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ABSTRACT PM2.5 is a significant pollutant that negatively affects atmospheric environmental sustainabil-
ity, and accurate prediction of its concentration is crucial. Most existing prediction models face challenges
such as inadequate data feature capture, dismissal of influential factors, and subjective model parameter
tuning. To address these issues, this paper introduces a novel coupled air quality optimization prediction
model based on Variational Mode Decomposition (VMD), the Informer time series algorithm, Extreme
Gradient Boosting (XGBoost), and the Dung Beetle Optimization Algorithm (DBO). The coupling approach
screens influential features using the Spearman coefficient method, optimizes VMDwith DBO, decomposes
time series data, and classifies various feature data according to approximate entropy. The Informer algorithm
and DBO-optimized XGBoost process different feature data separately, then superimpose and reconstruct
the predicted values to obtain results. Using air quality prediction in Nanjing as an example, the new model
achieves superior performance (R-squared=0.961, RMSE=1.988, MAE=1.624). Compared to the WANNs
model with the highest accuracy in recent relevant studies, our model demonstrates a 2.96% increase in R-
squared, a 21.89% decrease in RMSE, and a 20.05% decrease in MAE. This comparison illustrates that the
proposed DBO-VMD-Informer-XGBoost prediction model effectively addresses the limitations of existing
air quality prediction models and offers increased prediction accuracy. By employing the advanced DBO
algorithm for prediction and innovatively combining VMD, Informer, and XGBoost, this model presents
high potential in air quality prediction and is anticipated to have broader applications.

INDEX TERMS Air quality prediction, dung beetle algorithm, time series informer, variational mode
decomposition, XGBoost.

I. INTRODUCTION
A. BACKGROUND
Since the industrial revolution, global urbanization and indus-
trialization have been steadily accelerating, resulting in
persistent air quality problems affecting various countries
worldwide. The 2022 air pollution prevention and con-
trol funding budget, issued by China’s National Ministry
of Finance, reveals that China’s budget for air pollution
prevention and control amounts to 20.7 billion, a 65.6%
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increase compared to 12.5 billion in 2021. The primary pollu-
tants impacting the atmospheric environment include PM2.5,
PM10, nitrogen dioxide, sulfur dioxide, carbon monoxide,
and ozone. PM2.5 is the most critical contaminant, and its
presence in the environment escalates the risk of humans
developing atherosclerosis, hypertension, cardiac arrhyth-
mia, and other diseases [1]. As lung function in infants
and children is still developing, air pollution exacerbates
respiratory diseases, impairs lung function, and increases
asthma rates [2]. Consequently, an accurate and effective
air quality prediction model is essential in fostering sig-
nificant improvements in the atmospheric environment and
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protecting humans from the harmful effects of atmospheric
pollution.

B. LITERATURE REVIEW
Air quality is influenced by various factors, including time
series, atmospheric conditions, pollutant emissions, and
human activities [3]. Abirami proposed a DL-Air deep learn-
ing model to analyze the correlation between spatial and
temporal dependencies in air quality data and meteoro-
logical parameters using a Long Short-Term Memory net-
work variant (STAA-LSTM) for air quality forecasting [4].
Chen applied the Spearman coefficient (SC)method and Ran-
dom Search algorithm (RS) in conjunction with the XGBoost
for air quality prediction [5]. Spatiotemporal coordinated
predict models outperform traditional models due to their
incorporation of temporal and spatial dependencies. Future
forecasting models should focus more on factors beyond
pollutant time series.

Air quality prediction methods can be broadly categorized
into three groups: numerical prediction methods, statisti-
cal prediction methods, and artificial intelligence methods.
Among these, statistical and artificial intelligence meth-
ods are more widely adopted. Czernecki employed a single
XGBoost prediction model to predict PM2.5 concentrations
in a Polish city, demonstrating that XGBoost outperformed
other machine learning algorithms in this task [6]. Van uti-
lized Decision Tree, Random Forest (RF), and XGBoost
to predict AQI values, with the comparison showing that
XGBoost excelled in predicting AQI values [7]. Kothandara-
man employed KNN, Linear Regression, RF, Lasso Regres-
sion, Ridge Regression, XGBoost, and AdaBoost models to
forecast PM2.5 levels. The XGBoost, AdaBoost, Random
Forest, and KNN models demonstrated improved predic-
tions and reduced error rates [8]. Dong initially applied a
single Informer model to establish a nonlinear relationship
between impact factors and air quality for air quality predic-
tion [9]. Subsequently, numerous coupled models have been
proposed to enhance the accuracy of single-model predic-
tions. Li utilized a Convolutional Neural Network (CNN) to
extract air quality features and employed Long Short-Term
Memory (LSTM) for air pollution data forecasting [10]. Pra-
nolo used PSO-LSTM to analyze multivariate data for air
quality forecasting [11]. Gao’s combined prediction model
employed Empirical Mode Decomposition (EMD) to classify
data and subsequently applied Extreme Learning Machine
(ELM) and XGBoost for air quality forecasting [12]. Coupled
models can adapt to various systems and situations more
efficiently, flexibly, and accurately than single models, which
exhibit superior predictive performance [13]. Nonetheless,
there remains potential for further improvement in prediction
performance. Future research should focus on developing
more robust coupled models to minimize the negative impact
of human tuning on prediction outcomes.

With the continuous advancement of intelligent algo-
rithms, various sophisticated modern algorithms have

emerged. In addition to the basic coupled models discussed
above, numerous new coupled prediction models have been
proposed recently. Guo employed Artificial Neural Networks
(ANNs) and Wavelet Neural Networks (WANNs) to predict
daily PM2.5 concentrations in Shanghai [14]. Lee utilized
a recently developed novel spatial multiple receptor model
(BSMRM) to estimate the potential contribution of selected
unmonitored sites to ambient PM2.5 [15]. Gao applied a
Generalized Additive Model (GAM) to assess historical
trends and future projections of PM2.5 concentrations in
Southern California, considering emissions and climate
impacts [16]. Zhang developed a spatiotemporal model
(LDSPM) for predicting PM2.5 based on the K-Core con-
cept and label distribution [17]. Sun used a Distributed Lag
Nonlinear Model (DLNM) to establish warning thresholds
for air quality data for PM2.5 prediction [18]. N. Kapoor
employed Artificial Neural Networks (ANN) to predict the
event-specific spread of SARS-CoV-2 in a mixed-mode ven-
tilation office [19]. Kapoor also compared multiple machine
learning models for office CO2 prediction and found that
the optimized Gaussian Process Regression (GPR) model
performed best [20]. In recent years, to further reduce pre-
diction errors, a class of improved coupled models has been
increasingly utilized in forecasting. These enhanced models
employ various forecasting algorithms to leverage the advan-
tages of different approaches and better capture the intrinsic
characteristics of historical data while avoiding overfitting.
Hybrid prediction models have been applied to photovoltaic
power prediction [21], [22], wind power prediction [23], [24],
and power load prediction models [25], [26]. However, their
use in air quality forecasting is less prevalent. Future mod-
els could explore combining multiple prediction algorithms
to better capture data features and improve accuracy and
generalization.

After analyzing the matter in question, it has been identi-
fied that the present research on air quality projections suffers
from a few critical issues. Firstly, whilst predicting air quality,
other factors alongside pollutant time series demand thorough
attention. Secondly, experimenters subjectively regulate the
parameters in air quality prediction models, thereby substan-
tially compromising their predictive accuracy. Therefore, it is
essential to rationally choose such parameters via intelligent
optimization algorithms. Last but not least, time series data
are volatile and erratic. Without data processing, individual
prediction models will fail to fully grasp the underlying
characteristics of air pollution, resulting in limited prediction
accuracy. Hence, it is crucial to decompose the data and
reduce its complexity.

C. CONTRIBUTIONS OF THE PAPER
Based on the above analysis, a new coupled optimization
prediction model based on DBO optimization VMD and
Informer and XGBoost is proposed and applied to the air
quality prediction problem. We first select influencing fea-
tures by Spearman coefficient method. This paper uses the
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advanced Dung beetle algorithm (DBO) to optimize the
VMD and determine the number of Intrinsic mode fraction
(IMF) decomposition layers with the penalty factor. Com-
pared to the popular PSO, GWO, SSA, SMA and AVOA
optimisation algorithms, the DBO optimisation parameters
have a higher stability and accuracy. A detailed and scien-
tific demonstration of the superiority of the DBO algorithm
will be presented later. VMD achieves the exact decom-
position of complex data and then classify the IMF based
on approximate entropy. Then use Informer prediction for
the low frequency decomposition group and XGBoost pre-
diction for the high frequency decomposition group and
optimize the required parameters: Maximum depth of the
tree, Learning rate, Number of trees, and Subsample using the
Dung beetle algorithm (DBO). Informer is good at predicting
low-frequency data at low approximate entropy and has better
generalization ability for such long time series. XGBoost
performswell in solving high-frequency data predictionswith
high approximate entropy. Finally, reconstruct and superim-
pose the decomposition predictied results to obtain the air
quality prediction values. Compared to most of the latest and
most advanced air quality prediction models [14], [15], [16],
[17], [18], [19], [20], this paper is the first innovative use of
coupled VMD-Informer-XGBoost for air quality prediction,
which enables the model to capture the characteristics of
the dataset better and improve the accuracy and generaliza-
tion of the prediction model. The model proposed in this
paper is more innovative, advanced, and accurate regard-
ing parameter optimization, model structure, and prediction
performance when compared. We conduct several scientifi-
cally sound numerical experiments later to prove the above
points.

There are four innovations and enhancements in this paper:
(1) This paper innovatively proposes DBO-VMD-Informer-
XGBoost model and applies it to air quality prediction, which
greatly improves the prediction accuracy of themodel and has
strong stability and generalization ability; (2) The advanced
DBO algorithm with excellent performance is firstly adopted
in the field of data prediction, which relatively reduces the
running time and greatly reduces the errors caused by human
empirical tuning. The DBO algorithm has a faster conver-
gence rate and better convergence results; (3) The innovative
coupled VMD-Informer-XGBoost is first used in air quality
prediction, which enables the model to capture the charac-
teristics of the data set to a great extent and improve its
accuracy and generalisation. After using DBO-VMD decom-
position, the data complexity is greatly reduced. Informer
and DBO-XGBoost algorithms are adopted to deal with the
decomposed data with different features. The prediction error
due to the complexity of the dataset is substantially reduced;
(4) The influencing factors are filtered by Spearman coeffi-
cient method to avoid over-fitting or feature loss and reduce
computational effort.

All of the above contributions are combined, as shown
in Table 1.

TABLE 1. The main contributions list.

D. PAPER ORGANIZATION
The rest of this study is organized as follows. Section II
explains the principle of the algorithm, the proposed process,
and the implementation steps of the DBO-VMD-Informer-
XGBoost hybrid model. Section III presents the numerical
experiments we have conducted and analyses the results
in detail. These include data collection and pre-processing,
correlation analysis, DBO performance testing, parameter
optimization and data decomposition, experimental setup,
experimental results, and analysis, and the trade-off between
accuracy and workload. Section IV summarises the model’s
strengths, limitations, and future perspectives in this study.

II. MODELS AND ALGORITHMS
A. DUNG BEETLE OPTIMIZATION ALGORITHM (DBO)
The Dung Beetle Optimizer (DBO) is a novel optimization
algorithm based on the behaviors of dung beetles, developed
in November 2022 [27]. Unlike existing optimization algo-
rithms such as the Bat, Ant, and Whale algorithms, DBO
boasts rapid convergence, high accuracy, and stability [27].
Despite its significant advantages, DBO has not been widely
applied yet. The DBO algorithm primarily obtains the global
best position and fitness value via the position change of dung
beetles, using the following five behaviors: dancing, rolling,
stealing, foraging, and reproduction. Suppose n represents the
population size of dung beetles.

(1) The position is updated and defined when the dung
beetle rolls the ball (forward unobstructed) as follows, where
x ti represents the ith dung beetle’s position at the tth iteration,
t represents the number of iterations, a represents a random
number of −1 or 1, k represents a random number in (0, 0.2],
x tworst denotes the global worst position, and b denotes a
random number in (0, 1]:

x t+1
i = x ti + akx t−1

i + b
∣∣x ti − x tworst

∣∣ (1)
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(2) The position is updated and defined when the dung
beetle is dancing (forward with obstacles) as follows:

x t+1
i = x ti + tan θ

∣∣∣x ti − x t−1
i

∣∣∣ (2)

where θ is a random number in [0, π]. When θ = 0, π
/
2, π ,

the dung beetle position does not change.
(3) Update the existing position of the post-breeding Dung

beetle brood and define it as follows b1, b2 is an independent
and random 1×d matrix, Lb∗ andUb∗ are the upper and lower
bounds of the reproduction region, and x tgbest is the current
global best position.

x t+1
i = x tgbest + b1(x ti − Lb∗) + b2

∣∣x ti − Ub∗
∣∣ (3)

(4) Update the existing position of a small Dung beetle
while foraging and define it as follows, where Lbl and Ubl

are the upper and lower bounds of the foraging area,C1 obeys
a normal distribution, and C2 is a random 1 × d matrix.

x t+1
i = x ti + C1(x ti − Lbl) + C2

∣∣∣x ti − Ubl
∣∣∣ (4)

(5) Update the existing position of the dung beetle and
define it when stealing as follows:

x t+1
i = x tlbest + Sg(

∣∣∣x ti − x tgbest
∣∣∣ +

∣∣x ti − x tlbest
∣∣) (5)

where g is the 1 × d matrix obeying a normal distribution,
x tlbest is the local best position, and S is a constant value.
Finally, the dung beetles that rolled the ball and danced

were combined into one group, and the remaining dung bee-
tles for each behavior were grouped alone, dividing the Dung
beetle population according to the ratio of 6 : 6 : 7 : 11. The
positions of each group are updated according to the behavior
of the group to which they belong, and several iterations are
performed to derive the global best position and its fitness
value.

In the new model, we use DBO to optimize the parameters
of VMD and XGBoost.

B. DBO-OPTIMIZED VMD
Dragomiretskiy et al. introduced Variational Mode Decom-
position (VMD) in 2014. VMD is an adaptive signal decom-
position method that draws on the classic Wiener filter,
Hilbert transforms, and frequency mixing concepts [28].
As opposed to other mode decomposition techniques like
Empirical Mode Decomposition (EMD) and Signal Mode
Decomposition, VMD boasts higher accuracy when process-
ing data center frequency components, faster computation,
and more excellent noise immunity [29]. VMD employs a
fully non-recursive mode decomposition for the calculation
of the Intrinsic Mode Function (IMF) and selectively chooses
the number of modes available. This has several advan-
tages, such as autonomous mode selection and non-recursive
solutions.

VMD processes the signal components to minimize the
sum of the bandwidths of the center frequencies of each mode

component and establishes a constrained fractional variable
optimization model. The formula is as follows:

min
{uk },{wk }

{∑
k

∥∥∥∥∂t

[(
δ(t) +

j
π t

)
∗ uk (t)

]
e−jωk t

∥∥∥∥2
2

}

s.t.
K∑
k=1

uk = f (t) (6)

where {uk} is the kth mode component of the decomposition,
{wk} is the kth center frequency, ∗ is the convolution opera-
tion, f (t) is the original signal and ∂t is the gradient operation.
And then VMD uses Lagrange multipliers to convert the
constrained form into an unconstrained form to solve the
mode component uk and the center frequency wk . There are
the equations:

un+1
k (w) =

f (w) −
∑

i̸=k ui(w) +
λ (w)
2

1 + 2α(w− wk )2
(7)

wn+1
k =

∞∫
0
w

∣∣∣un+1
k (w)

∣∣∣2 dw
∞∫
0

∣∣∣un+1
k (w)

∣∣∣2 dw (8)

where n represents the number of iterations, unk (w) represents
the kth mode component of the nth iteration, w denotes
the component frequency, α denotes the penalty factor, wnk
denotes the kth center frequency of the nth iteration, and
λ denotes the Lagrange multiplier. A mode component k
that is too small will cause modal mixing and too large will
over-decompose. Too large a penalty will narrow the modal
function and lose helpful information, and too small will carry
too much interference information.

From the above VMD decomposition process and the
decomposition principle, it can be seen that the number of
decompositions k and the penalty factor α have a significant
impact on the results. In this paper, DBO is used to optimise
the VMD parameters, with the envelope entropy Ep as the
fitness function.

Ep = −

m∑
j=1

pj lg pj (9)

pj = a(j)

/
m∑
j=1

a(j) (10)

where m is the number of samples and a(j) is the Hilbert
demodulated envelope sequence of the modal components
decomposed by the VMD. The principle and procedure of the
DBO optimized-VMD algorithm are as follows.

In the new model, we use the DBO-optimized VMD to
achieve the exact decomposition of complex data.

C. DBO-OPTIMIZED XGBoost
XGBoost is an integrated algorithm based on Boosting
that combines basis functions and weights. Also known as
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FIGURE 1. Flowchart of DBO-optimized VMD.

extreme gradient boosting trees, XGBoost offers high pre-
diction accuracy, fast running speed, and negligible feature
requirements, making it a popular big data processingmethod
across several industries [30]. Relative to Gradient Boosting
Decision Tree (GBDT), XGBoost enhances model perfor-
mance and flexibility by regulating overfitting, an approach
that proves particularly effective when handling datasets
with high frequency [31]. The following subsection outlines
XGBoost’s principal steps in brief.

Define D = {(xi, yi)}, i = 1, 2, · · · , n, and n is the sample
quantity. The XGBoost model is constructed by iteratively
adding trees with the output function shown below:

ŷi =

T∑
t=1

ft (xi) (11)

where T denotes the leaf nodes quantity in the tree and
ft (xi) denotes the newly added function for the tth round of
prediction.

According to the core idea of XGBoost, the residual fitting
formula is as follows:

ŷ(0)i = 0

ŷ(t)i =

t∑
k=1

fk (xi) = ŷ(t−1)
i + ft (xi) (12)

where ŷ(0)i represents the initial value, ŷ(t)i represents the
predicted result of the tth round, and ŷ(t−1)

i represents the
predicted result of the (t − 1)th round.
Construct optimization function based on XGBoost

models:

obj(t) =

n∑
i=1

l(yi, ŷ
(t−1)
i + ft (xi)) + �(ft ) + C (13)

where �(f ) = γT + λ
/
2

∑T
j=1 w

2
j , γ and λ represent

the parameters indicating the complexity of the model,
wj represents the jthweight parameter andC means a constant
term.

XGBoost requires selecting parameters: maximum tree
depth, learning rate, number of trees, and subsample. These
four parameter values play a key role in the predictive per-
formance and stability of XGBoost. So we need to adjust
them more accurately. This paper uses DBO to optimize the
XGBoost parameters and the prediction error RMSE is used
as the fitness value.

In the new model, we use the DBO-optimized XGBoost
with excellent performance to predict the high frequency
components of the DBO-optimized VMD decomposition.

The principle and procedure of the DBO optimized-
XGBoost algorithm are as follows.

FIGURE 2. Flowchart of DBO-optimized XGBoost.

D. INFORMER
Informer is a supervised learning model with an attention
mechanism that comprises two key components: an encoder,
which establishes long-term dependencies regarding the sta-
bility of the original input sequence, and a decoder, which
undertakes sequence prediction [9]. The classical Trans-
former algorithm uses an encoder to establish a hidden
representation of the input sequence, while the decoder
decodes the output sequence to derive the predicted value,
as explained by [32]. Compared to Transformer, Informer
reduces computational complexity and memory usage while
improving long-time sequence prediction efficiency and
accuracy. This is achieved in large part by the reduction in
memory requirements [33].

Use the standardized influencing factor data X = (X1,
X2, . . . ,Xt )T ∈ RL×d from the previous t moments as input
data, where L denotes the number of types of influencing
factors, d denotes the input dimension.
The sequence data’s position information is encoded, and

global time information is incorporated to enhance model
stability. Subsequently, the influential factor data imbued
with position and time information is fed into the decoder
and encoder of the model. The encoder, which is composed
internally of a multi-headed probabilistic sparse self-attentive
model and a stack of ‘‘distillation’’ mechanism modules,
achieves the desired outcome. The equation for the proba-
bilistic sparse self-attentive mechanism is as follows:

A(Q,K ,V ) = Soft max
(
Q̄KT
√
dk

)
V (14)

where Q ∈ RLQ×d , K ∈ RLK×d , V ∈ RLV×d , d denotes the
input dimensions, Q̄ denotes obtained from Q based on prob-
abilistic sparse, and Soft max denotes the activation function.
The ‘‘distillation’’ mechanism reduces memory consumption
and computation time by compressing the feature dimensions
and runs as the following equation:

X tj+1 = MaxPool(ELU (Convld([X tj ]AB))) (15)

where [X tj ]AB contains the multi-head probabilistic sparse
self-attention operation, Convld denotes the convolution
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FIGURE 3. Flowchart of air quality prediction system.

operation, ELU denotes the activation function, andMaxPool
denotes the maximum pooling operation. After the two mod-
ular operations, the encoder outputs one intermediate result.

Inside the decoder, the input data after probabilis-
tic sparsification and the intermediate results of the
encoder are subjected to self-attentive operations and dimen-
sional adjustment to output the prediction result X =

(Xt+1,Xt+2, . . . ,Xt+n)T . Finally, the model is gradually opti-
mized based on the loss function of the prediction result.

In the new model, we use the Informer to predict the low
frequency components of the DBO-optimized VMD.

E. HYBRID DBO-VMD-INFORMER-XGBoost MODEL
Combining the DBO algorithm, DBO-optimized VMD,
DBO-optimized XGBoost, and Informer algorithm, this
paper proposes a new coupled optimized air quality predic-
tion model DBO-VMD-Informer-XGBoost. The new model
addresses some of the shortcomings of the existing air qual-
ity prediction field, such as prediction bias resulting from
complex data and inadequate feature capture, neglecting the
influence of factors other than time series, and the impreci-
sion that comes with human intervention. The specific steps
to implement this new model are as follows:

Step 1: Collect data on the six principal air pollutants and
five meteorological variables.

Step 2: Perform data cleaning and preprocessing, which
entails standardizing the data, filling in any missing values
using linear interpolation, and removing outliers, if any.

Step 3: Employ the Spearman coefficient method to select
the n impact features of the meteorological and pollutant data.
Step 4: Validate the DBO algorithm’s efficiency and

performance. Use the DBO-optimized VMD algorithm to
decompose historical PM2.5 data to obtain IMF components.

Step 5: The approximate entropy values of each of
the mIMF components are derived separately. The m IMF

components are divided into f low frequency decomposition
parts andm−f high frequency decomposition parts according
to the approximate entropy values so as to select the optimal
model for predicting each component.

Step 6: Use n impact features selected in step 3 as the
feature inputs of the model and use the historical PM2.5 data
as the model prediction outputs.

(1) The Informer time series prediction model is built for
the f low frequency decomposition parts and predicts the
result p1, p2, . . . , pf .
(2) The DBO-optimized XGboost prediction model is built

form− f high frequency decomposition parts and predict the
result pf+1, pf+2, . . . , pm.
Step 7: Reconstruct and superimpose the forecast results

of the m components in Step 6 to obtain the final forecast
results. The model is evaluated based on the relative error
index calculation and comparison with other models.

A diagrammatic representation of the airflow of the novel
coupled optimization predictionmodel based onDBO-VMD-
Informer-XGboost can be found in Fig.3.

Affected by time series, atmospheric conditions, emer-
gencies, and other factors, air quality shows instability and
randomness, but it also maintains a certain periodicity. In this
case, we use Spearman correlation coefficient method to
select characteristics of influencing factors of air pollutants
to avoid overfitting, improve accuracy and reduce the amount
of calculation. We have tuned the parameters of DBO and
tested the performance of the tuned DBO in the benchmark
problem and in the real-world problem. The Dung beetle
algorithm (DBO) is used to optimize the Variational modal
decomposition (VMD) parameters: decomposition layers k
quantity and the penalty factor α, to avoid errors caused by
artificial tuning of the parameters, and to decompose the
PM2.5 historical data, thus reducing the complexity of the
data and improving the prediction accuracy. Calculating each
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component’s approximate entropy, low frequency and high
frequency decomposition series are divided. To fit data sets
with different frequency and play a better performance than
a single prediction model, we use the Informer prediction
model, which is good at predicting low frequency data for
low approximate entropy and has better generalisation for
such long time series. Meanwhile, we use the XGBoost
model, which performs well in solving high-frequency data
prediction for high approximate entropy. The DBO algorithm
is adopted to automatically optimize the parameters of
XGBoost: the maximum depth of the tree, the learning rate,
the number of trees, and the ratio of subsamples, to achieve
accurate prediction of air quality and avoid errors caused by
human adjustment of parameters. Finally, the air quality fore-
cast results are obtained by superimposing and reconstructing
the prediction data of each decomposition.

The novel coupled DBO-VMD-Informer-XGBoost for-
cast model proposed here greatly reduces the complexity of
time-series data and accurately captures data features. Fully
exploit the patterns in historical air quality data. Meanwhile,
it integrates the influence of various affecting factors and
avoids the error caused by artificial adjustment of model
parameters, which significantly improve predictive perfor-
mance and reduces the error rates. It greatly improves the
prediction accuracy of themodel, and has strongmodel stabil-
ity and generalization ability. In order to reflect the superior
performance of the novel coupled model, we use the excellent
models in the reference literature as the control group in
this paper for comparison and validation, and the specific
evaluation results are shown in Table 9.

III. NUMERICAL EXPERIMENTS AND ANALYSIS OF
RESULTS
A. DATA COLLECTION AND PREPROCESSING
The experimental data were obtained from https://rp5.ru/,
including six air pollutant measurements and temperature,
air pressure, relative humidity, wind speed, and precipitation.
In this paper, we take the data of Nanjing city from 2020.1.1 to
2022.12.6 days as experimental sample. Nanjing is located in
the middle and lower reaches of the Yangtze River in China
and has a subtropical monsoon climate. Its economic level,
cultural level, and productivity level are moderate. Among
urban agglomerations with similar characteristics, Nanjing
is highly representative. The period of the data set is three
years. Daily data are measured from multiple meteorological
base stations in different parts of Nanjing. The dataset is
sufficiently representative. The dataset also contains data on a
wide range of air quality and climate conditions and is diverse
enough. Using the Nanjing data for the model experiments
provides more substantial evidence of the model’s novelty
and applicability and the experimental results’ efficiency and
credibility. The forecast target is the concentration value of
PM2.5 (µg

/
m3). Next, we pre-process the collected data.

(1) Deal with missing data. Due to the small span
of missing data, this paper uses linear interpolation to

reasonably supplement the original data set, which is closer
to the changing trend of the original data set.

y =
x1 − x
x1 − x0

y0 +
x − x0
x1 − x0

y1 (16)

where, y is the data to be added and x is the time point to
which the data belongs.

(2) Hand of abnormal data. There are also a few nodes with
abrupt data changes in the dataset, which the authors consider
to be sharp changes in air quality caused by unexpected
events, such as dust explosions, extensive human gathering
activities, etc. This paper performs univariate anomaly cor-
rection for such nodes, assuming that the data are based on
a normal distribution. The threshold is set to 99%, and all
those falling outside the threshold are judged as outliers and
removed.

(3) Normalize the processed dataset. Following data pre-
processing, normalization was performed on the dataset.

y∗ =
y− ymin

ymax − ymin
(17)

where y∗ is the normalized value.
(4) The collected data was partitioned and 15% was taken

as the test set, 10% as the cross-validation set and 75% as the
training set.

B. CORRELATION ANALYSIS
The literature [34], [35], [36] confirms that the concentration
levels of the six air pollutants and meteorological variables,
such as temperature, barometric pressure, relative humidity,
wind speed, and precipitation, can impact PM2.5 predictions.

Consequently, it is necessary to consider the time factor
and the influence derived from these variables while making
PM2.5 predictions. However, since each variable has a differ-
ent impact level, we filtered out certain variables with little
or no impact. Feature selection is crucial in pre-processing
meteorological and pollutant data, as it helps avoid overfit-
ting, improves accuracy, and reduces computational effort.
The Pearson and Spearman methods are typically used to
analyze the correlation between two variables. The Spearman
coefficient method is preferred when one of the variable
sets follows a fixed order, while the Pearson coefficient
applies when analyzing customarily distributed variables.
Given that we do not observe normal distribution in our data
set, we utilize the Spearman coefficient method to calculate
the correlation between each feature and the predictor vari-
ables.

The SC uses monotonic equations to evaluate the correla-
tion between two statistical variables in statistics. The corre-
lation coefficient between two variables ranges from −1 to 1,
with a positive value indicating that the changing trend
between the two variables is the same and a negative
value suggesting that the changing direction is the opposite.
A correlation coefficient of 0 reveals no movement in the
change between the variables. The formula for the correlation
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coefficient between two variables is as follows:

ρ(x, y) =

∑n
i=1 (xi − x̄)(yi − ȳ)√∑n
i=1 (xi − x̄)2(yi − ȳ)2

(18)

where ρ is the correlation coefficient between x and y, n is
the size of the data set, and x̄ and ȳ are the means. The heat
map of feature correlation coefficients is shown in Fig.4.

FIGURE 4. Feature correlation coefficient heat map.

The description of each symbol in the above figure is
shown in Table 2.

TABLE 2. Symbol description.

The graph presented herein focuses on the correlation coef-
ficients between PM2.5 and other variables. The magnitude
of the coefficients determines which variables significantly
influence PM2.5. A coefficient value greater than 0.5 in abso-
lute terms indicates a higher correlation with the prediction
target. The correlation coefficient matrix indicates that all
meteorological features possess weak correlations. There-
fore, if these variables are imposed as influential components
of PM2.5, overfitting, reduced accuracy, and operational
complications may arise. However, only PM2.5-1, PM10,
CO, and NO2 are highly correlated with PM2.5 and hence
have been selected as the influencing features.

C. DBO PERFORMANCE TEST
The article tests the performance of the DBO to illustrate
the advantages of the DBO and reflect the rationale for use.
Firstly, we select suitable parameters for the DBO. The lit-
erature [27] gives recommended ranges for each parameter
of the DBO, i.e. k ∈ (0, 0.2], b ∈ (0, 1], S ∈ (0, 2] in
equation (1-5). In this paper, we choose k = {0.05, 0.1,
0.15, 0.02}, b = {0.05, 0.25, 0.45, 0.65, 0.85}, S = {0.1,
0.5, 1, 1.5, 2}. We test the 125 sets of parameter values above.
After comparison, we set n = 50, t = 500, k = 0.14, b =

0.25, S = 0.5 in equations (1-5). This set of parameters per-
forms best. After that, the performance tests in the benchmark
problem as well as the performance tests in the real problems
are conducted for the DBO after the parameterization.

In addition to testing the performance of DBO, the same
tests were conducted on Particle Swarm Algorithm (PSO),
Sparrow Search Algorithm (SSA), Gray Wolf Optimization
Algorithm (GWO), Slime Mould Algorithm (SMA), and
African Vultures Optimization Algorithm (AVOA). The spe-
cific test procedure, test results, and analysis of the results are
placed in Appendix A of this paper.

Finally, after comparison, we conclude that the tuned DBO
has the best accuracy and stability in finding the optimal
global solution. Moreover, the DBO can effectively handle
real-world optimization problems. In other words, the tuned
DBO applies to problems of various types and dimensions.
Therefore, the VMD and XGBoost after DBO optimization
have higher stability and accuracy, avoiding the significant
errors caused by the human choice of parameters.

D. PARAMETER OPTIMIZATION AND DATA
DECOMPOSITION
For the VMD decomposition and XGBoost prediction proce-
dures, this paper utilizes DBO optimization with appropriate
parameterization (n = 50, t = 500, k = 0.14, b = 0.25,
S = 0.5) to determine the parameters required, avoiding
the significant errors that artificially selected parameters can
cause.

(1) The optimal number of decomposition layers k and the
optimal penalty factor α are derived by DBO optimization
VMD using the envelope entropy as the fitness value, which
is shown in Table 3.

TABLE 3. Parameters of VMD model.

If k is too small, themode is aliased. Otherwise, the decom-
position is excessive. If α is too large, the frequency band of
the mode function is too narrow, and the effective informa-
tion is ignored. Otherwise, the frequency band of the mode
function is too broad, and the interference information is too
much. After DBO optimization, we obtain VMD algorithm
parameters k = 6 and α = 1682. In this case, the value
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of k is appropriate, and the modal decomposition effectively
decomposes the data complexity. At the same time, α is
scientific and retains most of the original modal adequate
information, while the interference information is reduced as
much as possible.

The parameter combination (6,1682) is chosen as the
optimal parameter setting for the VMD decomposition of
PM2.5 historical data. After the DBO optimization, we used
the VMD to decompose the PM2.5 historical data and
obtained the time domain and frequency diagrams of the six

IMF components, as shown in Fig.5.

FIGURE 5. The time and frequency domain of six IMF components.

In turn, each component’s approximate entropy [37] was
calculated and shown in Table 4.

TABLE 4. Approximate entropy of each component.

According to the approximate entropy values obtained
from the above table, we designate IMF1-IMF4 as
low-frequency decomposition and IMF5-IMF6 as high-
frequency decomposition components. The low-frequency
component group (IMF1-IMF4) preserves the trend of the

original air quality data and removes the influence of random
noise effectively, displaying clear time-series characteristics.
As Informer exhibits better generalization performance for
long-time series, we utilized it for handling the decomposi-
tion group of IMF1-IMF4. The high-frequency component
group (IMF5-IMF6) presents a data type resembling Gaus-
sian white noise. As XGBoost has a remarkable performance
in predicting high-frequency sequences, we employed
DBO-XGBoost for the prediction of IMF5-IMF6.

(2) Four parameters of XGBoost were optimized using
DBO: maximum tree depth, learning rate, number of trees,
and subsample, and the results are shown in Table 5.

TABLE 5. Parameters of the XGBoost model.

E. NUMERICAL EXPERIMENT SETUP
Three sets of comparison experiments were designed in this
paper to verify the prediction effect of the DBO-VMD-
Informer-XGBoost model.

Comparison experiment 1
This experimental group includes some base models and

improved models related to the model proposed in this paper,
as shown in Table 6-I.

Comparison experiment 2
To reflect the competitiveness of the model, this experi-

mental group contains a part of the newly proposed machine
learning model and a part of the coupled optimization model,
as shown in Table 6-II.

Comparison experiment 3
In order to determine the strong performance of DBO

in this model, we change the optimization algorithm of the
model and compare them with DBO to highlight the superior
performance of the DBO used in the new model, as shown
in Table 6-III.

The evaluation metrics selected for the comparison exper-
iments are R-squared (R2), root mean square error (RMSE),
and mean absolute error (MAE) [7]. The formulas for calcu-
lating the three indicators are as follows.

R2 = 1 −

n∑
i=1

(ŷi−yi)2

n∑
i=1

( 1n
n∑
i=1

yi−yi)2
(19)

RMSE =

√
1
n

n∑
i=1

(ŷi − yi)2 (20)

MAE =

√
1
n

n∑
i=1

∣∣ŷi − yi
∣∣ (21)
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TABLE 6. Prediction models of experiment group 1.

F. NUMERICAL EXPERIMENT RESULTS
The experimental comparison of the three groups of models
established by the above numerical experiments is conducted
to obtain the predicted values of each of the three groups of
comparison experiments.We analyze the experimental results
visually and obtain the comparison graphs of the predicted
results of the three groups of experiments, as shown in Fig. 8.

Comparing the predicted data graphs with the original data,
we observe that each model’s expected results follow similar
trends, and each group’s results show similar trends with the
observed values. It indicates that each group’s experimental

setup yielded relatively valid prediction data. However, the
models differ in their prediction accuracy, highlighting dif-
ferences in air quality prediction performance between the
models. In Experiment 1, the differences in the models’
prediction performances are evident in intervals [46,56] and
[90,100]. Fig. 6(a) demonstrates that the newmodel is closest
to the observed values, while the more traditional inform
model yields inferior results. In comparison to the new hybrid
model proposed in this paper, the prediction accuracy of
the five models in the comparison group is lower, and the
variation nodes differ more from the original observations.
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FIGURE 6. Multiple models comparison diagram.

In Experiment 2, the difference in the prediction performance
of the models occurs in the interval [57,67]. Fig. 6(b) shows
that the newmodel is closest to the observed values, while the
GAM and BSMRM models are poorly fitted in this interval.
The prediction accuracy of the six models in the compar-
ison group is lower than the new hybrid model proposed
in this paper. The prediction results differ from the original
observations. In Experiment 3, the difference in prediction
performance occurs in the interval [58,67]. Fig. 6(c) reveals
that the DBO optimization parameters model is closest to

the observed values, whereas the PSO optimization model
produces the worst prediction results. Comparatively, the pre-
diction accuracy of the other three models in the comparison
group is lower than the new hybrid model’s accuracy. The
predicted effects of each model group show a roughly similar
trend. Notably, the forecast results of the new hybrid model
are closest to the original observations, reflecting the superior
performance of the new model in the field of air quality
prediction. We conducted a detailed comparison analysis of
the predicted values of DBO-VMD-Informer-XGBoost with
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FIGURE 7. Comparison of new model prediction and observation.

the observed values, as shown in Fig. 7. A visual inspection of
the elaborate comparison plots shows the differences between
the new model and the original data, which visually reflects
the model’s superior performance.

The yellow area in Fig.7 shows the residuals after model
prediction, the solid blue line indicates the actual PM2.5 data,
and the red dashed line indicates the prediction result of the
new model. The trends of the two curves are close, and the
degree of proximity is high. The residuals do not fluctuate
beyond [-7,8], and 97% of the errors are within the range of
[-4,4]. The comparison results show that the forcast results of
the new model are more accurate, and the residual difference
between the prediction results and the original observations
is smaller, which reflects the superior effect of the new hybrid
predict model.

To demonstrate the superior performance of the novel cou-
pledmodel in air quality prediction, we used R-Square,MAE,
and RMSE error indicators shown in (19), (20), and (21) to
analyze the results quantitatively. The evaluation results for
different models are presented in Table 7.

In Experiment 1, we compared the new model with
the basic and improved models proposed in this study to
demonstrate the new model’s rationality. The new model
outperformed the other five models, exhibiting the best
prediction performance. Compared with the best EMD-ELM-
XGBoost model, R2 improved by 9.3% to 0.961, RMSE
decreased by 42.9% to 1.988, and MAE decreased by 40.1%
to 1.624. Moreover, the new model outperformed the VMD-
Informer-XGBoostmodel, whichwas not optimized byDBO,
with improved R2 by 3.7%, RMSE decreased by 27.0%, and
MAE decreased by 26.5%. These results confirm the new
model’s superior prediction accuracy.

In Experiment 2, we compared the newmodel to a selection
of newly proposed machine learning models and coupled
optimization models to reflect the model’s competitiveness.
Among the other six new prediction models, WANNs per-
formed the best, with the highest R2 and the lowest RMSE
and MAE (R2 = 0.935, RMSE = 2.456, MAE = 2.032).

TABLE 7. Evaluation indicators for each method.

Nonetheless, the new hybrid model outperformed WANNs,
with R2 improved by 2.69%, RMSE decreased by 21.89%,
and MAE decreased by 20.05%. After evaluating and com-
paring the proposed coupled model to a series of novel
models, our findings demonstrate that the proposed model
operates very satisfactorily.
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In Experiment 3, we built the experiment using five
different optimization strategies to demonstrate the strong
performance of the DBO algorithm. The model combining
the SMA optimization algorithm performed the best among
the other five compared algorithms, with a score of R2 =

0.915, RMSE = 2.889, and MAE = 2.219. However, the new
model improved R2 by 5.02%, reduced RMSE by 31.19%,
and reduced MAE by 26.81% compared to the model with
GWOoptimization parameters, thereby reflecting its suitabil-
ity and accuracy for PM2.5 concentration prediction. The use
of DBO significantly improved the performance of the new
model.

Additionally, Fig. 8 indicates that DBO converges the
fastest and best when optimizing the same set of parameters,
reaching the best fitness value in less than 20 iterations.
DBO’s convergence rate is much faster than the other three
algorithms, and it converges to the smallest fitness value,
demonstrating optimal convergence. The new model demon-
strates accurate and stable prediction performance.

FIGURE 8. Convergence curves of the four algorithms.

Meanwhile, to ensure that the data predicted by the new
model is statistically significant, the Spearman coefficient
method is used to calculate the correlation between the results
and the original data, and the correlation coefficient is shown
below.

TABLE 8. The correlation coefficient.

And the significance p value was 0.000, indicating that
there is a strong correlation between the two groups of data,
and the predict result is statistically significant.

Considered together, the DBO-VMD-Informer-XGBoost
model performs the best compared with other optimized
models in the three sets of experiments with R2 = 0.961,
RMSE = 1.988, and MAE = 1.624. The most advanced
WANNs model predicted results with evaluation metrics of

R2 = 0.935, RMSE = 2.456, and MAE = 2.032. Com-
pared to this model, the new proposed model effectively
improves the R2 of the prediction results and reduces the
RMES and MAE of the forecast results. The new model
fits the original data better, significantly improves predic-
tion accuracy, and reflects higher stability. The Spearman
coefficient method filters the influencing factors to avoid
overfitting or feature loss. The DBO algorithm significantly
reduces the error caused by human empirical tuning. The cou-
pled VMD-Informer-XGBoost is used to reduce the dataset’s
complexity, capture the dataset’s features well and improve
the accuracy and generalization of the pattern prediction.
However, we are concerned about the limitation that the
prediction time consumption will increase relatively due to
the increase of model steps and the high computational
complexity.

G. THE TRADEOFF BETWEEN ACCURACY AND
WORKLOAD
To address the previously proposed limitations of the new
model, we must balance model accuracy and workload. Fol-
lowing an in-depth study and review of numerous literature
sources, we have found that algorithm complexity analysis
can be assessed using two aspects: time complexity and space
complexity. Space complexity primarily measures the extra
space required for an algorithm to execute. Given that modern
computers have significantly expanded storage capacity and
the proposed model in this paper does not require an excep-
tionally large amount of data, we consider time complexity
to be the primary measure of a new algorithm’s complex-
ity. The time complexity of swarm intelligence optimization
algorithms mainly depends on the population size, the num-
ber of iterative evolutions, and the complexity of iterative
operations. Generally, the iterative operation complexity of
swarm optimization algorithms is lower than that of the
other two influencing factors. As a result, we believe its
complexity primarily relies on the population size and the
number of iterations. Assuming a population size of ‘N’
and ‘T’ evolutionary iterations, we conduct a complexity
analysis of the DBO, GWO, SSA, PSO, SMA, and AVOA
algorithms in this paper and calculate their time complexity
to be O(NT). The VMD-Informer-XGBoost algorithm’s time
complexity is less than O(NT). The time complexity of DBO-
VMD-Informer-XGBoost, GWO-VMD-Informer-XGBoost,
SSA-VMD-Informer-XGBoost and, other algorithms in the
control group 3 is O(NT). However, the time complexities
of experiments 1 and 2 are less than O(NT), making it chal-
lenging to directly compare the specific workload differences
between the new model and other models by analyzing time
complexity alone. Therefore, we visually compare work-
loads by measuring each model’s running time. We measured
the computational time of all models in the aforementioned
experiments, as presented in Table 9.

The DBO-VMD-Informer-XGBoost model proposed in
this paper took 25.302 seconds to process the same dataset,
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TABLE 9. Multiple model runtime.

which was faster than the average operation time of all
models (32.595 seconds), despite the model’s complexity.
In Experimental Group 1, the new model’s runtime was
prolonged by approximately 6.8 seconds compared to the
best model EMD-ELM-XGBOOST, which had a runtime
of 18.528 seconds. However, the proposed algorithm signif-
icantly improved prediction accuracy, reducing the RMSE
value from 3.481 to 1.988, a reduction of 42.9%. Meanwhile,
although the basic model Informer and XGBoost had the
shortest running time, their prediction accuracy was far infe-
rior to the new model. Similarly, in Experimental Group 2,
the new model’s runtime was prolonged by approximately
3.4 seconds compared to the best model WANNs, which
had a runtime of 21.916 seconds. However, the new model’s
prediction performance was competitive, with the RMSE
value decreasing from 2.546 to 1.988, a reduction of 21.89%.
In Experimental Group 3, the runtime of the model optimized
by GWOwas 27.294 seconds, while the new proposed model
took 25.302 seconds. The new model’s adoption of DBO
significantly reduced workload and computation time while
improving prediction accuracy. We can thus weigh the rela-
tionship between accuracy and workload and conclude that
despite the workload increase, the new model’s prediction
performance is greatly improved, and the workload and time
requirements are acceptable and moderate. The proposed
model is reasonable and contributes to the development of
forecasting models.

IV. CONCLUSION
In order to improve the accuracy of air quality prediction
model, this paper absorbs the advantages of several existing
optimization prediction models and proposes the nem cou-
pled DBO-VMD-Informer-XGBoost optimization prediction
model. We first select the influencing factors by Spearman
coefficient method. To test the optimization performance
of DBO after tuning the parameters, we select and use six
benchmark functions and 18 problems from 57 real-world
optimization problems. Moreover, we adopt PSO, GWO,
SSA, SMA and AVOA optimization algorithms as compar-
isons to verity the outstanding performance of DBO. In order
to reduce the impact of data complexity on the prediction, the
new model adopts DBO-VMD, accurately decomposes the
complex data, and uses the appropriate prediction algorithm
Informer and DBO-XGBoost for data decomposition groups
with different characteristics. R2, RMSE, MAE, and the run-
ning time of each model are used as comparison indexes
to verify the prediction performance and rationality of the
proposed model. The comparison of various metrics shows
that the proposed new model has the highest prediction accu-
racy. At the same time, the running time of the model is
acceptable and moderate. In conclusion, the proposed model
is reasonable and greatly contributes.

In conclusion, this paper contributes to the reasonable
and improved the coupled DBO-VMD-Informer-XGBoost
optimization prediction model, which enhances air quality
prediction accuracy and contributes to relevant fields. The
previously mentioned analysis indicates that the proposed
model accurately characterizes the original data set, mitigates
data complexity, and avoids errors from the artificial adjust-
ment of model parameters. The model significantly enhances
prediction accuracy, possessing robust stability and gener-
alization abilities since it incorporates relevant influencing
factors and is not solely a time series prediction model. The
model captures the data set’s inherent characteristics simul-
taneously with the influencing factors, ensuring prediction
accuracy remains unaffected despite changes in the prediction
object. The new model is believed to exhibit similar excellent
performance in predicting pollutants beyond PM2.5.

The innovations and advantages of the model are: (a) For
the first time in the field of data prediction, the advanced
DBO algorithmwith excellent performance is adopted, which
relatively reduces the running time and, at the same time,
greatly reduces the errors caused by human empirical tuning.
The prediction accuracy is greatly improved and the perfor-
mance far exceeds the similar prediction models in the recent
literature. (b) For the first time in the field of air quality
prediction, the innovative use of coupled VMD-Informer-
XGBoost enables the model to capture the characteristics of
the data set to a great extent, improving the accuracy and
generalisation of the model prediction. After using DBO-
VMD decomposition, the data complexity is greatly reduced.
And the Informer and DBO-XGBoost algorithms are adopted
to deal with the decomposed data with different features.
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TABLE 10. Selected benchmark functions.

The prediction error due to the complexity of the dataset is
substantially reduced. (c) The influencing factors are filtered
by Spearman coefficient method to avoid over-fitting or fea-
ture loss and reduce computational effort.

The model’s limitations and future perspectives include:
(a) The new model mixes multiple algorithms to improve
prediction accuracy; however, this increases workload. The
runtime of 25.302s compared to other models in the experi-
mental group is acceptable. Nevertheless, its complex work-
load needs simplification since it requires higher technical
expertise from the operator, which impedes the model’s
future forecasting application. Future research can develop
new techniques to save prediction time. (b) The present
experiments are limited to Nanjing City and require further
extension across different regions for air quality or other
prediction applications in the future.

APPENDIX A
DBO PERFORMANCE TEST
The paper sets n = 50, t = 500, k = 0.14, b = 0.25, S =

0.5 in equations (1-5). This set of parameters performs best.
After that, the performance tests in the benchmark problem
as well as the performance tests in the real problems are
conducted for the DBO after the parameterization.

(1) Testing of DBO on six sets of benchmark problems
There are a total of three classes of classical test prob-

lems [38], namely unimodal benchmarks, multimodal bench-
marks, and complex modal benchmarks. In this paper,
we select two benchmark functions from each type of prob-
lem and evaluate the search performance of DBO. F1 and
F7 are unimodal benchmark functions, F9 and F10 are multi-
modal benchmark functions, and F16 and F18 are composite
modal benchmark functions, as shown in Table 10.

In Fig. 9, the 3D shape of test functions used to evaluate the
efficiency of DBO has been illustrated, with function values
appearing in blue, yellow, and red from low to high. The
DBO algorithm’s performance is tested using the unimodal

benchmark F1 versus F7, resulting in the derivation of the
global optimal solution with ease. However, the algorithm
may fall into local optimal solutions when dealing with
multimodal and composite modal problems compared to the
unimodal benchmark problem. Nevertheless, as depicted in
Fig. 5, DBO can obtain optimal solutions effectively within
the search space. Therefore, the six benchmark function
problems above can successfully identify DBO’s superior
search performance. Fig. 10 portrays the convergence func-
tion of the best fitness value when DBO searches for the
globally optimal solutions for the aforementioned six bench-
mark problems. The horizontal axis indicates the number of
iterations, while the vertical axis represents the best fitness
value.

Fig. 10 reveals that DBO can efficiently converge towards
the globally optimal solution when dealing with the last
five problems. Therefore, DBO exhibits the ability to search
for the optimal global solutions to the six benchmark
problems mentioned above after parameter tuning. Besides
the six benchmark functions tested on DBO, similar tests
are conducted on Particle Swarm Algorithm (PSO), Spar-
row Search Algorithm (SSA), Gray Wolf Optimization
Algorithm (GWO), Slime Mould Algorithm (SMA), and
African Vultures Optimization Algorithm (AVOA), resulting
in a total of 36 benchmark experiments. In this study, each
group of benchmark experiments is performed independently
30 times. The average value of the 30 independent experi-
ments is then determined as the best value for each group of
the benchmark experiments using the formula shown below.
Where p is the number of optimization experiments, Fi,j is the
best value of the jth independent repetition experiment, and
Mi is the best value of the ith benchmark experiment for each
algorithm.

Mi =
1
p

p∑
j=1

Fi,j (22)
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FIGURE 9. Three-dimensional surface plots of the six benchmark functions.

FIGURE 10. Convergence curve of the best fitness value.

In this paper, the standard deviation STD is derived from
the theoretical best value M of the six benchmark prob-
lem experiments and the average solution best value Mi.
When optimizing different dimensional problems, the more

stable the performance of the algorithm in searching for the
best solution is when the STD value is smaller. The dif-
ference between the solution and the theoretical best value
is minor and more accurate. Therefore, the performance
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TABLE 11. Optimal values for different benchmark questions (mean values of 30 independent repetitions).

TABLE 12. Optimal values for real-word problems (mean values of 30 independent repetitions).

of each algorithm in six benchmark experiments can be
evaluated comprehensively using STD with the following
equation where q is the type of benchmark experiment for
each algorithm.

STD =

√√√√ 1
q− 1

q∑
i=1

(Mi −M )2 (23)

The test results are shown in Table 11.
In the six benchmark problems, there are multiple locally

optimal solutions for the multimodal F9,F10, which requires
a high performance for the global search of the algorithm.

The performance differences between the algorithms can be
well reflected. From Table 9, it can be seen that PSO has
the worst search result, and DBO optimization produces the
best value closest to the theoretical optimum, which can suc-
cessfully avoid the dilemma of falling into the local optimum
solution. Using the STD values of each algorithm, the per-
formance of the algorithms is considered comprehensively.
DBO has the smallest STD value. In other words, the opti-
mal global solution searched by DBO is always the closest
to the theoretical optimal value under different benchmark
problems. None of the algorithms in PSO, SSA, GWO, SMA
or AVOA can outperform DBO. the tuned DBO has high
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accuracy and stability in searching for the optimal global
solution.

(2) Testing of DBO on real-world optimization problems
Due to the complexity of real-world optimization prob-

lems, the requirements for the algorithms are high. Therefore,
it is essential to evaluate the effectiveness of DBO in solving
real-world problems. It follows from (1) that DBO can suc-
cessfully pass a portion of the benchmark problems. Kumar A
presented 57 real-world optimization problems [39]. A total
of 6 broad categories were classified, including seven Indus-
trial chemical processes (ICP), seven Process synthesis and
design problems (PSDP), nineteen Mechanical engineering
problems (MEP), eleven Power system problems (PSP), six
Power electronic problems (PEP), seven Livestock feed ration
optimization (LFRO). This paper selects three problems from
each broad category for quizzing, i.e., 18 problems. Further-
more, the four algorithms in (1) are adopted to deal with
the 18 problems to obtain 72 sets of quizzes. We exper-
iment in the same way as the benchmark problem quiz.
Each group of quizzes is repeated 30 times independently,
and the mean value is taken as the optimized realistic
best value. The theoretical best result of each real-world
problem is obtained based on [40], and calculate the STD
value of the experimental best value and the theoretical best
result.

This paper uses SSA, GWO, PSO, SMA and AVOA as
control groups for the DBO algorithm. Based on Table 12,
DBO can effectively handle real-world optimization prob-
lems. In addition, DBO has the smallest STD value. In other
words, the tuned DBO applies to various types and dimen-
sions of problems. It also shows the high stability and
accuracy of usingDBO to optimize the required parameters of
VMD andXGBoost, avoiding the significant errors caused by
artificially selected parameters. Therefore, the article chooses
DBO as the algorithm for optimising the parameters.
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