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ABSTRACT Data are the main headache for machine learning, both because of their varied nature and their
limited availability. The medical field brings together both situations: tables, images, text, or signals that
are difficult to acquire due to the number of patients, the complexity and time of acquisition, or ethical
constraints. The existence of open datasets is the best option for researchers in this field. Electroen-
cephalograms are a good example of this situation. This paper identifies the primary open datasets of
electroencephalography tests and how they are used in deep learningmodels. The aim is to provide structured
information that can be consulted by researchers in the field (both physicians and computer scientists) to
know which datasets are available, which characteristics they have, or which deep learning models could be
applied to them. The process followed the PRISMA methodology for systematic reviews applying different
inclusion and exclusion criteria to obtain a set of high-quality papers on which the data sets used were
analyzed. The databases included in the searches were Scopus, PubMed, Web of Science (WOS), Science
Direct, IEEE Explorer, and SpringerLink. In total, 37 papers were selected which included 30 datasets that
have been considered. Then, the DLmodels used in the papers and the different characteristics of the datasets
have been statistically analyzed by obtaining different measures and graphs. The most relevant conclusions
are the widespread use of convolutional neural networks (the less innovative among the different models) as
the main tool for EEG data analysis. Against this position, we found the use of hybrid models and the family
of RNNs as techniques to use in cases of brain stimuli, classification of levels of fatigue, and diagnosis of
diseases. Related to the datasets’ features, we demonstrate the difficulty in compiling this data due to the
number of tests and that the minimum of channels or sampling frequency recommended to obtain good
accuracies in the model should be studied.

INDEX TERMS Systematic review, deep learning, open datasets, electroencephalograms.

I. INTRODUCTION
Most people are connected every day through their mobile
phones or computers. This entails the creation of vast
amounts of data through organizations or private companies
every day. According to [1], in 2020, 44 zettabytes were
produced, and by 2025 is estimated to be between 163 and
175 zettabytes. The trend remains the same in the medical
field due to new applications and the wide range of data from
demographic information to images resulting in medical tests
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like radiographs or 3D scanners passing through those that
collect the biomedical signal.

Chang and Moura [2] define biosignal processing as
extracting relevant information from biomedical signals.
These are also described as physiological activities from
organisms that can comprise neural, cardiac rhythms, or oth-
ers. Among all the medical tests related to signals, electroen-
cephalograms (EEGs) are considered the most beneficial for
compiling brain signals.

EEGs are a type of data called time series, defined in [3]
as sets of repeated observations of a single unit or individual
at regular intervals over many instances. The case of EEGs
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corresponds to a test used to diagnose neurological diseases
based on a set of electrodes placed around the scalp. EEGs
compile a lot of data being very complex to analyze. They
need professionals with high skills acquired through years of
training. The problem with EEGs is that they are studied by
eye, and due to their complexity, the professionals miss a lot
of information.

There is a trend toward integrating and leveraging these
enormous amounts of data to make medicine more person-
alized, efficient and focused on the patient. Nevertheless,
classical methods like statistics are not powerful enough to
manage that large number of variables and data. At this point,
using more modern techniques, such as Artificial Intelligence
(AI), is a great benefit. They allow us to find new patterns and
predict how different variables behave or identify new ones
not considered in complex medical problems, [4].

AI is a computer science field aiming to analyze and
decipher humanmechanisms related to intelligent behaviours
that are, later, reproduced in machines, [5]. Among all the AI
techniques, Machine Learning (ML) has stood out from the
rest in recent years. ML is defined by [6] as a discipline that
studies and develops algorithms that create systems that learn
by finding patterns in datasets. ML comprises a wide range of
techniques, with Artificial Neural Networks (ANN) obtaining
the best results recently. Hecht-Nielsen [7] defines ANN as a
computational model formed by several simple units that are
strongly connected and can process information by respond-
ing to external stimuli. The benefits of ANN remained not
very useful until deeper architectures, called Deep Learning
(DL)models, arose. DL consists of ANNmodels with several
layers that can learn data representation using more abstrac-
tion levels, [8]. Figure 1 depicts the hierarchy of the fields in
AI described previously.

FIGURE 1. Hierarchy among artificial intelligence disciplines.

Roy et al. [9], a review of deep learning models with
EEGs, states that there are a large number of works that
cannot be reproduced as data is unavailable. It also points
out that more than half of the studies use publicly available
datasets. Considering also the difficulty of obtaining EEGs
and the computational cost of developing deep neural mod-
els, it seems clear that there is a need to have a reference
resource that can be consulted by researchers in this field

(both physicians and computer scientists) to know which
datasets are available or which models perform better.

This paper also presents an innovative character because,
to the best of our knowledge, it is the only one that has
studied what open EEG datasets can be found in the scientific
community.

The main contribution of this paper is to present a sys-
tematic review of open EEG datasets used in works using
DL techniques. The paper follows a methodology to obtain
scientific papers utilizing this kind of dataset. Papers have
been searched in the best-known scientific sources using a
set of keywords to focus the searches. However, as EEGS
datasets are scarce, not many open datasets are available,
so there are not many papers that meet the selection criteria.
After discarding some of them that either did not use an
open EEG dataset with a DL model, did not provide model
performance metrics, or did not include a description of the
dataset and a link to download it, we remained with 37 works.

In the process, we provide a set of statistical metrics along-
side some graphics that let to understand the information.
This is useful in the following cases. The content will let
researchers know which are the most used deep learning
techniques and which accuracies they get depending on the
dataset. It also could help scientists choose which models
perform well with their specific data or use case. Another
provided information is which datasets are available and how
they perform, this is useful when researchers want to develop
a newmodel/method and test it or knowwhich models are not
applied a lot. Another interesting usage is also to know which
type of use cases does not have an open dataset that could
be used by the scientific community, so people could create
a new one. Finally, compiling the information of which are
the most common values for the main features of the datasets
(number of channels, sample rate, etc.) could help us to build
a golden standard of the dataset.

This work has the following sections: Section II describes
the DL techniques used in the papers. Section III details the
method followed in compiling the documents. Section IV
compiles all the studied features. Section V contains an
in-depth discussion of the datasets and their use. Finally,
Section VI presents some conclusions about the research.

II. STATE OF THE ART
By considering the creation of AlexNet as the main mile-
stone in deep learning [10], the number of papers in
medical bibliographic databases has been growing exponen-
tially yearly. Figure 2 shows the number of publications
from 2012 to 2023 containing the word deep learning.We can
see that, in some cases, the number of publications dou-
bled from one year to another. Then, considering the period
from 2018 to 2023, we can see that most of the scientific
production in this field is during those years. Even during this
year, more than 4000 papers have been published in about
2 months and a half which means that at the end of the year,
the number of papers will be greater than in 2022.
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FIGURE 2. Distribution by the publication year of the deep learning
papers indexed in PubMed from 2012 to 2023 (n=4524).

DL techniques are based on multiple models and architec-
tures, although their effectiveness is directly related to the
nature and quality of the data used in the training stage. This
section describes the architectures and models that can use
EEGs.

DL models can be classified depending on how they learn
from the data. This case has three main classes: supervised,
unsupervised, and semi-supervised.

Supervised models need labelled data to perform the train-
ing. In this case, the model knows the relation between input
data and the expected output and uses the following classifi-
cation.

Multilayer perceptron (MLP) is the simplest case of a DL
model. The architecture comprises an input layer, several
hidden layers, and an output layer. Lin et al. [11] use an MLP
to classify EEG signals depending on themusic some subjects
are listening to.

Convolutional neural networks (CNNs) are the most used
models with several applications in computer vision. Its pri-
mary ability is to detect patterns in a delocalized way. This
characteristic lets to learn a particular pattern in an image
that can later be seen in another part of another image.
Recently, a specific type of CNN that manages graphs called
Graph Convolutional Neural Networks (GCNN) has arisen.
Kipf and Welling [12] presents this model as a method that
encodes a graph’s structure and its nodes’ features using a
special type of CNNs. CNNs are used by [13] to classify
epileptic seizures. GCNN recognizes emotions by analyzing
EEGs, [14].

Recurrent neural networks (RNNs) are defined by [15] as
a model that uses an input vector of arbitrary length and
applies a transition function recursively to its internal hidden
state vector ht . It uses data structures that are time series,
for example, EEGs. Within RNNs, a particular type is called
Short-Term Memory Networks (LSTM) or Gated Recurrent
Unit (GRU). LSTMs were proposed to work with noisy or
incomprehensible input data without information loss [16].

In the case of RNNs, [17] applies them to the prognosis in
patients with neurodegeneration. Then, LSTMs have appli-
cations in emotion recognition (Alhagry et al. [18], 2017).
Finally, GRU has been applied to emotion classification, [19].

The other leading group of models belongs to the category
of unsupervised models. In this case, data is unlabeled, and
there is no a priori knowledge about the final results [20].

Deep Autoencoders (DAE) use unsupervised learning.
Defined in [21], its particular characteristic is that both the
input and output layers have the same or similar size and
two processing structures. The first one is the decoder which
starts from the input data and reduces its size to a small
piece that contains its main characteristics. The second part
is the decoder which aims to upsample the previous small
piece of data by upsampling it until reaches the input data
size. In [22], autoencoders classify ictal EEG. We consider
Restricted Boltzmann Machines (RBM) as a particular type
of Autoencoder introduced by [23] that can learn a probability
distribution. In DL, RBMs were used to implement Deep
Boltzmann Machines (DBMs), [24]. The field of EEGs has
applications like [25] that apply to motor imagery.

The previous learning types generate a new one by mixing
them and are called semi-supervised. Generative adversarial
networks (GAN) are under this class. GANs need neural
models, the generator, and the discriminator. Both work
in a training type called adversarial process, [26]. This
architecture aims to learn and imitate a data distribution.
The generative model is responsible for creating synthetic
instances of the input data. Then, the discriminator evaluates
these data and decides if it is similar enough to the input data
or not. This task gives a probability of being authentic (input
data) or synthetic (created by the generator). By repeating
this process, the generator learns how to create data more like
the input one. In this case, GANs are applied to perform data
augmentation strategies with EEGs [27].

It is noteworthy that in recent years a trend in the creation
of hybrid models has been detected. These types of models
are seen as an important area of development within the
DL soon, [28]. These architectures join two or more models
generating a CNN-LSTM or an Autoencoder-LSTM.

To summarize all the information above, Figure 3 shows a
taxonomy with all the deep learning models.

Metrics are an important aspect when evaluating a DL
model. Four are the most important in this type of analysis:
accuracy, specificity, sensitivity, and F-1 score. Accuracy is
defined as the ratio between successful predictions and the
total number of predictions. This metric is used as a way to
measure the performance of a model in the first moment.
Specificity measures the ratio between the number of true
negatives (healthy people diagnosed correctly) and the total of
those predicted as true negatives and false positives (healthy
people diagnosed as sick). Sensitivity is similar to specificity
but considers true positives instead true negatives and false
negatives instead of false positives. F1-score considers true
positives, false positives, and false negatives as described in
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FIGURE 3. Taxonomy of deep learning models.

the following Equation.

2 ∗ TP
2 ∗ TP+ FP+ FN

(1)

III. METHODOLOGY
The method used to determine which research works are
framed in a particular field or respond to the needs of certain
research questions is called Systematic Literature Review
(SLR) or just systematic review. There are different guide-
lines for conducting an SLR. For example [29] include the
necessity of the review, research questions, development
of the protocol, identifying the research works, establish-
ing some inclusion and exclusion criteria, analyzing some
features of the papers and creating the review as a paper.
As the phases of the review process can differ, we have
used [30], [31], [32], and [33] as references to design our
process which is described in Figure 4. First, we formulate a
set of research questions. Then, we start the process of finding
and selecting the research works, from where we collect the
datasets. Following, we analyze them, and the papers where
they are used. Finally, we describe all this information in the
presented paper.

A. FORMULATED RESEARCH QUESTIONS
As the main aim of this systematic review is compiling open
datasets of EEGs that have been used with DL models, some
information could be analyzed like the characteristics of the
datasets or the deep learning models. In this way, the follow-
ing research questions are proposed as a way to understand
the purpose of the review and its utility.

Question 1: Which EEG datasets are freely available to
researchers so they can perform their studies in deep learning?

Motivation 1: As EEGs are difficult to compile due to the
time needed to do the test or the number of patients and
controls, this data is scarce. This information source can be
consulted by them to find data for their research.

Question 2: Which values have the main characteristics of
the datasets? The number of channels, frequency, etc.

FIGURE 4. Review process conducted in the present research.

Motivation 2: This is key for researchers when establishing
a protocol to compile their data. This decision must be taken
by both profiles: physicians and computer scientists. This
assures that the data accomplishes with a minimum quality
so the deep learning models could be appropriate and cover a
wide range of use cases.

Question 3: Which deep learning models perform better
with electroencephalograms and their use cases?

Motivation 3: Given the metrics compiled in this work and
the deep learningmodels that have been obtained, researchers
can know which deep learning models best fit the different
datasets depending on the characteristics and the use cases:
diagnosis, motor imagery, etc. It also lets researchers know if
the datasets are good enough to apply DL techniques.

B. SEARCH STRATEGY FOR IDENTIFYING THE STUDIES
To obtain the papers, we have set the following keywords
to be used in every scientific source: ((‘‘open dataset’’) OR
(‘‘free dataset’’) OR (‘‘freely available dataset’’) OR (‘‘open
data’’) OR (‘‘free data’’) OR (‘‘freely available data’’)) AND
((‘‘EEG’’) OR (‘‘electroencephalogram’’)) AND ((‘‘deep
learning’’) OR (‘‘neural network’’) OR (‘‘neural networks’’)).
The search and collection of papers include everything pub-
lished until March 15, 2023. The following sources were used
to make the searches: Scopus,1 PubMed,2 Web of Science
(WOS),3 Science Direct,4 IEEE Explorer,5 and Springer-
Link.6 After discarding repeated items, conference papers
surveys, or arxiv papers, the final selection of works has been
made to apply more restrictive criteria.

C. CRITERIA FOR SELECTING PAPERS
A group of computer scientists has set out the following
criteria to obtain the final set of papers.

The first selection of works consisted of a single screening
where titles and abstracts are read to check if they meet the

1https://www.scopus.com/
2https://pubmed.ncbi.nlm.nih.gov/
3https://www.webofscience.com/
4https://www.sciencedirect.com/
5https://ieeexplore.ieee.org/
6https://link.springer.com/
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minimum inclusion criterion of ‘‘a paper that uses an EEG
open dataset to train a deep learning model’’. Searches in
scientific resources were made. Then titles and abstracts were
read, and those that did meet the criteria of including an open
EEG dataset used with DL models to solve a particular use
case were included for the following step.

As there is no way to automatize a more exhaustive process
of selecting the papers, several quality requirements have
been set out. This is a set of exclusion criteria that discard
papers accomplishing the following:

1. The paper does not describe the DL model which is
trained with a dataset of EEGs.

2. Metrics about the performance of the models are not
included in the evaluation.

3. The paper does not include a detailed description of the
dataset or a link to download it. Datasets available upon
request are not considered. The EEGs are obtained from
humans.

D. PRISMA FLOW DIAGRAM
This systematic review compiles a set of papers by using
the following methodology. Figure 5 contains a Preferred
Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) flow diagram [34], which summarizes how we
achieved the selection of papers used to compile the datasets
reported in the paper.

From the first search, a total of 331 works has been
obtained which are distributed as follows: Scopus (30),
PubMed (5), WOS (13), Science Direct (132), IEEE Explorer
(1), and SpringerLink (150). After eliminating duplicates and
papers not published in journals (conferences, arxiv, etc.),
it remained a total of 219 papers were. The next step was to
analyze their titles and abstracts to check if the paper applies
deep learning models in an open dataset of EEGs. If yes,
we must check if they accomplish the three exclusion criteria.
The previous decisions eliminated different papers, including
one whose dataset was unavailable for download, MERTI-
Apps [74]. After this process, the final set had 37 papers from
whichwe are analyzing some features related to the used deep
learning models and obtaining the report of the open EEG
datasets.

E. THREATS TO VALIDITY
A systematic review can be put at risk due to potential
biases and the imprecise application of the extraction method.
To evaluate this, four dimensions are considered: internal
validity, external validity, construct validity, and conclusion
validity.

Internal validity: depending on the search process a validity
threat can impact the representativeness of the selected sci-
entific works. To avoid that, we have used [30], [31], [32],
and [33] as guidelines to adjust our process. The research
questions have been a guide to constructing the searches and
thinking about the inclusion and exclusion criteria that best
fit them. The selection of keywords and scientific resources

FIGURE 5. PRISMA diagram of the bibliographic review conducted.

could be a limitation, but we have tried to avoid it by using
very clear terminology and using official resources likeWOS,
PubMed, etc.

External validity: We have limited the papers to works
published in scientific journals discarding preprints, books,
conferences, etc. This allows for obtaining strong conclusions
that could be useful for scientists in related fields.

Construct validity: Research questions are one of the main
pieces to guide the review and think about its utility. For this
purpose, these research questions have been discussed among
the authors and other researchers in the field.

Conclusion validity: To address the potential subjectiv-
ity of our study, the authors read the title and abstract for
reviewing the first screening studies. This approach aimed to
minimize bias in the extraction of data. In the event of dis-
agreements between them, a consensus was reached through
discussions. This approach ensured that the data collected
was both reliable and objective.

F. DATA EXTRACTION AND CLASSIFICATION
OF THE STUDIES
The paper comprises two types of studies on this set of
papers. The first is on the deep learning models used with the
datasets, the metrics to measure performance, the use case
solved in the paper, and the paper’s year of publication. The
second compiles some characteristics related to the dataset:
number of channels, number of individuals, distribution sys-
tem, sampling frequency, or the format of the file.

IV. RESULTS
Some statistics have been obtained based on the previous
characteristics used in the papers and datasets. This informa-
tion was compiled by developing some Python scripts and
using Matplolib, which provides a graphic set of charts, [35].
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Apart from that, we have developed a VOSviewer7 with the
keywords in the selected paper to confirm their relation to
the keywords used in the original searches. Figure 6 shows a
VOSviewer with this information.

FIGURE 6. VOSviewer network visualization.

In the Figure above, we can see that the biggest nodes
correspond to ‘‘deep learning’’ and ‘‘EEG’’ which makes
sense as are key terms in our searches. Then, there are
other keywords similar to the latter like ‘‘electroencephalo-
gram’’ or ‘‘electroencephalography’’. Related to DL, some
keywords describe the different models: ‘‘convolutional
neural network’’, ‘‘autoencoders’’ or ‘‘cnn-lstm’’. Some key-
words define the use cases: ‘‘emotion recognition’’, ‘‘motor
imagery’’ or ‘‘epileptic seizure detection’’ which, as we will
see later, are important in the study of datasets.

For the analysis of papers and datasets, the following
graphs have been provided. Looking at the papers: bar dia-
grams with the publication year, percentages of the deep
learning models used, DL metrics, the use case that has been
solved, and the relation between the deep learningmodels and
the use cases. By taking into account the datasets’ charac-
teristics: number of individuals and tests, length of the tests,
number of channels, distribution of the electrodes systems
that have been used, frequency in hertz during the test, and
the file format provided to work with the data.

A. SUMMARY OF PAPERS
Table 1, attached at the end of the paper shows the selected
set of papers with the following information: the paper’s
reference, the deep learning model used, the metrics applied
during the experimentation, the tasks performed by the indi-
viduals while compiling the data, and the year of publication
of the work. Apart from that, we have added a matrix of
evaluation by using the Composite Quality Indicator (CQI)

7https://www.vosviewer.com/

index of the i-th paper is determined by combining the nor-
malized indicator values of the other indexes within the range
of 0 to 1.

B. STATISTICS AND ANALYSIS OF THE INCLUDED STUDIES
This section provides graphs and statistics from analyzing the
selected papers related to the use of open datasets. Figure 7
shows a bar chart distributing the 37 papers by year of
publication.

FIGURE 7. Distribution by year of the selected papers (n=37).

Another relevant piece of information that can be obtained
from this preliminary analysis is related to the first research
question; the type of DL model used. This knowledge is
helpful for researchers to determine which are the most pow-
erful models for processing EEGs. The usage percentages are
collected in the following pie chart, Figure 8. As more than
one model can be used in a paper, the number of instances is
bigger than 37.

Another quality criterion for selecting a paper is the use of
metrics to evaluate the performance of themodels. Following,
we compile a pair of aspects related to them. Again, it should
be highlighted that a paper can use more than one metric.
Figure 9 represents a diagram of bars that counts the times
each DL metric appears in the set of selected papers which is
interesting to know which of them researchers should apply
in their works.

Another graphic related tometrics is the following boxplot,
where we represent the distribution of the values obtained in
the different papers after training the different DL models,
Figure 10.
EEGs can solve several use cases. This information helps

us know which application fields are less exploited, so there
is scope for further research. Figure 11 uses a pie chart
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TABLE 1. Summary of selected papers.

to describe this information which we have classified the
datasets into 8 general categories:

• Motor imagery (MI) classification. This application
aims to recognize a subject’s intention, [25].

• Seizure management. EEGs of patients with epilepsy,
a brain disorder that consists of abnormal cerebral
activities.

• Estimation of sleep stages. Datasets collect the five
possible stages a human can experiment with while
sleeping.

• Recognize emotions. This task consists of classifying
human emotional states as the domains of arousal and
valence.

• Classify levels of fatigue. Mental fatigue happens when
a subject has paid attention to a task for a long time.
These datasets can measure different levels of fatigue,
in some cases while driving.

• Disease diagnosis. In the medical field, we typically find
datasets of epilepsy, but others can diagnose diseases
such as Attention Deficit and Hyperactivity Disorder
(ADHD).

• Brain stimuli. It measures how the brain responds to
different perception tasks. For example, the response to
images or the consumption of sweetened drinks.

• Human activity recognition. This is a way to detect arte-
facts while performing tasks such as reading, watching,
and speaking.

Figure 12 combines the results of both previous analyses
in a bubble diagram where the X-axis represents the deep
learning model and the Y-axis the possible use cases. This
information is interesting when a scientist needs to decide
what DL models could be used depending on the use case
they are working on. The bubble size and colour depend on
the number of instances.
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FIGURE 8. Distribution of the models by deep learning architecture type
(n=40).

FIGURE 9. Distribution of the metrics (n=47).

C. SUMMARY OF DATASETS
Aswe have said before, we have applied the PRISMAmethod
to obtain a set of papers from which we are analyzing the
datasets used in them. The following is a brief description of
them.

FIGURE 10. Distribution of the metrics (n=92).

FIGURE 11. Distribution by use case (n=37).

1. BCI competition IV 2a8: the imagination of movement
of the left hand, right hand, both feet and tongue, [36]

2. BCI competition IV 2b9: motor imagery of left hand
and right hand, [37]

8https://www.bbci.de/competition/iv/#dataset2a
9https://www.bbci.de/competition/iv/#dataset2b
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FIGURE 12. Relationship between the deep learning models and use
cases.

3. DEAP and video signals10: emotion recognition of
low arousal and low valence (LALV), high arousal
and low valence (HALV), low arousal and high
valence (LAHV,) and high arousal and high valence
(HAHV), [38]

4. Multichannel EEG sustained attention driving task11:
fatigue and non-fatigued during driving, [39]

5. Temple University EEG Corpus12: a compilation of
different neural diseases, [40]

6. CHB-MIT Scalp EEG Database13: seizure and non-
seizure states in epileptic patients, [41]

7. MAHNOB-HCI14: a scale of valence and arousal, [42]
8. Sleep EDF15: sleep stages after temazepam intake and

after placebo intake, [43]
9. Motor Imagery dataset fromWeibo et al. 201416: sim-

ple MI (left hand, right hand, and feet) and compound
MI (both hands, left hand combinedwith the right foot,
right hand combined with the left foot), [44]

10. PhysioNet/CinC Challenge 201817: wakefulness,
stage 1, stage 2, stage 3, rapid eye movement (REM),
and undefined, [45]

11. Open source SSVEP dataset18: healthy subjects
focused on 40 characters flickering at different
frequencies, [46]

10https://www.eecs.qmul.ac.uk/mmv/datasets/deap/
11https://figshare.com/articles/dataset/Multi-

channel_EEG_recordings_during_a_sustained-
attention_driving_task/6427334/5

12https://isip.piconepress.com/projects/tuh_eeg/
13https://physionet.org/content/chbmit/1.0.0/
14https://mahnob-db.eu/hci-tagging/
15https://www.physionet.org/content/sleep-edfx/1.0.0/
16http://moabb.neurotechx.com/docs/generated/moabb.datasets.

Weibo2014.html
17https://archive.physionet.org/physiobank/database/challenge/2018/
18http://bci.med.tsinghua.edu.cn/download.html

12. BCI Competition III IVa19: MI of the left hand, right
hand, and right foot, [47]

13. EEG data for driver fatigue detection20: drivers suffer-
ing fatigue or not, [48].

14. University of Bonn21: seizure and non-seizure
states, [49].

15. Motor Imagery dataset from Zhou et al. 201622: MI of
the left hand, right hand, and feet, [50]

16. Sleep Heart Health Study23: sleep scores, [51]
17. EEG datasets for motor imagery brain-computer inter-

face24: data for non-task-related and task-related
states, [52]

18. DOD-O25: scored apnea patients, [53].
19. DOD-H26: scored sleep stages, [53].
20. CAP sleep database27: activity during NREM

sleep, [54]
21. Bern-Barcelona EEG database28: patients have phar-

macoresistant focal-onset epilepsy, [55]
22. MrOS Sleep29: sleep study, [56]
23. Database-Imaged-Vowels-130: pronounce the five

main vowels ‘‘a’’, ‘‘e’’, ‘‘i’’, ‘‘o’’, and ‘‘u’’ and six
Spanish words, [57]

24. EEG+NIRS Single-Trial Classification31: it conducts
two BCI experiments: left versus right-hand motor
imagery; mental arithmetic versus resting state, [58].

25. MODMA32: this is a dataset for mental-disorder anal-
ysis which includes clinically depressed patients and
controls, [59]

26. BehaveNET33: human task recognition of reading,
speaking and watching TV.

27. EEG Sweeteners AI34: this study evaluated brain
signals from 11 healthy subjects when they tasted pas-
sion fruit juice equivalently sweetened with sucrose,
sucralose, and aspartame, [60]

28. MESA35: sleep study to understand how variations
in sleep and sleep disorders vary across gender and
ethnic groups and relate to measures of subclinical
atherosclerosis, [56]

19https://www.bbci.de/competition/iii/desc_IVa.html
20https://figshare.com/articles/dataset/The_original_EEG_data_for_

driver_fatigue_detection
21https://ebrary.net/59044/education/details_public_databases
22http://moabb.neurotechx.com/docs/generated/moabb.datasets.

Zhou2016.html
23https://sleepdata.org/datasets/shhs
24https://academic.oup.com/gigascience/article/6/7/gix034/3796323
25https://dreem-dod-o.s3.eu-west-3.amazonaws.com/index.html
26https://dreem-dod-h.s3.eu-west-3.amazonaws.com/index.html
27https://archive.physionet.org/physiobank/database/capslpdb
28https://www.upf.edu/web/mdm-dtic/-/1st-test-dataset#.YfgOG1jMIUo
29https://sleepdata.org/datasets/mros
30http://www.ifp.illinois.edu/speech/speech_web_lg/data/mri/index.html
31http://doc.ml.tu-berlin.de/hBCI
32http://modma.lzu.edu.cn/data/index/
33https://zenodo.org/record/2552600#.ZBdONuzMJ
34https://github.com/Atzingen/EEG_Sweetners_AI
35https://sleepdata.org/datasets/mesa
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29. CBICIC201936: it comprises two subsets of MI with
left and right-hand tasks.

30. Deep BCI37: classification of steady-state visual
evoked potentials (SSVEPs) based BCI from ear
EEG, [61]

All the information in the datasets has been collected in the
following table attached at the end of the paper. Themost used
datasets are Sleep EDF and DEAP.

D. STATISTICS AND ANALYSIS OF THE
OPEN EEGS’DATASETS
The first important feature in a dataset is the number of
individuals which is directly related to the model behavior.
Roy et al. [9] show that models increase their performance
when the number of subjects exceeds 15. The number of
tests is logically related to this feature. The values of both
characteristics are compiled in Figure 13 which shows a
double diagram bar with their distribution per dataset.

FIGURE 13. Distribution of the number of individuals and test (n=29).

The number of channels is also a critical decision depend-
ing on the use case. Jasper [62] tells that a minimum of
21 channels should be used to examine an adult brain. The
usage of the number of channels can be seen in Figure 14.

Another particular feature of EEGs is that of the electrodes
system which indicates how electrodes are placed around the
scalp. Figure 15 shows a pie chart with the percentage of
datasets according to the system.

Another interesting measure that will determine the per-
formance of the model is sample frequency. The following
bar diagram (Figure 16) represents the distribution of studies
according to the frequency used to represent the data. This
measure is directly related to the machine used to collect the
data. In this case, different frequencies can be used in the
same dataset.

36https://www.datafoundation.cn/competitions/342/datasets
37http://deepbci.korea.ac.kr/

FIGURE 14. Distribution by the number of channels (n=29).

FIGURE 15. Electrodes’ systems in percentages (n=30).

FIGURE 16. Distribution of datasets by sampling frequency (n=35).

Finally, we have a pie chart that compiles the file format
used, Figure 17. This depends on the different software used
when doing the test.
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TABLE 2. Summary of selected datasets.

FIGURE 17. Distribution by file format (n=29).

V. DISCUSSION
This work provides a compilation of open EEG datasets
analyzed using DL models in a set of papers selected by

applying the PRISMA method in a systematic review. The
results of the previous section are discussed below from a
double perspective: on the one hand, the papers and the DL
models used, and on the other, the datasets.

The first part of the statistical analysis starts with the year
of publication of the papers. Figure 7 verifies, in part, the
trend of papers in deep learning, mentioned in Figure 2. The
number of articles published between 2018 and 2021 shows a
significant increase. However, the total number is still small,
and we can conclude that there is room for creating new open
datasets available to the community. It is foreseeable that
more articles on EEG and deep learning will be published
in the coming years.

As can be seen in Figure 8, the most commonly used
DL model, by a wide margin, is the CNN, which appears
in 65% of the cases either as a 1-dimensional CNN (EEGs
are processed channel by channel) or 2-dimensional CNNs,
(EEGs are processed as a whole). Then there is a set of
papers that use a hybrid model of CNN with LSTM, 10%.
This is followed by hybrid models of Autoencoder and MLP
(7%), RNNs (5%) and finally LSTMs or Autoencoder plus
LSTM (3%). These numbers give us several ideas. First, using
CNNs is successful but less innovative. This makes sense
as EEGs can be managed as an image with convolutional
filters. Second, using hybrid models seems an opportunity
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to make new contributions to the field. Finally, GAN and
GCNN models are not used which is shocking. The first one
has many applications in the creation of synthetic data (very
useful considering the shortage of EEGs) or artefact removal
(a typical task after collecting this data). The other can be
used to model EEGs as graphs and study brain connectivity.

By analyzing the results in Figure 9, we can see that accu-
racy is themost usedmetric. This is meaningful as accuracy is
the baseline metric to know if a deep learningmodel performs
correctly. Otherwise, the fact of only working with accuracy
leads to incomplete experiments as this metric only measures
the number of hits. Accuracy has problems in models that use
imbalanced datasets and does not give more interpretation of
the performance of the model as it does not consider false
positives and false negatives like sensitivity, specificity, and
F1-score, [63]. Another conclusion obtained from the metrics
is that none of the metrics measures the loss of the models
which means that all the datasets are considered classification
problems.

More information about the metrics is compiled in
Figure 10. As we can see, all the metrics obtain values around
90% except specificity which performs near 100%, but with
a small set of values. We can also see that the F1-score and
sensitivity are more stable except for an outlier in the latter
with a poor performance near 10%.We confirm that accuracy
is the most used but with a wider range of values which
indicates is not as precise as the others.

Regarding Figure 11, the most frequent use case isMI EEG
classification, with more than 27% of the cases. This fact is
related to BCI Competition IV,38 a famous data resource in
the field comprising a set of datasets for signal processing
and BCI classification. Then, we can highlight three use cases
among the rest: seizure management, sleep stage classifica-
tion, and emotion recognition. The rest of the use cases only
occur once, twice, or three times: disease diagnostic, human
activity recognition, brain stimuli, and classification in levels
of fatigue. We can conclude with this analysis that if we want
to publish a dataset that brings value to the field, the last four
use cases are not exploited a lot.

The features of DL models and use cases are represented
in Figure 12. The biggest bubble representing MI EEG clas-
sification with CNN makes sense because the DL model is
the most popular in its category and there are several MI
datasets. For example, those that are part of the BCI Compe-
tition. Regarding this use case, we can see that only models
with CNN are used, so there is room to experiment with
other models. In the second position, we have papers using
CNN in stages of fatigue, sleep classification, and seizure
management. The latter has been studied with several DL
models, so it seems there are not many opportunities to work
with this data. The information on the chart can be used to
identify what models can be used with our dataset. Also,
to find combinations that have not been applied before to do

38https://www.bbci.de/competition/iv/

new contributions to science. The rest of the combinations
have few instances or none, so they can be considered niches
to research. For example, using models that are not CNN in
cases like levels of fatigue, brain stimuli, classification of
sleep stages or diagnostic of diseases.

The second part of the statistical analysis comprises the
datasets’ features. We first find the number of subjects which
ranges from 4 to 16,986. This is directly related to the number
of tests going from 4 to 10,874, the mismatch with the pre-
vious values is because the dataset with the most individuals
has not recorded a test for each of them, Figure 13. In fact,
this a strange situation as most of the time the number of
tests is greater than the number of individuals. As we can see
most of the datasets are in the low range which confirms that
compiling EEGs is not an easy task.

Test duration ranges from seconds to hours (usually, these
are sleep studies or patients with epilepsy). The length of the
tests in seconds occurred 6 times ranging from 4 to 30 with
an average of 16.93 seconds. In the case of minutes, we found
14 experiments with lengths from 4 to 51 and an average
value of about 14 minutes. Finally, there are 12 examples
with tests lasting at least 1 hour ranging to 9 with an average
of almost 6 hours. This is directly related to the use case as
epileptic seizures only need seconds to be analyzed but sleep
stages need hours.

The number of channels used in the datasets is shown
in Figure 14. In our case, the different options are well
distributed with works using only 1 channel and others
using 128 channels. However, configurations of 64, 32, 16,
and 8 channels, (Montoya-Martinez, Bertrand, and Francart
2019), which are recommended do not outstand. No analysis
supports this recommendation for deep learning studies, so it
could be a future work to be developed.

Other features that have not been studied under a mini-
mum standard to be met are the electrodes system and the
sampling frequency. As can be seen in Figure 15, 10-20 is
the most used electrode system by far, which makes sense
due to the following aspects. It is an international recom-
mendation, [65]. Reference [66] highlights that it is also
one of the most used. Other datasets do not provide this
information or do not use one due to the number of channels.
Figure 16 describes the use of sample frequency. In the
first position, we can find 8 times a sampling frequency
of 250 Hz. Then, datasets using 256, 512, and 1000 Hz
are also noteworthy. Regarding the minimum Hz to obtain
good performances in DL models, [67] demonstrate that a
higher frequency does not provide better results. Neverthe-
less, there are no scientific papers that measure the minimum
to obtain DL models that perform well, so it could be a future
approach.

Finally, Figure 17 gives information about the file formats
that have been used. In the first position, we find a format
related to EEGLAB,39 a well-knownMATLAB tool for brain

39https://sccn.ucsd.edu/eeglab/index.php
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signal processing. The second position is for European Data
Format (EDF) a standard for storing multichannel biological
and physiological signals, [68]. The rest of the formats are
widely distributed.

VI. CONCLUSIONS AND FUTURE WORKS
This work provides a compilation of open EEG datasets
from papers that apply deep learning models. It should be
highlighted that the work doesn’t consider datasets available
upon request. We have used PRISMA to define a workflow
for selecting a set of papers that uses these kinds of datasets.
Our initial search returned 331 works which, after screening
based on the inclusion/exclusion criteria, were reduced to 37.
In these papers, 30 datasets were found. Some clear conclu-
sions related to DL techniques are obtained: convolutional
neural networks are widely used due to their link with the
nature of the data, MI classification is the most common
use case and accuracy is the most used metric, but others
are more stable. By combining the first and second conclu-
sions, we know that most of the papers apply CNNs to MI
use cases. The conclusions related to the datasets comprise:
EGGs are difficult to compile due to the low number of
instances in general, the number of channels is not relevant
so it should be studied, the most used electrode system is the
10-20 system, most relevant sample frequency should also
be analyzed and EDF and MAT file formats stand out from
the rest.

Further analysis concludes that the number of published
papers per year is remarkable, but it is still worth working in
the field. From 2018 to 2021, the amount has increased. But
in the last 2 years have decreased a little. So, publishing open
datasets is relevant for the scientific community. Related to
the DL models, we can see that CNNs are a good solution
which is why they have been widely applied. The graphics of
the use cases are helpful to find application fields that have
not been covered a lot or knowing which kind of datasets
can obtain good results. The bubble diagram can be used by
researchers to know which DL models should be involved in
their datasets depending on the use case. In this way, there
are several use cases not very exploited, but the use of CNN
is not innovative in any case. The analysis of the dataset’s
characteristics leads us to conclude that the 10-20 system
is the most widely used when collecting the data. No work
supports the idea that this is the most efficient one. The
sample rate of the datasets is very diverse; therefore, none
is a priori better than the other. In the case of the number of
channels and sample frequency, values are very distributed
and again no works are supporting which values should be
recommended.

The main limitation of the study is the number of selected
works because there are not several papers accomplishing
the criteria. As EEGs are medical data, people are reluctant
to make them freely available, and researchers who compile
the EEGs do not want to share them since they prefer to
exploit them themselves. Another reason is the difficulty of
collecting a good quality bank of EEGs as it is costly in terms

of time. Another limitation of the work is that the authors of
the papers using the datasets are not the same as those who
have published them. This condition supposes a decoupling
between the medical and computer science perspectives, not
considering that both profiles are necessary.

Some niches to consider are the following. The use of
Natural Language Processing (NLP) techniques such as
Transformers and GCNN for not being so exploited. NLP
models are one of the most advanced nowadays. If we make
a parallelism between texts and EEGs, a sentence can be
considered a channel, and a word in the sentence is a par-
ticular measure of the channel. This approach could be a
starting point for applying these powerful models with EEGs.
Another exciting application is studying the network con-
nectivity that can be modelled by representing the EEGs as
graphs. In this case, GCNNs are very useful and seem to be a
niche.

As future work, the review shows that there is room for
finding a gold standard of the characteristics of an EEG
dataset to be used in multidisciplinary teams of physicians
and computer scientists because sometimes the needs of some
do not match those of others. Only one work has been found
that studies a single characteristic of the datasets, the number
of subjects, [9]. Thus, we propose to carry out different
studies in the future to discover how the electrode system, the
number of channels, or the sample rate influence obtaining
good results when using DL models.
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