a research area that needs to be carefully planned. It is
reasonable to be developed by simultaneously considering
both the baseline of the DL model and the characteristics of
the field to which the model is applied.

In this paper, we proposed a XENTC model that can be
understood and utilized by finding the importance of each
byte unit not by the unknown computed value but by the
connection with the packet structure.

FIGURE 1. The overall framework for model design and implementation.

III. METHODOLOGY
We have determined outline that the problem of classifying
sentences by processing data sequentially in the NLP field
can be applied to the issue of the ENTC field. Therefore,
we defined the following associative relation. A network
packet can correspond to a single sentence, and a session
composed of bi-directional flows can compare to a collection
of several conversational sentences.

In detail, the semantic difference between session data
and flow data, which were used in this paper, is as follows.
Session data consists of packets sent and received in both
directions. Flow data, contrary to session data, consisted
of one-way packets. As mentioned earlier in Section II,
we designated the first packet or first four sequential packets
in session as our primary data [21], [25].

In constructing the model, we referred to the general
framework [38] that presented concisely and practically
the sequential process. So, we selected the parts that were
useful to our plan and modified the parts that needed
to be developed and specialized. And we expanded the
methodological framework for the DL model by designing
the other additional process.

Therefore, we have also referred to a sequentially orga-
nized process from the data engineering planning to the XAI
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FIGURE 2. Distribution of bi-directional flow data. (a) A pie chart showing the distribution of traffic type, which is composed of 6 classes. (b) A pie chart
showing the distribution of applications, which is composed of 15 classes.

TABLE 1. Class composition of each property.

for the ENTC problem [48]. Our method has been established
this way, and the overall framework applied to this Section III
is illustrated in Figure 1.

A. TARGETED DATASET
The emergence of payload encryption has brought a new
phase to the network traffic classification problem. Pre-
viously, data sharing had been restricted due to personal
security issues. Payload encryption has solved this problem
related to network traffic research by enabling data sharing.
As a result, it has become possible to use public data to
compare each performance objectively. So we have chosen
the VPN-nonVPN dataset (ISCXVPN2016) [49] that was
captured from real-world traffic, and it was also commonly
used by other researchers. Therefore, a comparison with
different experimental results can be presented, and it was
expected to have a practical relative meaning.

The composition of both Traffic and applications corre-
sponding to the ISCXVPN2016 are shown in Table 1. The
two datasets comprise 6 and 15 classes, and the distribution
is presented in Figure 2 by each class. The 15 classes’
data consisted of 134,563 bi-directional flows. And the six
classes’ data consisted of 27,814 bi-directional flows, which
were obtained in smaller quantities by random sampling for
time reduction of various comparable experiments. Those
were randomly selected by maintaining an imbalance of

the distribution ratio of the public dataset. Because it was
considered that making a similar environment to observe the
objective experimental results in the actual use of the model
can be an essential factor. As illustrated in Figure 2, the
distribution of specific network traffic data reflects the biased
phenomenon in the environment of actual data austerely.
By each quantity, the two kinds of dataset’s split ratio for
training and testing were set to 9:1 in the case of 15 classes
dataset and 8:2 in the case of 6 classes dataset.

However, since the imbalanced class data can cause either
overfitting or underfitting of themodel in the training process,
pre-processing the imbalanced class data may be necessary
before the model’s training. Already, [50] dealt with this
class imbalance problem. They revealed that an unintended
situation could significantly hinder the model’s training using
such a class-imbalanced data set. For example, while focusing
only on the classification of the main sample, a crucial
mistake of ignoring or misclassifying a minority sample can
be made unexpectedly.

Accordingly, the necessity of pretreatment on the imbal-
anced class data was decided for training in our research.
To solve this class-imbalanced problem, we have chosen
an uncomplicated method to bring the effect of balanced
training. In this work, relative class weights have been applied
to the loss function for an imbalanced distribution of classes.
It describes how we dealt with the class imbalance problem
in this Section III-E, ‘Experiment Preparation.’

B. DATA PREPROCESSING
As aforementioned, [32] revealed that the number of features
entering the model could differ depending on the researcher’s
data engineering plan. And subsequent results can differ
according to it [51]. So, to find a lightweight unit suitable
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FIGURE 3. (a) The first 63 bytes of a single packet are extracted. (b) The
first 63 bytes of each packet in a session are extracted and concatenated.

Algorithm 1 Preprocessing
Input : PATH = Path(dir path of PCAP files), MAX_BYTES = 63, MAX_ROW = 4
Output : packets = concatenated packets
1: packets = []
2: for packet in each_session(read_pcap(PATH)) :
3: if packet_number(packet) > MAX_ROW : go to next session
4: if discard_specific_packet(packet) : continue # no-payload-TCP or DNS
5: packet = remove_ethernet_header(packet)
6: if udp = = categorize_packet(packet) # distinguish protocol
7: packet = pad_udp(packet) # pad with zero until 20 bytes
8: packet = mask_ip(packet) # convert sre & dst address to 0.0 .0 .0
9: packet = pad_cut_func(packet)
10: # fix the size into MAX_BYTES using zero_padding or cutting
11: packets.append(packet)

12: save_data(packets) # save the preprocessed packets

for the XENTC model structure, we set the size of the packet
to the first 63 bytes, 126 bytes, and 189 bytes as alternatives.
Through experiments, it was concluded that the suitable unit
of input data is the first 63 bytes of the packet. Relevant details
are described in Section V, ‘Discussion.’

Accordingly, we light-weighted packets and used them as
the model’s input data. Figure 3 (a) demonstrates that only
the first 63 bytes of a single packet are extracted. Figure 3 (b)
illustrates that only the first 63 bytes of each packet in a
session have been chosen and concatenated. Depending on
the purpose of the model, the above light-weighted single
packet or session data can be selectively inputted into the
model.

In [52] and [53], research results presented that it was help-
ful for model optimization if local minima were generated
as internally distributed representations through high-level
abstraction before input into the model. Therefore, it means
that pre-processing and converting the data representing local
minima play an essential role in deep learning. So, we applied
the method used in [54] and eliminated the ethernet header,
DNS packets, and packets without payload. Furthermore, the
overall preprocessing mechanism, including padding and the
distributed representation, is presented in Algorithm 1.
Subsection C, which follows, introduces the important

theoretical background of DistilBERT [22]. In DistilBERT,
the superabundant layer is distilled into the concise layer. The
above method indicates Knowledge Distillation (KD) [24].
We utilized DistilBERT for ENTC because we needed a
lightweight model of BERT, which shows a remarkable
performance but has excessive Transformer layers. Model
lightweight is a fundamental concept because it is part of the
foundation in which many Transformer layers used for model
learning can be reduced. Using the KD method, DistilBERT

FIGURE 4. The learning process of the student model acquires dark
knowledge from the teacher model by applying temperature to the
soft-max function.

lessens many Transformer layers and progresses the learning
process of its model simultaneously.

This pre-trained model of the DistilBERT has been
designed to learn based on language data. So, in subsection D,
we describe the modifications we made to make this
DistilBERT able to fine-tune network traffic data straight
away without any additional pre-training using it.

C. MODEL BASELINE
In ENTC, various methods such as CNN, RNN, and
Attention mechanisms can be used. Among them, we focused
on BERT’s process and performance, which makes
bi-directional access to sequential data based on the trans-
former’s layer. Furthermore, we finally selected DistilBERT
as our model baseline according to the model’s weight
reduction necessity. In the NLP field, it has already
been verified with a 97% performance ratio compared
to BERT, even though it is 40% smaller than BERT,
which uses 12 Transformer blocks for model configuration.
DistilBERT uses only 6 Transformer blocks.

The small student model of DistilBERT makes its small
layer by utilizing the KD method, which is used to
acquire knowledge from the big teacher model. Figure 4
illustrates the KDmethod applied to DistilBERT. The general
‘softmax’ converts the logit, zi, into qi through probabilistic
computation. Unlike the soft-max output, the probability
value qi for the i-th class in Equation (1) is based on obtaining
dark knowledge by entering the value T, which means
temperature, as the denominator. When the temperature is
lowered, the label becomes hard. When the temperature is
increased, the label becomes soft. So, the distillation process
can be established by the control of the temperature. The
control is executed in the learning process automatically. The
soft target, the knowledge of the teacher model, is taught
to the student model through the loss function, as shown in
Equation (2). Below, L is the loss function, S is a student
model, and T is a teacher model. In addition, (x, y) is each
input data and its label, respectively.

The value LKD, which means Distillation Loss, is also
used together with LCE , which means Cross Entropy Loss
while maintaining the same temperature when it compares
the soft label of the teacher model and the soft prediction
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FIGURE 5. The overall configuration of our XENTC.

of the student model. The value θ is the learning parameter
of the model. The value τ is the temperature. The value λ

is a balancing parameter. If λ is large, it means that LCE is
treated more importantly in the learning process. The dark
knowledge, D, that can be obtained from (x, y) composes the
loss.

qi =
exp

( zi
T

)∑
j exp

( zj
T

) (1)

L =

∑
(x,y)∈D

LKD (S (x, θS , τ ) ,T (x, θτ , τ ))+ λLCE
(
ŷS , y

)
(2)

KD method, which learns through this dark knowledge, was
used as a great foundation to create a small compressedmodel
that is not far behind the performance of a burdensome large
model. Using the above KD method, DistilBERT lessens
many layers and progresses the learning process of its
own model simultaneously. We have adjusted DistilBERT,
corresponding to our model baseline, to use 5 Transformer
layers for the teacher and 1 Transformer layer for student
models, respectively. The following processes were devised
to adapt DistilBERT to the ENTC field. The model in the
NLP domain can be adapted to the model in the network
traffic domain through the process of the following right next
section.

D. DISTILBERT ADAPTED TO ENTC FIELD
To prevent overfitting or underfitting of the model, the
unglazed data acquired from preprocessing are passed to the

PBSM phase in Figure 5. The adaptation process to network
traffic consisted of the following two phases. The first phase
is composed of Packet Byte Separation Module (PBSM).
This module converts the inputted network traffic data to
a particular form suitable for the following TCNN phase.
To recapitulate, it makes data a distinct unit that can be
interpreted to articulate with the packet structure. The next
phase is composed of Traffic Classification Neural Network
(TCNN). And it is designed so that even the sequences
of multiple property packets can be used simultaneously
according to the researcher’s selection. Accordingly, our
eXplainable Encrypted Network Traffic Classifier (XENTC)
comprises PBSM and TCNN. The above two phases are as
follows in detail.

1) PBSM
The operation of the PBSMphase is demonstrated in Figure 5.
The primary role of the PBSM phase is twofold. One is to
convert the range of each field’s value in terms of the packet
structure to 256 dimensions for the intrinsic processing byte
units. Since the data has gone through the preprocessing and
PBSM phases, values are only the integers between 0 and
255. And the other is to enable maintaining the independence
of each field so that the TCNN in the next phase recognizes
it as an individual unit. First, the sequences are divided by
‘space’ so that these are distinct by individual byte units while
maintaining the order of packet structure. And next, these
are followed by converting the value into a character type.
Each byte unit can correspond to a separate word or phrase
in the field of NLP. In a semantic context, each byte unit
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FIGURE 6. (a) Single packet. (b) Session. Each consists of special tokens
(CLS, STARTER, SEP), packet information, and a space separator.

can correspond to a separate word or phrase in the field of
NLP. Through distinction, i.e., ‘space’, the numerical values
of each byte can be recognized as a non-merging word or
phrase in the next TCNN.

Afterward, we used the Word Piece Tokenizer of BERT as
a sub-word tokenizer. And STARTER is devised as a special
token at the beginning of the packet header. As presented
in Figure 6 (b), it ensures that the model recognizes the
beginning of each packet when connecting packets for
session structure. In addition, CLS and SEP, which are
special tokens that indicate the front and the middle of
sequential data, were applied without modification. When
the tokenizer is used for the sequences of character type,
the inputted spaces of the previous process are converted to
a comma. Finally, MAXLEN, one of the model’s various
hyperparameters, is set to 128. These 128 bytes are designed
to be structured as follows. It comprises 63 bytes of input
packet information, 62 bytes of the ‘comma’ which is a
blank separator between packet information in the previous
step, and 3 bytes of the special token (CLS, STARTER,
SEP).

In addition, 63 bytes comprise packet headers (40 bytes)
and partial payloads (23 bytes). Above packet header is
consisted of an IP header and a TCP header. Each value in
a byte unit constitutes features, and a description of each
byte is presented in Figure 12. However, partial payloads
(23 bytes) are not separately specified because they are only
encrypted contents. And the examples of 128 and 512 bytes
generated through PBSM are illustrated in Figures 6 (a)
and (b), respectively.

To keep the tokens generated by separating each byte of
the packet, an additional training step is not given to the
tokenizer. The non-processing of tokenizer training can be
essential to protect each byte unit because each byte is used
as an explanatory factor for the inference of the model from
the XAI point of view. The related content to XAI applied to
XENTC is described in Section V-G.

2) TCNN AND COMPARATIVE LEARNING
Typically, the training phase of the BERT model [23] is
divided into pre-training and fine-tuning. Two kinds of loss
functions can be used to pretraining the model. The one is
acquired fromMasked LanguageModel (MLM). It randomly
selects 15% from the inputted sentences. After that, the
sentences are changed according to the ratio of {8:1:1 =

mask:replace: preserved} and are used as training data. And

Algorithm 2 Test Algorithm for Comparative Learning
Using Batching
Input : testing_loader, NUMBER_OF_INPUT
Output : test_loss
1: for idx1, data in enumerate(testing_loader, 0) :
2: ids = data[‘ids’]
3: mask = data[‘mask’]
4: token_type_ids = data[‘token_type_ids’]
5: targets = data[‘targets’]
6: outputs = model(ids, mask, token_type_ids)
7: for idx2 in range(NUMBER_OF_INPUT) :
8: test_loss += loss_fn(outputs[idx1], targets[idx1]) item()
9: return test_loss

the other is acquired from Next Sentence Prediction (NSP),
which guesses whether the two sequential sentences are
consecutive.

Significantly, XENTC does not include an additional
pre-training step [18] using network traffic data in the TCNN
phase. Because the values applied in the previous phase
are only integers between 0 and 255, the DistilBERT [22]
model provided overtly as the ‘distilbert-base-uncased’ can
be directly fine-tuned. So, the last classifier layer of themodel
is changed according to the number of classes. After that,
the affine layers and classifier layer parameters are trained
instantly using the data. It is one of the simple methods for
transfer learning [55] using the replacement of the classifier
layer while leaving the feature extraction layers as it is.

Furthermore, besides faster training time for an advantage
of distilling knowledge [24], we improved the model to
process multi-sequence inputs to maximize the training effect
in terms of performance. The characteristic of the model that
learns by comparing multiple attributes of four packets is
called Comparative Learning (CL) in this paper. A model
specialized for this learning structure can be trained more
effectively. It corresponds to an inference task of NLP that
receives a pair of sentence inputs in BERT. Explicitly, the CL
applies DistilBERT’s Sentence Pair Classification (SPC) task
model to XENTC so that four multiple attribute sequences
can be input into the model. In other words, TCNN is
the extended SPC to proceed with the symmetric learning
between four other packets by utilizing the relationship
learning process from two sentences. So, it enables learning
the logical relationship between multiple sequences of four
packets.

Consequently, the method for automatic adaption testing
according to the number of the inputted attribute is presented
in Algorithm 2. It is designed to take sequences of four
attributes as input to make the most of the characteristic of
the BERT series model called batching.

The CL process is intended to increase the traffic
classification performance’s the chain effect by applying a
lightweight packet to a lightweight model. Because XENTC
can deal with several lightweight packets, both packet and
session, as illustrated in Figure 7, are possible as input
data, respectively. In connection with this, Figure 7 (b)
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FIGURE 7. Three kinds of represented data can be inputted into the
model. (a) A single packet and a single label. (b) Four different packets
and four different labels. (c) A Session with four bi-directional packets,
which were concatenated, and a single label.

demonstrates the four distinct packets, represented by
128 bytes, and four corresponding labels. And Figure 7 (c)
reflects a session concatenated the four packets. Among
them, the CL only applies to the four packets illustrated in
Figure 7 (b).
That is because the previously reformed data can satisfy

both the max sequence length (512) range limit and
truncation mechanism characteristic of the BERT model,
tasks using lightweight packets are possible. As demonstrated
in Figure 7 (b), the sequences of multiple attributes are
the first packet of each of the four different applications.
Therefore, CL is to learn and evaluate them simultaneously
by comparison. In other words, the particular learning effect
of TCNN can be obtained through this relation learning using
multiple attribute sequences.

To wrap it up, The CL mechanism using batching is
an advantage of XENTC. A packet has been reformed for
lightweight and reconstructed to be appropriate for batching
because the CL utilizes the batching skill affiliated with the
BERT series. Consequently, it uses a bundle of multi-attribute
packets to learn more effectively than a single packet.
Experimental results comparing both single-attribute packets
and sequential structures of the multi-attribute packet in
terms of learning and classification effects are described in
Section IV, ‘Experiment, Result and Analysis.’

E. EXPERIMENT PREPARATION
1) HANDLING IMBALANCED DATA
As aforementioned in Section III-A, to improve the data
imbalance problem mentioned in [50] and [56], we used a
simple value, Relative Class Weight (RCW).

Wi = 1 −
Qi∑
iQi

(3)

The value Qi is the total quantity for the i-th class data.
The adapted weight value of the i-th class data, Wi, can
be obtained utilizing the total amount of all class data as
the denominator in the weight calculation formula (3). The
adapted weight value for each class,Wi, obtained by applying
the formula (3) is shown in Figure 8. These adapted weight
values are RCWs, and they were applied to the cross-entropy
loss function for the learning process.

FIGURE 8. Relative Class Weight for improving imbalanced data
problems. (a) Comparison of weight values of 6 classes. (b) Comparison
of weight values of 15 classes.

So, the imbalanced property between each class has been
tuned relatively using Wi. A comparative experiment to
uncover the effect of RCW on the learning process of the
model is presented in Section IV, ‘Experiment, Result and
Analysis.’

2) OPTIMIZER SELECTION AND SETTING FOR LEARNING
OPTIMIZATION
Generally, two influential factors can determine primally the
degree of learning optimization of a model. Therefore, pre-
consideration for two factors should be a base. One is to select
an optimizer, and the other is to set the batch size and running
rate suitable for the chosen optimizer.

Firstly, we considered the ability to reduce the unstable
learning process at the beginning of learning as the optimizer
adoption criterion. Therefore, in that regard, the verified
RAdam [57] was selected as the optimizer. Even Adam [58]
can support the excellent learning performance of the
model. However, the inherent bad local optima problem
was expected to affect the learning stability of our model
adversely. RAdam is an optimizer that corrects the variance
of Adam’s adaptive learning rate term to solve the bad local
optima problem and improves learning stability and accuracy.

Var [ψ (.)]

= Var
[√

x
]

= E [x] − E
[√

x
]2

= τ 2

(
ρ

ρ − 2
ρ22ρ−5

π
B
(
ρ − 1
2

,
ρ − 1
2

)2
)
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Var [rtψ (g1, . . . , gt)]

= Cvar ,where rt =

√
Cvar

Var[rtψ(g1, . . . , g2)]
(5)

rt

=

√
(ρt − 4) (ρt − 2) ρ∞

(ρ∞ − 4) (ρ∞ − 2) ρt
(6)

RAdam [57], which improved Adam’s shortcomings,
became a good alternative. Equation (4) was presented in
RAdam to prove the initial learning state’s instability using
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the fact that the gradient follows a normal distribution and the
adaptive learning rate term follows a scaled inverse chi-square
distribution. Here, Var [ψ (.)] is the square root variance,
B is the beta function, and ρ is the degree of freedom.
The ρt is the value estimated using the step size, t . And
gt means gradient. The degree of freedom can be seen as
the progress of learning. When the obtained variation is
differentiated by the degrees of freedom, ρ, it was revealed
to be monotonically decreasing. Consequently, it has been
proved the smaller the degree of freedom, the greater the
variance. As aforementioned, it means that the property
of incompleteness in the initial stage of learning has been
proved. Using the variance equation (5) of the adaptive
learning rate term inversely, equation (6), a rectification
term that can make the variance consistent, can be obtained.
Consequently, RAdam is characterized by obtaining the
initial learning state’s stability by multiplying this equation
(6) by Adam. This means explicitly a heuristic warmup
process has been reduced by RAdam.

Secondly, we contemplated that the appropriate relation-
ship between batch size and learning rate suitable for the
selected optimizer, RAdam, could be an essential factor.
An approach [59], which suggested a positive correlation
between batch size and running rate while comparing ADAM
and SGD optimizers, became the basis for this consideration.
We have come to the following important conclusions from
their research. It can be a crucial point in our experiment
that the designated initial learning rate and batch size may
significantly influence the learning process. Accordingly,
it can be essential to find a suitable learning rate parameter
for the batch size of the learning process in the first stage.
This value designation can rapidly lead to the optimal minima
by smoothly setting the learning direction at the beginning
of the learning process. Therefore, the batching in XENTC
is between 1 and 4, a smaller value than the general one,
and we regarded it as appropriate that the initial value of the
learning rate should be set as a smaller value than the default
one(1E-03).

Based on the above two considerable factors, we have
concentrated on the designation of the learning rate parameter
of the selected optimizer, RAdam. So, we have set the initial
value of the learning rate to a small value, 1E-05. This initial
learning rate value is adapted automatically and effectively
by the optimizer RAdam for the learning process. By setting a
proper initial value of the learning rate in RAdam [57], which
uses the corrected variance of the learning rate according to
a specific batching, we aimed to uncover how the learning
progress proceeds in terms of immediacy and stability.
Relevant details are presented in the following Section IV,
‘Experiment, Results and Analysis.’

And we did not adjust the batch size separately. As afore-
mentioned, the reason is that sufficient and similar learning
advantages are reflected in the CL (Comparative Learning)
method through the specific batching skill. A batch size is
only a collection of sequentially injected data to be used for
model training. But the batching skill in CL is to control

the total amount of data injected into a model at once
for concurrent comparison. Because the maximum input is
restricted to ‘4’ at once in our model, we could progress the
experiment within the extent. So, semantically, the batch size
can be seen as set to 1 from a general point of view.

IV. EXPERIMENT, RESULT, AND ANALYSIS
A. RESOURCES AND METRICS
XENTC was implemented using Python 3.7.13 and PyTorch
1.12.1 based on CUDA 11.6. All these experiments are
conducted by a server with a CPU of 12 Core AMD Ryzen 9
5900X @ 3.70 GHz and a GPU of NVIDIA GeForce
RTX 3080 Ti (12GB Memory).

Accuracy =
TP+ TN

(TP+ FN + FP+ TN )
(7)

Recall =
TP

(TP+ FN )
(8)

Precision =
TP

(TP+ FP)
(9)

F1score =
(2 × Recall × Precision)
(Recall + Precision)

(10)

In Equation (7) ∼ (10), ‘T’ means TRUE, ‘F’ means
FALSE, ‘P’ means POSITIVE, and ‘N’ means NEGATIVE.
In other words, ‘TP’ and ‘TN’ are the predicted parts
that match the actual values, and ‘FP’ and ‘FN’ mean the
predicted parts that differ from the actual values.

The accuracy is the percentage of the total that the model
classifies correctly. The recall is the percentage of positive
values the model classifies as positive. The precision is
the proportion of positive values among those classified as
positive by the model. The F1 Score is the harmonic average
of precision and recall.

And the following Confusion Matrix in Figure 9 is a table
for comparing predicted values and actual values to measure
prediction performance through training, where ‘True label’
means actual values and ‘Predicted label’ means predicted
values.

B. PERFORMANCE OF OUR MODEL
Using XENTC for each traffic and application data type,
classification Performance values, which consist of accuracy,
precision, recall, and F1 score are presented in Figure 9.
From our classification results, email, AIM chat, and ICQ
applications have appeared to be the most difficult to
classify. For reference, similar results were presented in other
previous related studies using the same ISCX2016 dataset as
ours [32], [54]. AIM Chat and ICQ are used for online
chat, and these applications include voice calls, video calls,
and chat. These three characteristic forms in AIM Chat
and ICQ applications can be clustered with Email in the
network classification domain. Because these confusions are
intensified by Email, which is added its own characteristic
of Email, Email is not easy to distinguish from AIM Chat
and ICQ applications and reveals a lower score in the
classification result.
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FIGURE 9. Performance values for each class were obtained by applying the test data to the model. (a) & (b) Confusion matrix, precision, recall,
and F1 score for 6 classes according to the traffic type. (c) & (d) Confusion matrix, precision, recall, and F1 score for 15 classes according to
application.

Figure 10 (a) and (b) are curves illustrating the change
process of accuracy and F1 score, respectively. At the end
of each training epoch using train data, those values were
obtained using test data. The stabilization of the model
in this learning process can be observed. Although it was
not depicted in Figure 10, the accuracy and F1 score of
the model before learning was 6% before the training
phase. But, after one epoch, it rapidly improved to 79%
accuracy.

While performing the former 10 epochs of the model,
it was observed that the performance was improved to

95% accuracy. During the latter 10 epochs after the former
10 epochs, it was observed that the model was stabilized
and reached one of the best performances. When the HW
mentioned above is used, the time required to infer a single
packet of 128 bytes in size is 0.0093 seconds/packet.

In the case of 6 classes, the model was trained using each
first packet of 22,254 flows comprising 80% of 27,814 flows.
And the training time for 20 epochs was 100 minutes for
the model to have a 98.10% F1 score. Considering both
model’s separate pre-training and the tokenizer’s learning
using network traffic data was unnecessary, it can be
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FIGURE 10. (a) Accuracy Curve of the model trained for 20 epochs. (b) F1 score Curve of the model trained for 20 epochs.

FIGURE 11. (a) Learning Curve of the model, which is not applied with RCW. (b) Learning Curve of the model, which is applied with RCW.

TABLE 2. Comparison of performance values depending on whether or
not RCW is applied to the model’s loss function.

seen as a short training time to obtain the remarkable
performance.

C. CLASS IMBALANCE PROBLEM
When multiclass data has an imbalanced class distribution,
an indicator for comparing performances can be the F1
score value because the accuracy value of the model cannot
be the proper value reflecting such a situation. The traffic
type data of 6 classes were used for the experiment of the
relative class weight. In Table 2, two models learned for
20 epochs are distinguished by whether the RCW has been
applied. When comparing the F1 score, the model applied
with the RCW is observed to be 0.39% better. Furthermore,
Figures 10 (a) and (b) reveal theAccuracy and F1 score curves
of the model that the relative class weight was applied. The
learning has proceeded rapidly and stably, even with a few

epochs. Figure 11 (b), which is the learning curve of the
model applied with RCW, is more stable than the one of a
nonapplied model in Figure 11 (a).

D. COMPARISON WITH OTHER MODEL
Table 3 compares recent approaches that have achieved State
of the Art (SOTA) using the ISCXVPN2016 dataset for the
past few years with our XENTC. The ISCXVPN2016 dataset
was recently reconciled and consisted of 15 applications.
So, when comparing ours and other models, it should be
considered that such a point is an unavoidable result for
comparison. And XENTC was set to utilize CL to obtain one
of the best performances. Reference [12] achieved a 1.57%
better accuracy than ours for 6 classes, but the result for
12 classes was 12.1% lower. So, it can be limited to use
generally for diverse network environments.

Similarly, [54] achieved a 0.66% better F1 score than ours
for 17 classes. But the distribution with other performance
values is also significantly dispersed. For the classification of
a single packet, the BERTbasemodel [18] had a 2.38%higher
F1 score than our XENTC. The former used 12 Transformer
blocks and 512 bytes of the packet for the test. The latter
used 1 Transformer block of the student model and 63 bytes
of a packet for the test. Furthermore, the test time of
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TABLE 3. A performance comparison of XENTC with other sota models.

ET-BERT was 0.1557 seconds/packet. It is over 16 times
longer than the 9.3 ms of our XENTC. Because each
model’s performance and test time was different, it was
difficult to conclude fragmentarily that our model is more
efficient than other work. Consequently, we evaluated that
XENTC with the 96.99 and 98.10% F1 score for two types
of data, respectively, can be an acceptable and feasible
alternative.

E. EFFECT OF COMPARATIVE LEARNING
Table 4 compares both Single Learning (SL) andComparative
Learning (CL) performance values. Compared to the CL,
SL uses only a single attribute packet inputted into the model.
And then, each CL means two or four multiple attribute
packets of a sequential structure are inputted into the model.
Those were trained for 10 epochs. As presented in Table 4, the
performance values of the CL (Batch size = 2 or 4) applied
model are superior to the SL applied one.

Afterward, we proceeded with 10 more additional training
epochs and compared each learning method using the F1
score. Table 5 shows that SL achieved a 97.28% F1 score, and
the CL (Batch size = 4) achieved a 98.10% F1 score. So, the
identical interpretation of the former result, which proceeded
only 10 training epochs, can be possible.

Furthermore, another advantage of the CL was revealed.
In Table 4 and Table 5, the more multiple attribute packets are
put into themodel, the less time one training epoch consumes.
But the maximum input is restricted to ‘4’ at once.

TABLE 4. A comparing the performance values of models, which
proceeded training with progress for 10 epochs according to whether CL
was applied or not and the degree of CL.

TABLE 5. A comparing the performance values of models, which
proceeded training with progress for 20 epochs according to whether CL
was applied or not and the degree of CL.

F. MUTUAL ATTENTION RELATIONSHIP
Compared to XENTC, the limitations of [27], which used the
1D-CNN as a model baseline and suggested interpretability
using the LIME tool, are as follows. The 1D-CNN converts
designated adjacent features to an abbreviated form in the
middle process through the convolution mechanism. It could
be hard to bring a level of understanding that can be reused
by human intervention.

Whereas the byte-level feature can be directly linked to the
field unit constituting the packet, respectively, in our XENTC.
It makes it possible to be interpreted intuitively by humans.
Our XENTC uses the NLP mechanism as a baseline and does
not perform tokenizer learning for the above interpretation.
If the learning process of the tokenizer included in the PBSM
module has been performed, the unique meaning may even
be lost according to the mechanism [60] of merging pairs to
increase the likelihood of the corpus.

In the Self-attention mechanism, the attention values
of each feature represent only the relationship of how
much attention is paid to other packet fields. Still, Mutual
Attention Relationship (MAR) has a different meaning
distinct from the attention given by the original self-attention
mechanism. MAR grafts the transformative application
of the self-attention mechanism to the characteristics of
maintaining the packet structure, giving interpretability to the
classification result since we can find factors that acted as
important in the overall perspective using the TOP-5 ranking
in MAR.

While maintaining the uniqueness of the byte unit field
in terms of the packet structure, the process of analyzing
the internal structure is as follows. It is related to how
TCNN uses 128 bytes of input data for ENTC. Firstly,
to minutely investigate the attention correlation of 63 bytes,
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FIGURE 12. Bar chart visualizing important inference factors from the
perspective of the packet structure. ‘Attention Count’ reflects the total of
TOP-5 among the number of each byte’s mutual attention.

which is the length corresponding to both packet header and
partial payload, the attention values of both three special
tokens and 62 blank characters should be removed. Secondly,
with the remaining 63 bytes, TOP-5 among the attention
values, which received attention from both their byte and
other bytes for classification, are arranged in descending
order. Thirdly, we calculate the total by accumulating these
TOP-5 number of times, which is not weighted by ranking.
Finally, each obtained total of the byte is illustrated in
Figure 12. Each total presents the number implying the

element of the MAR corresponding to each byte of the packet
structure.

It can be explained clearly using the following example
for the meaning of the blanks in Figure 12. The ‘destination
port’ comprises 2 bytes in the packet structure. So, the
following blank of the ‘destination port’ is the last byte of the
‘destination port’. As aforementioned, the ‘Attention Count’
presents the total number of attentions reflecting the TOP-5
among the number of mutual attentions of each packet field.
According to the correspondence with the packet structure,
Figure 12 can be directly utilized as an explanatory measure.
Therefore, we investigated each feature’s importance based
on it. Among the inputted features to TCNN, we have
found particular bytes that play an important role for ENTC
regarding the packet structure.

First of all, The IP address, which is padded with a value
of 0 through preprocessing, can be received attention slightly.
Because, commonly, the BERT attention mechanism gives
attention to its own byte and adjacent bytes. So, we analyzed
ed that it would be appropriate not to give a significant
meaning from the above point of view. Likewise, a low
‘Attention Count’ of a particular byte can be interpreted as
meaningless.

Through mutual attention relationship, the important fea-
tures of a packet have been revealed in the order of Fragment
ID, Header Checksum, Source Port and Destination Port, and
Ack Number. Furthermore, the specific byte of the partial
payload was observed to have relatively high relationship
characteristics. However, the order of the important features
is subtly varied whenever the model conducts training.
That is because the model’s parameters can be changed
while training. In addition, the below aspect should be
noticed. While the ISCXVPN2016 dataset was collected,
the collection-conducted site on the entire network might be
unequally distributed. Therefore, if the datasets gathered from
various sites are used, the order of the important features used
for the classification task can also be changed.

G. VISUALIZATION OF CLASSIFICATION RESULTS
In [61], The high-dimensional data extracted from the
model’s last layer can be presented in low-dimensional
space using the t-distributed Stochastic Neighbor Embedding
(t-SNE). The t-SNE is more appropriate for reducing the
high-dimensionality of data than the classical linear method,
PCA. Using the proposed t-SNE, the classification result of
784-dimensional data belonging to the high dimension has
been visualized in 2-dimension to support XAI [62].

Likewise, we utilize the t-SNE for XAI. We used
13,456 pieces of test data for 15 classes of the application
classification task. Figure 13 (a) reveals the t-SNE result for
the above test data, which is reduced to 2-dimensional data
from the 784-dimensional data using the model’s parameters
before training. Figure 13 (b) shows the visualization result
of the t-SNE obtained by putting the same test data into the
model trained for 20 epochs.
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FIGURE 13. (a) A two-dimensional classification visualization of the model before training using t-SNE (b) A two-dimensional classification visualization
of the model after training using t-SNE.

In Figure 9 (c) and Figure 9 (d), which were previously
presented, the three applications (AIM chat, Email, ICQ) had
relatively lower performance values than others. Therefore,
even Figure 13 (b) illustrates a non-distinguished form that
cannot be placed apart from other applications. However, the
difference due to a high drastic dimension reduction must be
considered.

V. DISCUSSION
A. RELATIONSHIP BETWEEN THE NUMBER OF FEATURES
AND THE MODEL’S PERFORMANCE
Table 6 presents the highest performance values within
10 training epochs with traffic data of 6 classes. It was trained
according to 6 types of scenarios for each hyperparameter.
As presented in Figure 10 of Section IV, it can be considered
that most of the performance values reached a certain
amount of upper limitation in the learning curve even within
10 training epochs.

So, comparable experiments of the model were performed
for 10 training epochs using a combination of 3 types of
partial input packets and two types of weight decay as the
experimental setting. In Table 6, looking into scenarios 1,
3, and 5 selectively, the performance values were compared
while progressively increasing the number of bytes per packet
by 63, 126, and 189. It is observed that the accuracy,
precision, recall, and F1 score have not continuously
increased even when the number of variables used to fit the
model was increased.

There was a reverse instance where the above case could
not be worked in the CNN and Resnet [63]. The model’s

TABLE 6. 6 scenarios using a combination of 3 types of partial packets
and 2 types of weight decay. Result of performance values and the
required time for both training and inference latency according to
6 scenarios.

learning effect was improved as the number of variables
used to proceed with the model’s learning increased in
their research. But, through our experiment, we observed
that additional variables do not necessarily increase the
performance of the DL model.

Usually, Variables that increase the model’s performance
through training can be defined as Response Variables. And
variables that can cause learning confusion to be defined as
Noise Variables. However, considering the two cases above
means that the effect of specific variables can differ according
to the model or circumstances. Therefore, the particular
variables do not always work as Noise Variables.

In the case of confining both interpretation and application
extent related to the experiment result of XENTC to a subset
of the real possibility, the following review can be reasonable
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TABLE 7. A comparison of each model’s performance according to
scaling level of dimension normalization.

in determining the applicability of our experiment result.
As presented in Table 6, we regarded the payload in the
network traffic as a kind of Noise Variable. We made it
increase in the order of 23 (scenario 1), 86 (scenario 3),
and 149 (scenario 5). It was observed that the model’s
performance values did not improve even though the Noise
Variables increased. Instead, it was revealed that adding the
Noise Variable can deteriorate the model’s performance. Due
to a load of training time, our six scenarios were based
on the model trained for 10 epochs. Because of the slight
quantitative difference in performance values in scenario 3,
we proceeded with additional training for up to 20 epochs
to eliminate curiosity about whether training is sufficient.
As a result, the accuracy of scenario 3, 96.91%, has been
even lower than the accuracy of scenario 1, 97.72%. This
can even be interpreted as an example of the curse of
dimensionality [64].

In terms of services that provide traffic classification based
on limited computing resources, a model that provides a
high classification performance within a limited time can be
effective on-site. As shown in Table 6, as the number of bytes
of the input packet increases, the training time and test time
also increase proportionally. Accordingly, Our XENTC can
be compared with another approach [18] that uses 512 bytes
of a single packet, including the whole payload, as input data.
In conclusion, if a difference in the model’s performance is
not remarkable, it should not be overlooked that the Noise
Variable may be a factor to be considered in the data planning
stage according to the model baseline.

B. INTERVENTION AS TO FEATURE SCALE
When RAdam is used for optimization, the model can use
regularization according to the weight decay value deciding
the level of L2 regularization of the loss function [65].
Therefore, how the weight decay value is set as 0 or another
value correlates with a suppression effect of overfitting.

C = C0 +
λ

2n

n∑
ω

ω2 (11)

ω → ω −
∂C0

∂ω
−
ηλ

n
ω =

(
1 −

ηλ

n

)
ω − η

∂C0

∂ω
(12)

It can be figured out by looking through the L2 regular-
ization method. A general formula of the L2 regularization
is given in equation (11). C is the regularized loss function
in that the regularized term is added to the original loss.

C0 is the original loss function. n is the number of training
data, and ω is weight. λ is a constant as a regularization
variable. We can acquire equation (12) through a partial
derivative forω on equation (11). At this time, it is progressed
to lessen the value, and we treat it as weight decay. Therefore,
in the L2 regularization, we can ensure that the weight decay
plays a role in preventing the specific weights from growing
abnormally and impacting the model’s learning remarkably.

In Table 6, we tested additional scenarios 2, 4, and 6 by
setting the weight decay to 0.01. Similar to scenarios 1,
3, and 5, it was observed that performance values did not
increase even when the number of variables used in the
model increased in scenarios 2, 4, and 6. Even though
the weight decay value was not 0 but 0.01, the model’s
performance values did not improve. These experiments need
to be considered for affiliation with the following experiment.

Table 7 is the highest value among performance values
within 10 training epochs, the same as the previous exper-
iment. To compare with the L2 regularization effect, the
weight decay was fixed to 0 while the experiment was
performed. The level of dimension normalization can be
seen as the same as setting the recognizable number of
words in the NLP model. The level dimension normalization,
a hyperparameter of the model, is designated to 256 because
each packet byte was converted to integers between 0 and
255. This was used as a standard of performance comparison
with each model, which fixed the hyperparameter in order of
128, 64, and None, respectively. The result of the experiment
is presented in Table 6. The lower the level of dimension
normalization was, the lower the model’s performance
was.

As previously stated, Table 6, related to L2 regularization,
can be interpreted in connection with Table 7. Table 7 shows
that the normalization of 256 dimensions can be understood
to prevent the model from underfitting. Because it means
adjusting the feature scale to match the byte level of the
packet. Regarding the same perspective, a weight decay value
to a specific value, not 0, also brought the same effect
presented in Table 6. Therefore, we can derive the following
semantics from Table 6 and 7. Assigning a biased numeric
to a weight decay value can cause the same underfitting
effect as adjusting the feature scale, which is controlled by
the level of dimension normalization, to a value out of the
deviant level. It means that the above two hyperparameters
can bring a similar mainspring even to the effect of the
model’s training [27].

In conclusion, it should be noted in the experiment
that the above semantic correlation needs to be considered
while adjusting the hyperparameters of the NLP model for
adaptation to the ENTC task.

VI. CONCLUSION
A. SUMMARY
In this paper, by applying a packet header and a partial
payload to a lightweight model in the ENTC task, we showed
an approach that derives remarkable results in processing
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time. A tailored model of BERT, a large-scale model, does
not have much meaning in the language domain. However,
in the ENTC area, where network resources are limited, the
lightweight model showing remarkable performance could
have considerable meaning. Also, to reflect the natural
environment between experiments, we used a public dataset
with class imbalance characteristics as it is. But we applied
RCW to deal with the imbalance and observed the advantages
on performances. A model applied RCW revealed better
learning progress and performance values than not.

And we designed to compare and classify four
multi-attribute sequences at once by extending and applying
the learning of differences between different sentences
among the tasks of the BERT model. A model in that CL
was applied revealed better performance than not.

Our XENTC is based on BERT, which aims for NLP tasks
and uses a sequential property of the input features. Our
mutual attention relationship between each byte is established
on this common characteristic. From the design point of view
of the XENTC model, we treat each byte unit of the packet
as the same as an individual word in NLP. Therefore, the
mutual attention relationship of the data input to the model
was counted by a byte unit. So, through a mechanism that
can check the ranking, an attempt was made to expand into
the XAI area that humans can intuitively understand through
direct linkage with the packet structure. By extension,
it contains the possibility of additional research for the
evolutive preprocess using our XAI mechanism. In addition,
the clustering of data representing the classification results
of the model before training and the model after training was
visualized using t-SNE.

The explanation of the inference process of the model
was secured while maintaining a remarkable and acceptable
accuracy to the ENTC problems. Accordingly, when compar-
ing the performance of XENTC with recent SOTA methods,
we analyzed that ourmodel would be a reasonable alternative.

B. FUTURE WORK
In the future, we plan to develop the ENTC model from the
following four perspectives by extending the model in this
paper.

Firstly, it is necessary to study redesign from the packet
structure point of view. Because a tokenizer based on not
byte unit but each packet field can be developed. Secondly,
the NLP method [13], [25] and the CV method [18], [63]
are possible to process for packets and flows in ENTC
problems. Therefore, it is necessary to conduct research that
compares the semantics of the two approaches in various
ways according to the input unit in more detail. Thirdly,
unsupervised learning through stream mining can be a better
candidate for the training method. So, we would like to
compare it with supervised learning. Fourthly, it is necessary
to compare the preprocessing mechanisms with each other.
For performance improvement of the model semantically
by applying the relatable XAI viewpoint. In other words,
it means finding the optimal preprocessing method by

circling three sequential flows in order of different prepro-
cessing methods, performances, and inter-byte relationship
comparison.
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