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ABSTRACT In this study, a machine learning-based prediction model was developed using the attribute
information of underground pipelines and the history information of ground subsidence in order to predict
the risk level of ground subsidence in urban areas. The target area was divided into a grid with sizes of
100m×100m, 300m×300m, and 500m×500m, and the attribute information of underground pipelines in the
grid and ground subsidence data were utilized to build a dataset. For input data, the pipeline’s diameter, the
number of years used, and density were selected based on the pipeline’s length as the basic unit. Additionally,
the risk level of ground subsidence was determined as the output data using historical information. A total
of 36 datasets were built according to the conditions, and factors with significant correlation were selected
through a correlation analysis of the datasets. The developed datasets were divided into training data and
evaluation data. The synthetic minority oversampling technique was used to resolve the data imbalance. The
model performance evaluation indexes used in this study were F1-score and AUC(Area Under the Curve).
The performance of each model was compared, and the comparison results showed that a model that applied
a preprocessed dataset with 500m×500m grid size, 10 years in use, 100mm pipeline diameter, and 1–2
ground sinks in Level 1 risk range to the LGBM(Light Gradient Boosting Model) classifier derived the best
evaluation indexes(F1-Score:0.750, AUC:0.840). The map was found to be effective for predicting the risk
level of ground subsidence in urban areas.

INDEX TERMS Ground subsidence, machine learning, prediction model, risk map, underground pipeline.

I. INTODUCTION
As road subsidence(Ground Subsidence) frequently occur,
in particular around urban areas where the population density
is high, it is necessary to manage underground pipelines
and various facilities distributed underground. The road sub-
sidence phenomenon has increased around urban areas of
metropolitan cities. As the population inflow into cities has
increased, facilities of traffic projects such as subways and
underground passes and utility pipelines such as water supply
and sewerage, telecommunications, and electric power lines
are constructed without systematic plans, which increases the
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risk of road subsidence. In particular, as the aging of these
facilities accelerates, the frequency of road subsidences and
the risk have also increased [1], [2].

Ground subsidence (sink) is an academic term that
expresses a sudden collapse of the ground surface locally
and vertically [3]. It is different from a sinkhole, which is a
phenomenon in which limestone in the ground is dissolved in
groundwater and collapses to the surface layer, a distinction
that needs to be made. The causes of road subsidences are
the inflow of upper earth and sand to the defective part of
aged pipelines or the outflow of earth and sand along with
groundwater due to the leakage of water from the dam-
aged part, which create an empty hole. Because of this, the
shear strength of soil is reduced, thereby making a road
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subsidence [4]. As another cause, changes in groundwater
in the surrounding ground may occur due to the indiscrim-
inate discharge of groundwater during foundation excavation
construction, resulting in a significant ground subsidence.
In addition, when backfilling is not properly done during
the underground excavation, a hollow space is created under-
ground, through which earth and sand are discharged, thereby
making a ground subsidence [5], [6].

Currently, ground subsidences are managed in many
different ways. The government of the state of Florida
(USA) requires homeowners to purchase sinkhole cover-
age as part of the standard homeowners insurance policy,
and provides location information of underground facilities
and a ‘one-call’ system for underground facility managers,
excavators, and demolition workers to avoid and prevent
damage to underground facilities during excavation or demo-
lition [7], [8]. In addition, Tokyo (Japan) has conducted
regular mandatory investigations of hollow holes underneath
its roads, evaluating the risk level and determining the priority
of repair through ongoing research [9], [10]. In Singapore,
the Land Transportation Authority inspects road subsidences
periodically and has implemented a repair system within
24 hours with a 24-hour reporting window, as well as oper-
ating a website for road maintenance [11]. As such, efforts
to manage the risk of ground subsidence are being made
by the management authority, and various studies are being
conducted to predict the risk level of ground subsidence.

More recently, research has been conducted on facility
risk monitoring and underground pipeline management using
advanced machine learning and deep learning technologies.
Advanced machine learning and Internet of Things (IoT)
techniques have been used to monitor the condition of motors
and detect vulnerabilities to cyber attacks [12], [13]. In addi-
tion, the Alternative Transients Program has been used to
calculate the induced voltage of normal and abnormal gas
pipes buried near overhead transmission lines (OHTLs) [14].

Study findings have been published that used the analytic
hierarchy process (AHP) and a decision tree, which is a
machine learning algorithm, to produce the importance and
weights of influencing factors in urban ground subsidence
that occur due to various causes [15]. A study that proposes
a regression equation to calculate the risk level of ground
subsidence in urban areas in Korea through logistic regression
analysis was also published [16]. Furthermore, a model that
can predict the risk level of ground subsidence was published
using the number of years used and the diameters of pipelines
among the attribute information of underground pipelines
[17], [18].

However, research on determining the appropriate grid
partition size for predicting the risk of ground subsidence is
currently limited, and there is a lack of developed machine
learning models with high reliability trained specifically for
regions where ground subsidence occurs often. Thus, in this
study, the regions in a metropolitan area of South Korea
(referred to as Region A) where ground subsidence

frequently occurs were divided into grid cells based on spe-
cific conditions. The study selected the number of years that
underground utilities had been in use, their diameter, length,
and the density of pipelines with a high correlation to ground
subsidence as influencing factors. Based on this, a machine
learning prediction model was proposed for assessing the
risk of ground subsidence. To do this, the results of machine
learning models in which datasets with various conditions
were applied were compared to select a model with the
optimum performance. And the importance of the influencing
factors used in the classification of ground subsidence risk
level by the machine learning model was proposed through
the selected model. In addition, a prediction map of ground
subsidence risk level in the target area was prepared through
the model.

II. STUDY METHOD
This study aimed to construct a ground subsidence prediction
model using machine learning based on the attribute infor-
mation of underground pipelines and the history of ground
subsidence, and to select a dataset that produces the opti-
mal performance. To do this, Region A was divided into
grids of 100m x 100m, 300m x 300m, and 500m x 500m.
The study extracted the attribute information, density, and
ground subsidence history of underground pipelines included
in the divided grid, and built 36 datasets by dividing them
into categories according to the conditions. The dataset was
divided into 80% training dataset and 20% test dataset for
model evaluation. The developed data had an imbalance in the
risk of ground subsidence. Thus, the synthetic minority over-
sampling technique (SMOTE) was used to balance the data
by increasing the minority data in the training data. For the
development of the relevant prediction models three machine
algorithms were investigated, namely random forests (RF),
XGBoost and LightGBM.

The dataset was tuned with hyperparameters that can opti-
mize each model to check the evaluation index of the model.
The model that shows the best evaluation index and dataset
division conditions was selected, and the importance of the
influence factors, which were used to classify the risk level
of ground subsidence by the model, was verified. In addition,
the risk map of ground subsidence in the target region was
prepared using the selected best model. Figure 1 shows a flow
chart of the study.

A. TARGET REGION
Region A was selected as the target region to develop a
prediction model of the ground subsidence risk level, as it had
themost ground subsidence (around 29%) in themetropolitan
area in Korea. The target region was a stream area, which was
characterized by the sand and soil particles introduced by the
change in the river flow. This alluvial deposit is characterized
by soft ground due to the layered accumulation of sand and
earth for a long period and the smooth flow of groundwater.
Once the groundwater level changes, particles such as sand
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FIGURE 1. Flow Chart of this study.

and soil are discharged through the flow of groundwater,
which enlarges the empty space and leads to road subsi-
dences. Geologically, riverbeds or riverbed sediments require
more careful and safe design and countermeasures because
the ground is soft and the depth of the soft ground is deep,
while the flow of groundwater is fast. Thus, underground
pipelines are easily damaged due to ground subsidence at
riverbed sediment regions, which are historically riverbeds,
regions where the soft ground depth was deep, or sandy soil
regions where the groundwater flow is fast. Accordingly,
empty space may be expanded due to the damage to the
connecting part of underground pipelines, which requires
management.

III. DATA
A. CHARACTERISTICS OF THE RAW DATA
There are typically six types of underground pipelines buried
in urban areas. These typical six types are water pipes, sewer
pipes, communication pipes, power cables, gas pipes, and
heat pipes, and the mapping using the data of the six types
of utility pipelines throughout the urban area is shown in
Figure 2.

The numbers and lengths of each pipeline in the entire
urban area where the study target belongs are 1,048,566/
10,283,352m of water pipes, 394,958/10,827,968m of
sewer pipes, 162,735/9,431,645m of communication lines,
168,431/3,125,244m of power lines, 666,820/10,584,726m
of gas lines, and 61,939/2,434,560m of heating pipes. The
longest total length of pipeline was for sewer pipes, followed
by gas line, water pipe, and communication line, and these
four types of pipelines were highly dense.

FIGURE 2. Space information on six types of pipelines in seoul.

More than 60% of road sinks that occurred in the entire
urban area of the study target are caused by damage in sewer
pipes [1], [2].

In Japan, the situation is similar, as around 30% to
50% of the road sinks that occurred in the 10-year period
from 1999 to 2009 were caused by damage to sewer pipes.
However, road sinks do not occur as the result of a single
cause. Rather, they occur due to a combination of causes, such
as the ground condition around the pipeline and the impact of
groundwater caused by civil works or underground structures,
as well as aged underground pipelines. In this study, factors
that affected road sinks were selected in two specific districts
where many road sinks occur, and a correlation analysis was
conducted.

The influence level of the factors was analyzed through
statistical analysis and machine learning using the selected
factors, and the risk level of road sink occurrence in the
selected region was predicted. Data used included the total
length of six pipelines distributed over two districts located in
the target region in this study, which was around 4,958,953m,
and the number of road sinks that occurred in the target region
from 2008 to 2016, which was 1,061.

B. DATA PREPROCESSING
To build a prediction model of risk levels of ground subsi-
dences using machine learning, preprocessing of the raw data
was conducted. The ArcGIS program was used to divide the
target region into grids with square sizes of 100m×100m,
300m×300m, and 500m×500m, and the attribute informa-
tion of underground pipelines included in the grid and history
information of ground subsidences were used to extract data
that were applied to machine learning.

In this study, attribute information of six types of under-
ground pipelines was obtained, which was then integrated
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into a single type of attribute information to extract data. The
attribute information of underground pipelines used as the
input data included various factors of data such as the pipe’s
materials, length, diameter, year of burial, depth, and density.
However, available data after omitted and error values were
excludedwere the length of the pipe, the burial year, diameter,
and density. Thus, to build a dataset in this study, the number
of years used was selected, which was calculated through the
diameter of the entire pipelines and the burial years, the basic
unit was set to the length of the pipeline, and the density
was obtained by the method of calculating the length of the
pipeline that corresponds to the unit area through the linear
density analysis.

To select a ground subsidence risk prediction model that
exhibits the optimum performance, attribute information of
underground pipelines and the risk level of ground subsi-
dence was divided by a certain section. The diameters of the
pipelines, which were input data, were divided into 50 mm
and 100 mm, and the numbers of years used was divided into
five and 10 years.

There are no quantified criteria to define the risk level of
ground subsidence, which is the output data. Thus, this study
aimed to check the definition of the risk level that showed the
optimal classification performance by changing the criteria
based on which the risk level grade was calculated. To do
this, the total number of ground subsidence occurrences in
the grid was divided into a total of three stages by summing
them. Then, a dataset was constructed by varying the number
of ground subsidence occurrences within the grid according
to certain conditions for defining Level ‘1’. This can be
explained in more detail as follows: As presented in Table 1,
the risk levels were divided into ‘0’, ‘1’, and ‘2.’ Level ‘0’ rep-
resents zero occurrences of ground collapses within the grid.
Level ‘1’ is defined based on the conditions of having one
occurrence, 1-2 occurrences, or 1-3 occurrences. Level ‘2’
is defined with 2 occurrences, 3 occurrences, or more than
4 occurrences (depending on the conditions of Level ‘1’).
With these three conditions, a dataset was constructed. Fur-
thermore, 3(1) represents the condition in which the number
of ground subsidence occurrences within the grid is set to
1 for determining Grade ‘1’. 3(1-2) indicates the risk level
grade set with 1-2 occurrences, and 3(1-3) represents the risk
level grade set with 1-3 occurrences. Table 2 presents the
classification units and categories of the number of years used
and diameter.

Table 3 presents the dataset conditions used in this study.
In this table, the column labeled ‘‘System’’ represents the
size classification of the grid. The columns labeled ‘‘Year’’
and ‘‘Diameter’’ indicate the number of years used and the
diameter classification unit, respectively. The dataset that
was built according to each condition was applied to the
machine learning algorithm to check the model’s perfor-
mance, enabling the most suitable data division condition
and model to be selected. Table 2 presents the classifica-
tion units and categories of the number of years used and
diameter.

TABLE 1. Calculation of risk level according to the number of ground
subsidence occurrence.

TABLE 2. Category of factors.

C. NUMBER OF DATA RECORDS ACCORDING TO
CONDITIONS
When the target area was divided into a grid with a square size
of 100m×100m, a total of 6,315 grid squares were generated.
When the target area was divided into a grid with a square size
of 300m×300m, a total of 826 grid squares were generated.
Finally, when the target area was divided into a grid with a
square size of 500m×500m, a total of 325 grid squares were
generated. Furthermore, the number of data records in each
level varies according to the risk level determination range.
Table 4 presents the number of data records according to grid
square size and ground subsidence risk level.

IV. DATA CORRELATION ANALYSIS
To develop an effective prediction model for ground sub-
sidence risk, a dataset was built according to the divisions
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TABLE 3. Condition of datasets.

of attribute information of underground pipelines and the
risk level of ground subsidences. The input data in the
dataset (attribute information of underground pipelines)
were set to the independent variables, and the output
data (ground subsidence risk level) were set to the inde-
pendent variable to conduct a correlation analysis. Sig-
nificant input data were selected and applied to the
model.

Correlation analysis is an analysis method that identifies
whether there is a linear relationship between independent
and dependent variables, and the size of the relationship
between variables. The size of the correlation is calculated as
presented in (1). The correlation coefficient has a range from
-1 to +1. The larger the correlation between two variables is,

TABLE 4. Condition of datasets.

the closer the coefficient is to +1 or -1 [20], [21].

Corr(X,Y) = ρ(X,Y) =
Cov(X,Y)

σxσy
(1)

To determine whether the correlation coefficient between
two variables is significant after calculating the coefficient,
a hypothesis of the correlation ρ of the population is tested.
Here, the hypothesis and test statistic are presented in (2) [22].

t = r

√
n − 2
1 − r2

(2)

A correlation analysis of 36 datasets was conducted to
select statistically significant (p<0.05) factors regardless
of the correlation coefficient size between variables. The
selected factors were applied to the algorithm. The density
of the pipelines was a statistically significant factor in all
conditions.

V. MACHINE LEARNING MODELS FOR SUBSIDENCE RISK
PREDICTION
A. PRELIMINARIES ON MACHINE LEARNING
ALGORITHMS
1) RANDOM FOREST (RF)
RF algorithm is an ensemble model based on a regression
and classification tree proposed by Breiman et al. [23], [24].
The ensemble model derives optimum results by repeating a
single algorithm or learning multiple algorithms, producing
better performance than that of learning a single model once.
RF creates multiple tree algorithms and selects the best result
based on the results derived from each of the trees. As such,
the RF algorithm, which is composed of classification and
regression trees, has the following characteristic advantages:
a small risk of overfitting and unrestricted selection of vari-
ables, as well as excellentmodel performance to derive results
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even if the correlation between data is not close [25], [26].
Thus, RF has been widely used to solve regression and
classification problems when applying a machine learning
technique in various fields [27], [28].

RF predicts the outcome as a binary value of 0 or 1 as pre-
sented in (3) after extracting an arbitrary number of input data
from a number of single-algorithm predictors and performing
a final decision by majority vote on the results derived from
each predictor, where, yi = fi(X), and wi refers to the weight.
If the calculated value is larger than the threshold value, the
predicted value is 1, otherwise it is 0 [29].

F (X) =

∑
wiyi (3)

2) XGBOOST (EXTREME GRADIENT BOOSTING, XGB)
The XGBoost(XGB) algorithm is a model proposed to solve
the overfitting problem found in linear or tree-based models.
It was developed to improve the large scale of data processing
and learning speed [30]. In XGBoost, multiple classifiers are
created to learn in sequence, and the results derived in each
model are reflected in the next model to solve a problem,
which is a boosting technique. Its main hyperparameters are
the number of trees and the depth, etc [31]. The calculation
equation for the decision-making of XGBoost is presented in
(4), where ŷi refers to the i-th sample’s prediction value and
fk refers to the prediction value where the k-th tree’s sigmoid
function is applied. The output is derived by summing all
prediction values. The prediction value can be calculated
using (5).

ŷi =

∑K

K=1
fi(xi) (4)

ŷi =
1

1 + e−f (xi)
(5)

The error is calculated using the difference between the
prediction and real values in the tree, and the weight is
calculated to reduce the error as presented in (6). ŷi

(t−1) refers
to the prediction value of the previous model, ht(xi) refers
to the tree trained by the current model, and η refers to the
learning rate, which is the percentage of reflections from the
prior model. The model’s error is reduced by iterating this
method [32].

ŷ(t)i = ŷ(t−1)
i + ηht (xi) (6)

3) LIGHTGBM
LightGBM(LGBM) is a high-performance algorithm based
on a tree algorithm. It is used to select a priority rank of
influence factors and solve a regression and classification
problem. A boosting technique similar to XGBoost is applied
here. It is characterized by its fast operation using partial data
and reduction of features to shorten the operation time. Thus,
LightGBM processes a large volume of data at a fast rate
with a high degree of accuracy. It also derives the impor-
tance between influencing factors used. Thus, it is widely
used [33], [34]. LightGBM calculates the loss function using
cross-entropy. The equation for calculating the cross entropy

TABLE 5. Model evaluation according to AUC.

is presented in (7), where N is the number of samples, K is the
number of classes, yi,j refers to the binary variable indicating
whether the i-th sample belongs to the j-th class, and pi,j
refers to the probability that the i-th sample belongs to the j-th
class. LightGBM derives its results by learning to update the
model while minimizing the CE received from the previous
model [35].

CE =
1
N

∑N

i=1

∑N

j=1
yi,jlog(pi,j) (7)

B. MODEL EVALUATION INDEXES
In this study, a dataset was composed according to conditions
and this dataset is applied to machine learning models. Then,
the results are compared. The selected evaluation indexes for
the comparison of the model’s performance were accuracy,
F1-score, AUC, which are normally used as the evaluation
indexes in the classification model.

Accuracy is an index that can intuitively evaluate the reli-
ability of the model. However, if it is used in a dataset that
exhibits unbalanced data features, it is difficult to clearly
evaluate a model. Thus, in this study, accuracy was used to
check whether the model was overfitted by comparing the
score (accuracy) of train and test data. The smaller the score
difference was, the lower the overfitting risk.

F1-score ismainly used as an objective evaluation index for
classification models where unbalanced data are applied. It is
an index that exhibits the harmonic mean of precision (the
number of actual true cases out of the predicted true cases
by the model) and recall (the number of predicted true cases
out of actual true cases in the data) [18]. Using this, it can
evaluate whether a prediction model properly classifies each
of the classes [36], [37]

AUC is an index that can evaluate the model’s performance
through the area of the receiver operating characteristic
(ROC) curve. An ROC curve is displayed using recall and
specificity. Table 5 presents the criteria that show the model’s
performance according to the AUC values proposed by
Fawcett [38]. If the AUC is larger than 0.8, the model’s
performance is evaluated as good.
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(8)–(12) present the methods to calculate the evaluation
indexes of the model.

Accuracy =
TP + TN

TP + TN + FP + FN
(8)

Recall(Sensitivity) =
TP

TP + FN
(9)

Precision =
TP

TP + FP
(10)

F1Score = 2 ×
Precision × Recall
Precision + Recall

(11)

Specificity =
TN

TN + FP
(12)

C. RESULTS
To build a ground subsidence prediction model, the scikit-
learn library, which included Python 3.8 and machine
learning packages, was used, and the algorithms used
were RF, XGB, and LGBM. The tuning was conducted
with hyperparameters, which derived the optimum result
through the trial-and-error method after applying 36 datasets
to the algorithms, and the results were compared. Then,
the model that exhibited the optimum performance was
selected.

Table 6 presents the derived results of the prediction model
for ground subsidence risk level using the test data, which
was 20% of the total data. The model’s accuracy was ver-
ified through the test score, and overfitting of the model
was determined based on the difference from the training
score [39], [40]. The model’s performance was evaluated
using the F1-score and AUC, which refers to the area of the
ROC curve, due to the characteristics of unbalanced data. The
model’s results where each of the datasets was applied were
compared to select the optimum model.

The overall comparison results of the model’s evaluation
indexes revealed that when the dataset had 10 years of use,
100mm pipeline diameter, and the range of Step 1 was set
to 1–2 ground subsidences in the data with a 500m×500m
grid square size, the model where this dataset was applied
to the LGBM algorithm derived the highest F1-score (0.750)
and 0.80 or higher AUC. In addition, the comparison of
the difference between the train and test scores showed that
overfitting was avoided.

The model results according to the grid size showed that
the model produced the highest F1-score (0.640) in the data
divided with a 300m×300m grid square size when the dataset
had 10-year use, 50mm pipeline diameter, and the range of
Step 1 risk level was one to three ground subsidences and this
data set was applied to RF. In addition, the best model (0.430)
in the data divided with 100m×100m grid square size was
revealed when the dataset had five-year use, 100mm pipeline
diameter, and the range of Step 1 risk level was set to one to
two ground subsidences, and this dataset was applied to the
RF algorithm. As such, the best index was derived when the
grid division for building a prediction model of the ground
subsidence risk level was 500m×500m.

FIGURE 3. Importance of the factors used to model.

FIGURE 4. Map of ground subsidence risk from (a) Map of ground
subsidence risk using real data, (b) Prediction map of ground subsidence
risk level.

The averages of the evaluation indexes of each dataset
were 0.36, 0.59, and 0.57 at the condition of 100m×100m,
300m×300m, and 500m×500m grid square size, respec-
tively. Thus, the dataset divided with 100m×100m grid
square size had the worst performance. This was due to the
decrease in the number of ground subsidence occurrences
inside the grid, as the target region was finely divided, which
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TABLE 6. Results of the machine learning model.
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TABLE 6. (Continued.) Results of the machine learning model.

TABLE 7. Hyperparameters of the excellent model according to grid size.

increased the data that did not have ground subsidences.
Table 7 presents the hyperparameters of excellent models
according to the grid size.

D. IMPORTANCE ANALYSIS
The LGBM classifier, which was selected as the fittest model
to predict the risk level of ground subsidences in urban areas,
includes a function that can produce the importance of the
input data used for the prediction of the ground subsidence
risk level. Thus, the importance of the factors used in the pre-
diction of the ground subsidence risk level was verified using
this function (Figure 3). The results showed that DTR_500
(401mm–500mm pipeline diameter) had the highest impor-
tance followed by DTR_300, density, DTR_600, and Y_50
(41–50 years of use). On the other hand, the importance of
the number of years used was relatively lower than that of
pipeline diameter.

VI. MAP OF GROUND SUBSIDENCE RISK
Figure 4 shows (a) the map of the ground subsidence risk
level using real data and (b) the map that predicts the ground
subsidence risk level in the target area through the derived
optimum classifier. The areas marked green in the risk map
are Class ‘‘0,’’ which is relatively safe in terms of ground
subsidences, while the yellow are Class ‘‘1’’ and the red color
are Class ‘‘2,’’ a high-risk area. The points on themap indicate
real ground subsidences that occurred in the past.

As shown in the prediction risk map, the center area where
ground subsidences were concentrated was well predicted,
but the area where fewer ground subsidences occurred was
not well predicted.Moreover, some high-risk area predictions
by the classifier actually had no ground subsidences in the
past. Although this may be regarded as a kind of prediction
error of the classifier, it can also be viewed as a ground
subsidence-prone area in the future, which requires prepara-
tion against ground subsidence-related accidents.

VII. CONCLUSION
The main cause of ground subsidence in urban areas was
found to be damage to underground pipes. Thus, in this study,
the target area was divided into a certain size of grid, and
the underground pipeline attribute information and ground
subsidence history information contained in the grid were
applied to the machine learning classifier to select the optimal
ground subsidence risk prediction model. The data applied
to the classifier were selected through correlation analysis
to create a dataset, and it was found that the density of
underground pipelines showed a significant correlation in all
datasets. Applying the datasets of a total of 36 cases to the
classifiers showed that when the grid size was 500m×500m,
the number of years used was 10 years, the pipeline diameter
was 100 mm, and classification was done using the density,
the output data, obtained by applying the dataset where the
risk level was set to ‘1’ with a range of 1-2 occurrences of
ground subsidence to an LGBM classifier model, showed the
best evaluation index, achieving an F1-Score of 0.750 and an
AUC of 0.830.

In addition, the evaluation indexes of the classifiers accord-
ing to the grid size were compared and the results exhibited
that the indexes of classifiers where the dataset was divided
into a 100m×100m grid showed a relatively low performance
(F1-Score average: 0.36). This was due to the data imbal-
ance as the number of ground subsidence occurrences ‘0’
rapidly increased because of the narrowed range with the
decrease in the grid size. The number of ground subsidence
occurrences in the grid increased as the grid size increased,
minimizing the data imbalance and improving the model’s
performance.

Furthermore, the risk level of ground subsidence in the
target areawas displayed on amap using the best performance
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model and compared with the history information of real
ground subsidence. The results of this comparison showed
that places where many ground subsidences occurred in
the past were relatively well-predicted, whereas places
where ground subsidences occurred sporadically were not
well-predicted in terms of accuracy.

Although it may be challenging to pinpoint the exact loca-
tions of ground subsidence areas based on a grid size of
500m×500m, it is possible to proactively address potential
ground collapse occurrences in high-risk areas by predicting
the risk levels at the grid size unit, and then employing
techniques such as ground penetrating radar surveys. Ground
subsidence has complex causes. For this reason, additional
studies are needed to collect data such as attribute information
and geotechnical information of subways and underground
tunnels to add available factors, and studies to improve model
performance and reliability by expanding a target region will
be needed in the future.
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