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ABSTRACT Single-pair shortest pathfinding (SP) algorithms are used to identify the path with the minimum
cost between two vertices in a given graph. However, their time complexity can rapidly increase as the
graph size grows. In this paper, we propose a pattern-based blocking algorithm in a grid graph (PBGG)
that iteratively blocks or reduces free space vertices that do not require exploration. The blocking process
is based on the neighbors of each vertex and utilizes 3 × 3 binary pattern matching. The time complexity
of blocking is O(I · ⌈|V |/C⌉), where |V | is the number of vertices, I is the maximum number of iterations,
and C is the number of parallelized cores. PBGG significantly reduces the total computation time when
utilized to preprocess an input grid graph before applying existing SP algorithms. It also guarantees that
if a minimum-cost path exists in the original graph, then the SP algorithms can find at least one path with
the same minimum cost in the reduced graph. The proposed method is formulated by convolutions that can
be easily implemented using machine learning platforms, such as PyTorch. Experimental results show that
when PBGG can significantly reduce the total computation time when employed in conjunction with SP
algorithms such as A∗ and Jump Point Search. On average, PBGG reduces the total computation times by
71% for A and 41% for Jump Point Search, compared to the times taken by the SP algorithms alone.

INDEX TERMS Blocking, convolution, dead-end/avoidable vertices, nonblockable vertices, pattern match-
ing, shortest path problem.

I. INTRODUCTION
Pathfinding in two-dimensional (2D) grid graphs plays a
crucial role in various applications, such as car naviga-
tion [13], [17], [22], digital entertainment [12], [15], [18],
and robotics [9]. The most basic pathfinding problem is the
single-pair shortest pathfinding (SP) problem, which deter-
mines the optimal path with the minimum cost between two
vertices in a given graph.

The SP problem with start and end vertices is generally
solved by search algorithms such as Dijkstra’s algorithm [23]
or A∗ algorithm [16]. However, these approaches necessitate
recursive visits to the free-space vertices to calculate the
precise distances from the start vertex. Their execution times
rapidly increase when the graph size increases.

To expedite those algorithms, we propose a preprocess-
ing method called pattern-based blocking on grid graphs
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(PBGG). It aims to reduce the number of free-space vertices
in a graph before the pathfinding and ensure the optimality of
a path. Fig. 1 illustrates the result of reducing a 32× 32 input
grid graph using the proposed method. The figure reveals
that the free- space vertices considered during the search are
significantly reduced, whereas the optimal path can still be
found.

The proposed method can also be applied even when sep-
arate vertex costs are given, for example, to prevent collision
with obstacles [20], [21]. In particular, the proposed method
can quickly determine whether a path exists.

The proposed approach examines the local 3 × 3 ver-
tices of each vertex to determine their ability to be blocked,
specifically, whether an obstruction interferes with the con-
nection between the start and end vertices. This analysis is
performed concurrently across all vertices. The blocking of
adjacent vertices can depend on each other, which is dif-
ficult to consider in parallel computation. We identify and
omit the interconnected vertices from blocking to mitigate
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FIGURE 1. Proposed blocking method for a single-pair shortest
pathfinding (SP) problem. (a) Input 32 × 32 grid graph consisting of
obstacles (black), free space (white), and start/end (red) vertices.
(b) Reduced graph after detecting free-space vertices that do not require
exploring after 30 blocking iterations, treated as obstacle vertices. The
significantly reduced graph is input to SP algorithms.

this problem. Thus, this approach effectively reduces the
number of free-space vertices while ensuring that the connec-
tion between the start and end vertices remains unimpeded.
All operations can be readily and efficiently implemented
through machine learning platforms, such as PyTorch [2].

By employing PBGG to reduce the grid graphs and utiliz-
ing the SP algorithm on the reduced graph, the total execution
time can be significantly reduced. When we experimented
with three types of graphs (maze, room, and random) with
various sizes, we observed the average computation times of
Dijkstra’s, A∗, and JPS algorithms decreased by 67%, 71%,
and 41%, respectively. The explored path may change, but the
path cost remains optimal. Moreover, as the size of the graph
becomes larger, the blocking effect becomes more prominent.
Blocking applies to various problems that require SP and
significantly reduces search time in most cases.

In summary, we introduce an algorithm to block a subset
of free-space vertices with the following contributions:

1) The proposed method aims to reduce the number of
candidate vertices to be explored, reducing SP compu-
tation time while guaranteeing an optimal path between
the start and end vertices.

2) For various grid graphs with representative search algo-
rithms, such as Dijkstra’s, A∗, and JPS, we observed
an average time reduction of 67%, 71%, and 41%,
respectively.

3) The algorithm can also be applied to cases where vertex
costs are given to avoid collision with obstacles.

The remainder of the paper is organized as follows. Section II
introduces the preliminaries. Next, Section III presents the
proposed algorithm, and Section IV explains the detailed
implementation. Then, Section V details the experimental
results. Finally, Section VI concludes the paper.

II. PRELIMINARIES
A. SHORTEST PATHFINDING IN THE GRID GRAPH
A 2D grid graph is defined by a set of vertices corresponding
to a 2D lattice and the edges between adjacent vertices.

In pathfinding problems, vertices belong to obstacles or free
space, and obstacle vertices are not connected to other ver-
tices by edges. A graph that satisfies these conditions is called
a grid graph for a SP problem, and we refer to it as a grid
graph in this paper. Depending on the presence of diagonal
edges, a vertex can have up to four neighbors (4N) or up to
eight neighbors (8N).

A path in a graph between two vertices is a sequence of
edges connecting them. The cost C(p) of a path p is defined
as the sum of costs assigned to all vertices and edges in
the path. The single-pair SP methods must determine the
optimal path if it exists or determine its nonexistence (i.e.,
no path exists between two vertices). The assigned edge cost
is often determined using the Euclidean distance between two
vertices. The cost associated with each vertex may or may not
be given and is typically used to minimize the possibility of
collision with obstacles [20], [21].

B. ALGORITHMS FOR SHORTEST PATHFINDING
Many search-based algorithms have been used to solve single
pair shortest path (SP) problems in grid graphs. In this paper,
we introduce Dijkstra’s algorithm [23] and then explore the
differences between different algorithms based on it.

The algorithm comprises several key components: an
explored vertex set, an open set containing vertices that have
not been explored yet but are reachable, a cost list, and a par-
ent list. The input for the algorithm can take the form of either
an adjacency matrix or a binary image, both representing the
adjacency relationships among the vertices of a grid graph.
In each iteration, the algorithm extracts a vertex from the open
set that is closest to the start vertex. This vertex is then added
to the explored vertex set, and its adjacent vertices that have
not been explored are added to the open set. The value of the
cost list associated with the vertex is updated to the length
of the shortest path from the start vertex to the vertex. The
value of the parent list corresponding to the vertex is also
updated to the vertex that precedes it in the shortest path.
If the vertex extracted from the open set is the end vertex,
the intermediate parents are traced to obtain the final path
between the start/end vertices. If the open set becomes empty
before the end vertex is encountered, it signifies that there is
no feasible path between the start and end vertices in the grid
graph.

The computation time of a search algorithm is mainly
determined by the time taken to select a vertex to explore
from the open set and the number of vertices that need to be
explored. As the size of the grid graph increases, both the size
of the open set and the number of vertices to explore generally
increase, resulting in a significant increase in execution time.

Search-based algorithms share these common structures,
but they can be distinguished by utilized data structure, crite-
ria for selecting vertices to explore, criteria for adding adja-
cent vertices to the open set, and other factors.We can broadly
categorize them into three groups: those that accelerate indi-
vidual steps, those that change the order of exploration, and
those that reduce the number of vertices to explore.
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The first group encompasses various methods, such as
using a 2D array to quickly recognize visited vertices and
determine the vertex to search [9]. Another method is to
adopt a hybrid approach that combines a 2D array and a
heap structure [3]. Finally, multiple vertices can be traversed
concurrently [1]. These enhancements improve the efficiency
of each step within the search algorithm, while the overall
behavior of the algorithm remains unchanged.

The second group of pathfinding algorithms changes the
order of exploration by incorporating handcrafted or learned
heuristic cost. A∗ algorithm is one such algorithm that uses a
heuristic cost to estimate the cost of the cheapest path from
each vertex to the end vertex. This allows A∗ algorithm to
incorporate the end vertex’s location into the vertex selec-
tion process, resulting in faster pathfinding in most cases.
Unlike Dijkstra’s algorithm, which determines the order of
vertex exploration independently of the end vertex, the A
algorithm takes the end vertex into account. This results in
faster pathfinding in most cases, as A∗ algorithm can focus
on exploring vertices that are more likely to be on the shortest
path to the end vertex. Due to the similarity in structure
with Dijkstra’s algorithm, the A algorithm can be utilized in
conjunction with other groups of algorithms. Learning-based
approaches [8], [14] aim to utilize artificial neural networks
to acquire improved heuristics. However, the learning-based
approaches do not guarantee the optimality of paths.

The last group, where PBGG belongs, reduces the number
of vertices to traverse, such as Jump Point Search (JPS) [5],
[6], Iterative monotonically bounded A∗ (IMBA∗) [25], and
Index-based A∗ Search (IBAS) [24]. The JPS algorithm,
which is considered as one of state-of-the-art does not search
neighboring vertices at each iteration. Instead, it performs
straight-line jumps in each direction until it encounters a ver-
tex immediately before the obstacle or a vertex adjacent to the
obscured area. JPS explore those vertices, referring them as
jump points. Although JPS can only consider distance-based
edge costs without vertex costs, it is considered one of the
state-of-the-art algorithms in such situations. IMBA∗ [25]
employs an initial pathfinding process within a reduced
search space and gradually expands the search area based on
the results. This approach is effective when the shortest path
between start/end vertices contains high-cost vertices and is
primarily concentrated around the vicinity of these vertices.
In such cases, a small number of iterations can significantly
reduce the number of explored vertices. IBAS [24] estimates
the upper and lower bounds of the distance between vertices
to reduce the search space. This algorithm is specifically
designed for directed acyclic graphs, thereby is not suitable
for grid graphs.

C. NOTATIONS
In this paper, we propose a blocking method to identify and
remove the unnecessary free-space vertices during the tree
search. We notate the initial grid graph and the reduced grid
graph after the k th iteration of blocking as G0

=
(
V0,E0

)
and

FIGURE 2. Grid graph for the single-pair shortest pathfinding (SP)
problem and 3 × 3 local subgraph of vertex e. Free-space vertices are
white, obstacle vertices are black, and start/end vertices are marked as S
and E, respectively. For simplicity, the edges are not shown in the figures
of this paper.

Gk
=

(
Vk ,Ek

)
, where V0,E0,Vk and Ek represent vertex

and edge sets of the initial and reduced graphs, respectively.
The set of neighbors in Gk at a free-space vertex v is denoted
as Nk (v).

In addition, for a free-space vertex v in the grid graph,
we let Vk

3×3(v) denote the set of vertices corresponding to the
3 × 3 neighborhood of v in the 2D lattice. We let Ek3×3 (v)
denote the set of edges that connect the vertices in Vk

3×3 (v) in
the grid graph. We refer to the subgraph defined by Vk

3×3 (v)
and Ek3×3(v) as a ‘‘3× 3 local subgraph’’ of v and define it as
Gk
3×3 (v) = (Vk

3×3 (v) ,Ek3×3 (v)). A grid graph and 3×3 local
subgraph are illustrated in Fig. 2.

III. ALGORITHM
The overview of the proposed algorithm is illustrated in
Fig. 3. PBGG detects vertices that do not require explo-
ration and blocks them iteratively (i.e., replacing a portion of
the free-space vertices with obstacle vertices). Consequently,
SP algorithms can be utilized to the reduced graph. The initial
grid graph G0 and the start/end vertices are taken as inputs,
and G1 is generated by blocking in the first iteration. Simi-
larly, after the k th iteration, Gk+1 is generated from Gk . The
exploration for pathfinding is performed by the conventional
SP algorithm.

We define two types of vertices that can be blocked while
keeping at least one optimal path between the start and end
vertices based on the local subgraph of each vertex. The
identification of these categories is achieved by matching
the local subgraphs with predefined patterns using the par-
allel convolution operation. Since the time complexity of
the parallel convolution operation is determined by the size
and number of patterns, we focus on examining the local
3× 3 subgraph, which encompasses the neighboring vertices
of each vertex and represents the minimum subgraph size.
This approach allows us to identify blockable vertices effi-
ciently while ensuring the preservation of optimal paths.

Blocking a vertex changes local 3 × 3 subgraphs for adja-
cent vertices; thus, the blocking process depends on those
vertices, making the parallelization challenging. We detect
and do not block all the related vertices to overcome this.
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FIGURE 3. Blocking illustration. (a) Algorithm overview. (b) Intermediate graphs during blocking iterations. The input comprises an initial grid graph and
start/end vertices. The algorithm recognizes dead ends and avoidable vertices, which can be individually excluded from pathfinding. Nonblockable
vertices can cause a disconnection between the start/end vertices due to the limitation of parallel processing. Nonblockable vertices and start/end
vertices are recognized and excluded from the blocking targets. Thus, part of the free-space vertices changes to obstacle vertices, and at least one
optimal path between the start and end vertices is guaranteed. This process is repeated until the stop iteration is reached.

This detection also be processed on the local 3 × 3 sub-
graphs of each vertex, making the entire blocking locally
processed. Blocking is repeated until the stopping iteration.
Then, an existing SP method is applied to the reduced grid
graph obtained through adequate iterations for fast SP.

A. DETECTION OF BLOCKABLE VERTICES
In this paper, a blockable vertex is a free-space vertex that can
be obstructed from a grid graph without disconnecting the
start and end vertices. We introduce two types of blockable
vertices: dead end and avoidable, then introduce another type
of blockable vertex with two or more neighbors.

Definition 1) A free-space vertex v is a dead end in Gk if
the degree of v in Gk is 0 or 1.

The vertex b in Fig. 4 is a typical example of a dead end.
They do not belong to the optimal path if they are not start/end
vertices.

Definition 2)A free-space vertex v is avoidable in the grid
graph Gk if, for any pair of vertices (u, w) in Nk (v), a path p
between them exists in the local 3× 3 subgraph Gk

3×3(v) and
w such that C(p)≤ C(u-v-w), where ‘u-v-w’ denotes the path
consisting of u, v and w and C (·) denote the assigned path
cost.

The vertex d in Fig. 4 is an avoidable vertex which can
be replaced with e (4N) or excluded from the path (8N). Cer-
tainly, avoidability can be defined not only in 3× 3 subgraphs
but also in arbitrary subgraphs in a similar manner. However,
when dealing with larger subgraphs, a significant increase in
the number and size of required kernels for implementation

FIGURE 4. Examples of a dead end b, avoidable vertex d , and path
between the start/end vertices (orange). A dead end has only one
neighbor. An avoidable vertex can be replaced or excluded from the path.

poses a problem of decreased computational speed. There-
fore, we focus on path comparison within the 3× 3 subgraph.

B. FORMULATION OF BLOCKABLITY
Excessive blocking can hinder or disrupt the connection
between start and end vertices. Therefore, we show that
blocking dead ends and avoidable vertices preserves the opti-
mality of pathfinding.

Theorem 1) If an optimal path between two vertices (s, e)
exists in Gk , the same path exists in Gk+1, where Gk+1 is the
grid graph obtained by blocking a dead end v (̸= s or e) from
Gk .
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Proof) Let the sole neighbor of v denoted by u. If v is
included in the optimal path p∗, u will be visited twice. This
contradicts the definition of a path, implying that v cannot be
part of p∗. Therefore, p∗ exists in Gk+1.

Theorem 2) If an optimal path exists between two vertices
(s, e) in Gk , a path with the same cost exists in Gk+1, where
Gk+1 is the grid graph obtained by blocking an avoidable
vertex v (̸= s or e) from Gk .
Proof) If a vertex v is a part of the optimal path p∗ between

vertices s and e in the graph Gk , then there exist two adjacent
vertices of v on p∗. We denote the one closer to s as u and
the other one closer to e as w. The optimal path p∗ can be
represented as a sequence [p1, p2, p3], where p1, p2, and p3 are
optimal paths between (s, u), (u, w), and (w, e) respectively.
From definition 2, another optimal path q (̸= p2) between (u,
w) where C(q) ≤ C(p2) exists. Consequently, an alternative
path ṗ∗(̸= p∗) between (s, e) whereC(ṗ∗)=C(p∗) is obtained
as [p1, q, p3] and exists in both Gk and Gk+1. On the other
hand, if v is not included in the optimal path in Gk , an optimal
path in Gk still exist in Gk+1. Therefore, in both cases, there
is an optimal path with the same cost in both Gk and Gk+1.

C. DETECTION OF NONBLOCKABLE VERTICES
Blocking each vertex sequentially takes time proportional to
the graph size; thus, we aim to block all such vertices in par-
allel. However, as depicted in Fig. 5, if two adjacent vertices
d and e are independently blocked due to the parallel local
3 × 3 operation, disconnection occurs between two other
vertices c and f , which are not blockable. The disconnection
can affect the optimal path between start/end vertices. Thus,
we checked all possible configurations in Fig. 6. The green
vertices represent avoidable vertices that cause indirection
or disconnection between nearby free-space vertices due to
parallel blocking based on 3 × 3 windows.
If such graphs are present as subgraphs within an input

graph, these green vertices can potentially disrupt the opti-
mal path between the start/end vertices by forcing detours
or causing disconnections. Thus, green vertices should
not be blocked and are called nonblockable vertices in
this paper.
However, discerning nonblockable vertices based on

4 × 4 or 5 × 4 subgraphs in Fig. 6 is inefficient. The time
complexity of parallelized convolution is proportional to the
number and size of the kernels. For example, unlike the
limited 512 possibilities in a 3 × 3 subgraph, a 4 × 4 sub-
graph consists of 65536 different configurations, requiring
even more kernels. Furthermore, the size of each kernel also
varies almost twice as much, resulting in significantly slower
processing compared to the preceding steps based on the
3 × 3 subgraph.
To handle this, we defined α-type vertices based on local

3× 3 subgraphs, as illustrated in Fig. 7(a) and (b) for 4N and
8N, respectively. In Fig. 7(c) and (d), all configurations from
Fig. 6 include pairs of α−type/start/end vertices connected
through one nonblockable vertex. Therefore, we first detect
α-type vertices based on the local 3 × 3 subgraphs and

FIGURE 5. Example illustrating parallel blocking of multiple avoidable
vertices d and e in a 4 × 4 grid graph disconnecting free-space vertices c
and f with a four-neighbor (4N) configuration.

FIGURE 6. All configurations where two vertices blocked by parallel
blocking disconnect two adjacent vertices: (a) four- and (b) eight-
neighbor configurations. In parallel blocking, the green vertices are
avoidable and blocked, disconnecting other free-space vertices or the
start/end (S/E) vertices. Graphs with x2 direction can be rotated 0◦ and
90◦. Graphs with x4 direction can be rotated by 0◦, 90◦, 180◦, and 270◦.

identify the vertices adjacent to two or more α-type/start/end
vertices as nonblockable.

Some vertices that meet this criterionmay not be nonblock-
able, making some normally avoidable vertices not blocked.
Nevertheless, this method enables us to efficiently filter out
all nonblockable vertices using a parallel operation based
on 3 × 3 windows. For convenience, we refer to all ver-
tices filtered out using this method as nonblockable vertices
throughout the paper.

The resulting detection of α-type vertices and nonblock-
able vertices for 4N and 8N are presented in Fig. 8. The
results are different for the same input graph. Additionally,
as the blocking process is iterative, the previously identi-
fied nonblockable vertices could be blockable in the next
iteration.

IV. IMPLEMENTATION
A. VERTEX DETECTION USING PATTERN MATCHING
A grid graph can be represented as a binary image, where
0 and 1 indicate obstacles and free spaces, respectively.
PBGG takes the modified image as an input by assigning a
value of -1 or 1 to each vertex, indicating whether it is an
obstacle or a free-space vertex, respectively. The resulting
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FIGURE 7. All local 3 × 3 subgraphs defining α-type vertices and
examples of the combination of these local 3 × 3 subgraphs without
collision between free spaces and obstacles: (a) four-neighbor (4N)
configuration, (b) eight-neighbor (8N) configuration, (c) α -type vertices
detected in the graphs of Fig. 6(a) for 4N, and (d) α -type vertices detected
in the graphs of Fig. 6(b) for 8N.

FIGURE 8. Results of detecting α-type vertices and nonblockable
vertices (green) with their respective local 3 × 3 subgraphs in
four-neighbor (4N, left) and eight-neighbor (8N, right) configurations.
First, α−type vertices are identified by their local 3 × 3 subgraphs.
Vertices adjacent to two or more α -type/start/end vertices are
nonblockable.

binary image is referred to as a grid map in this paper.
Similarly, a local 3×3 subgraph of a vertex can be represented
as a 3 × 3 binary pattern. A 3 × 3 binary pattern centered
at a dead-end vertex is called a dead-end pattern. Avoidable
and α-type patterns are also defined similarly. Note that those
patterns are mutually disjointed.

We describe the step-by-step process of pattern matching.
The inputs are a grid map X and the convolutional kernels
consisting of several 3× 3 weights {Wc} (c = 1, . . . , C) and
bias terms {bc} (c = 1, . . . , C). The convolutional kernels
are designed to satisfy the following condition for each 3 ×
3 pattern set Z (i.e., dead-end patterns, avoidable patterns,
or α-type patterns):

max
z′∈Z c

(
max

c∈{1,...,C}

(
Wc ⊛ z′ + bc

))
≤ 0

< min
z∈Z

(
max

c∈{1,...,C}
((Wc ⊛ z)+ bc)

)
(1)

where ZC is the complement set of Z , and is ⊛ the convolu-
tional operation.

Initially, the grid map X is expanded by adding a border of
-1 values in all four directions. For the grid map with padding,
denoted as X ′, the convolution operation yields a correlation

FIGURE 9. All 3 × 3 patterns identified through pattern matching.

map Y . Each channel of Y is calculated as follows:

Y [c, :, :] = Wc ⊛ X ′ + bc (2)

Y [c, h, w] is the correlation between Wc and X’[h-1:h + 2,
w-1:w + 2] with the addition of bc to the computed value.
From (1), if any value of tensor Y at location (h,w) is positive,
it indicates that the 3 × 3 binary pattern of the grid graph at
location (h, w) matches one of the patterns in the set Z .
Therefore, for every location in Y , we verify whether the

maximum value exceeds 0. These processes are executed on
parallelized computing systems, such as graphics processing
units (GPUs). The corresponding pseudocode for this is pro-
vided in Appendix. VI-A.

We list the 3 × 3 pattern sets to be identified, as shown
in Fig. 9. The patterns simply and completely express each
binary pattern set, namely, dead-end, avoidable, and α-type
patterns. We can determine the suitable convolution kernels
satisfying (1) based on the patterns. Each pattern is the com-
binations of ‘obstacle’, ‘free space’, ‘don’t care’ and ‘at least
∼’. Convolution weights and biases corresponding to each
pattern can be created according to the following rules.

1) ‘Obstacle’ corresponds to -1, ‘free space’ corresponds
to 1, and ‘don’t care’ corresponds to 0 inWc.

2) For m vertices satisfying ‘at least n is free space (or
obstacle)’, the weights are assigned as 1 (or -1). Other
weights are multiplied by (m+ 1).

3) The bias bc is calculated as -|Wc|1+2(m-n)+1 where
|·|1 is a sum of absolute values.

The rules are designed to monotonically increase the con-
volution output according to the similarity between wc and
the patterns, while the bc serves to threshold the similarity.

Furthermore, the time complexity of parallel convolution
is related to the number of kernels. To reduce the number of
kernels required, three modifications are made, as shown in
Fig. 10. First, the dead-end patterns in the 4N configuration
are represented using the ‘at least∼’ condition. Second, in the
8N configuration, both the dead-end patterns and certain
avoidable patterns (patterns in the first row in Fig. 9) can
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FIGURE 10. 3 × 3 patterns represented with less kernels.

FIGURE 11. Convolutional weights and bias terms for identifying specific
types of vertices with four or eight-neighbor (4N or 8N) configurations. (a,
b) Dead-end patterns. (c, d) Avoidable patterns. (e, f) α -type patterns. (g,
h) Nonblockable vertices.

be recognized together through the common kernels. Third,
the remaining avoidable patterns in the 8N configuration are
expressed using the ‘at least∼’ condition.

Nonblockable vertices can also be expressed by patterns
that have ‘at least two’ α-type or start/end vertices in their
vicinity. Each convolution kernels tailored for each type of
pattern are illustrated in Fig. 11. The pseudocode of the
blocking process is described in Appendix. VI-B.

B. INCORPORATING COSTS FOR VERTICES
For various objectives, additional positive costs can be
assigned to vertices. Costs for vertices can be represented
as an image of the same size as the grid map, called a cost
map. When a cost map is provided, the process of verifying
avoidable vertices becomes more intricate.

To determinewhether a vertex v is avoidable, it is necessary
to examine the paths connecting each neighboring pair of
v and ascertain if a path passing through v has the lowest
cost among them. However, cost comparisons for all possi-

FIGURE 12. Cases requiring a cost comparison between two paths to
classify the vertex u as avoidable: (a) four-neighbor (4N) and (b, c, d)
eight-neighbor (8N) configurations. They can be rotated by 90◦, 180◦, and
270◦.

ble paths through pattern matching become computationally
expensive, as the number of required kernels is excessively
high.

Therefore, we propose a conservative but efficient criterion
for determining avoidable vertices. It consists of two con-
ditions. Firstly, whether the 3 × 3 pattern in the grid map
belongs to the pattern set shown in Fig. 12, which defines
avoidable vertices in the absence of vertex costs as discussed
in the previous subsection. It enables the determination of
the avoidability of the center vertex u by comparing only
two paths between x and y indicated in Fig. 12. Therefore,
the second condition to determine the vertex u’s avoidability
is that the path passing through the center vertex u (Path 1)
should not be cheaper than the alternative path (Path 2). This
criterion may overlook some of avoidable vertices. However,
less blocking is solely an efficiency-related concern and does
not compromise the shortest path. We address the process for
each 4-neighbor and 8-neighbor configuration separately.

We begin by describing the case of 4-neighbor configu-
ration in Fig. 12(a). We can determine u as avoidable based
on two conditions, ‘the local 3 × 3 pattern in the grid map
corresponds to Fig. 12(a)’ and ‘C(x-w-y) ≤ C(x-u-y)’. The
verification of the first condition follows the same method-
ology as described in the previous subsection for detecting
avoidable vertices. Checking ‘C(x-w-y)≤ C(x-u-y)’ is equiv-
alent to comparing two vertex costs, w and u: ‘C(w) - C(u)
≤ 0’. It can be implemented by applying the convolution
kernels, ‘Kernelcost4N’, to the cost map. The parameters in
kernels are shown in Fig. 13(a). The detailed implementation
is described in Appendix. VI-C.
Similarly, in the 8-neighbor configuration, we determine

the avoidability of u based on two conditions, ‘the 3 ×
3 pattern surrounding vertex u belongs to Fig. 12(b-d)’ and
‘C(x-w-y) ≤ C(x-u-y)’. However, in Fig. 12(b) and (c), only
the vertex costs ofw and u need to be comparedwhen compar-
ing the costs of the paths, whereas in Fig. 12(d), the difference
in edge costs should also be considered. To distinguish
between Fig. 12(b-c), and (d), we apply ‘Kernelgrid−case’ to
the grid map where the parameters of kernels are depicted
in Fig. 13(b). For the pattern corresponding to Fig. 12(d),
twice the cost difference between the diagonal and direc-
tional edges are reflected to the cost comparison. In all
cases in Fig. 12(b-d), the cost comparison between w and
u is conducted by ‘Kernelcost8N’ in Fig. 13(b). The detailed
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FIGURE 13. Convolutional Kernels consisting of weights and bias when
costs are assigned to vertices. (a) For the cost comparison between two
vertices with four neighbors (4N). (b) For the cost comparison between
two vertices with eight neighbors 8N. (c) For differentiating the cases of
Fig. 12(b-c) and (d) for 8N.

FIGURE 14. Flowchart for shortest pathfinding using PBGG.

implementation is provided in Appendix. VI-D. By replacing
the avoidable pattern identification, PBGG is modified as
Appendix. VI-E.

C. END CONDITIONS
Continuing blocking until no more blockable vertices is pos-
sible but can be computationally expensive and inefficient.
Therefore, the maximum number of iterations for blocking is
set to (H + W )//8, where (H ,W ) represents the size of the
grid map. In addition, if the number of blocked vertices in a
single iteration is less than four, the blocking is terminated to
prevent unnecessary computation.

D. COMBINATION WITH SP ALGORITHM
Finally, the reduced grid map become an input for SP algo-
rithms. The SP process with PBGG can be summarized
as shown in Fig. 14. The interface of SP algorithm and
combination of PBGG and SP algorithm are outlined in
Appendix VI-F and VI-G, respectively.

E. TIME COMPLEXITY OF BLOCKING
Entire blocking is composed with the convolution opera-
tions and the logical operations, yielding the time complexity
of blocking to be O (IKhw · ⌈|V | /C⌉), where I is the the
maximum number of iterations, K is the number of utilized
convolution kernels, (h, w) are the size of a convolution
kernel, C is the number of parallelized cores, and |V | is the
number of vertices in the grid graph. For the configurations
without vertex costs, K is set to 10 for 4N and 21 for 8N.
With vertex costs, K becomes 14 for 4N and 37 for 8N.
As PBGG uses 3× 3 patterns, both h,w are 3. By excluding
the constant components, the time complexity is rewritten as
O (I · ⌈|V | /C⌉). Since I would be less thanC , PBGG reduces
the number of free-space vertices efficiently.

V. EXPERIMENTS
The experiments were conducted using an Intel Core i7-7700
with a 3.60 GHz CPU and an NVIDIA GeForce GTX 1080Ti
graphics processing unit (GPU), with Python v.3.10 and
PyTorch v.1.12. The existing search methods were run on the
CPU while the blocking process was run on the GPU.

We considered three types of grid graphs to evaluate
the algorithm’s performance: maze, room, and random. For
the random graph, obstacles were randomly inserted in the
remaining area after the path of the maze graph was fixed as
a free space. Examples of each type are presented in Fig. 15.
The problems were categorized into three sizes, 128 × 128,
256 × 256, and 512 × 512, according to the grid graph size.
We generated 100 grid graphs for each type.

A. COMPUTATION TIMES FOR PATHFINDING
To demonstrate the feasibility of PBGG, we selected three
representative SP algorithms: Dijkstra’s, A∗, and JPS, which
serve as foundational algorithms for many SP problems.
Both A∗ and Dijkstra’s algorithms were also implemented to
accept binary grid maps as inputs, like JPS.

We compared the total computation times of applying SP
algorithm directly to the input graph, and PBGG and SP
algorithms sequentially. When vertex costs were not pro-
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TABLE 1. Average total computation time change due to blocking with four-neighbor configuration (SP Only →PBGG+SP, time (s)).

TABLE 2. Average total computation time change due to blocking with eight-neighbor configuration (SP only→PBGG+SP, time (s)).

FIGURE 15. Three grid graph types: (a) maze, (b) room, and (c) random.

FIGURE 16. Example cases where blocking results in faster or slower
pathfinding times. Blocking is redundant if the start/end vertices (red
X-marked) are enclosed with each other.

vided (no cost map), we observed that the average runtime
decreased by 68%, 78%, and 41% for Dijkstra’s, A∗, and JPS,
respectively. When vertex costs were provided with a cost
map, we observed a decrease in average runtime of 66% and
67% for Dijkstra’s and A∗, respectively. In all cases, the cost
of the resulting optimal path remained unchanged depending
on the blocking application.

To provide a more detailed analysis, we present the results
for various graph sizes, types, and numbers of neighbors in
Tables 1 and 2. While the average time decreased overall,
this is not always the case. Blocking may be unnecessary
in problems that can be solved quickly with only the SP
algorithm. For example, when the start and end vertices are
very close, as depicted in Fig. 16, A∗ and JPS algorithms
are fast enough, especially when the path between the two
vertices is nearly straight (e.g., the random type graph). Fur-
thermore, using the 8N approach, the JPS algorithm operates

TABLE 3. Average total computation time change to recognize
nonexistance of a path (SP only→PBGG+SP, time (s)).

faster overall, particularly in these scenarios. In such cases,
blocking increased the computation time of the SP.

Despite these limitations, the blocking method offers sig-
nificant advantages. First, the blocking is a fast operation that
takes around 1 ms per iteration. For cases where blocking
resulted in slower performance, the difference was only 0.1 s,
while the difference in the most accelerated case was almost
15 s.

Second, when no connectivity exists between the start and
end vertices, the time required for recognition can be greatly
reduced. Table 3 reveals that the required time was reduced
by an average of 87%, 93%, and 80% for Dijkstra’s, A∗, and
JPS, respectively. The computation times in this scenario are
proportional to the number of free-space vertices connected
to the start vertex. PBGG effectively reduces the number
of free-space vertices and consequently achieves significant
time savings compared to directly applying the SP algorithms
that require tracking connections with the start vertex.

B. VARIATIONS ACCORDING TO ITERATIONS
To conduct a comprehensive analysis, we conducted various
observations by employing PBGG in conjunction with A∗

while varying the blocking iterations, in the absence of a
cost map. We address various aspects, including the compu-
tation time, the number of visited vertices, and the number of
free-space vertices within the grid graph.
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FIGURE 17. Average times for blocking (orange), pathfinding (grey) and
total computation (blue) according to blocking iterations. The number of
iterations affects the average time for pathfinding, and its sensitivity
decreases as the graph size increases. The iterations required for blocking
are less than 50 and sufficiently fast compared to the total reduction in
time. 4N: four-neighbor configuration, 8N: eight-neighbor configuration.

Fig. 17 illustrates the average computation times for
pathfinding according to the iteration. The total computation
time, time for blocking, and time for pathfinding are denoted
by the blue, orange, and gray lines, respectively. Although
the maximum iteration was set to 200, different termination
iterations were observed for each type due to another end
condition: ‘the number of blocked vertices is 4 or fewer.’
On average, for graph sizes of 128 × 128, 256 × 256, and
512×512, the respective execution times for a single iteration
of blocking were approximately 1.3ms, 1.5ms, and 3.3ms in
4N configuration. In the case of 8N, the execution times were
1.3ms, 2ms, and 4.4ms, respectively. It is evident that even
after performing 20 iterations, the execution time remains less
than 0.1 seconds.

In maze and room graphs, the shortest time is recorded at
approximately 20-35 iterations. TheV-shaped trend stabilizes
as the graph size increases. On the other hand, for the random
graphs, the benefits from blocking are relatively small, and in
some cases, a little increase in the overall computation time is
observed (20ms and 5ms for 128×128.4N and 8N). Based on
these findings, it can be inferred that the selection of iterations
is critical for maze/room graphs, and random graphs require
fewer iterations to achieve satisfactory results.

Fig. 18 shows the average number of free-space vertices
(blue) and the number of vertices visited by A∗ algorithm
during pathfinding (orange) in the graph according to the

FIGURE 18. Average numbers of free-space vertices (blue) and explored
vertices by A∗ algorithm (orange) according to blocking iterations.

FIGURE 19. Grid map change by blocking iteration.

FIGURE 20. Reduced 128 × 128 grid maps for each problem type with two
points to connect marked as red.

iteration. We measured the average number of explored ver-
tices every five iteration and observed a similar decreasing
trend with the iteration. The number of vertices decreases
with the iteration and tends to converge to a specific value.
When considering 20 iterations as a benchmark, it can be
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FIGURE 21. Examples of the paths with and without blocking. The
proposed blocking method tends to keep the path away from the
obstacle compared to the nonblocking method. However, the optimality
of the path is preserved as blocking does not alter it.

observed that maze and room graphs experienced a reduction
of approximately 80% and 60% in the number of free-space
vertices, respectively. On the other hand, the blocking process
in random graphs terminated more quickly, resulting in a
nearly halved number of free-space vertices. An interesting
observation is that, while the number of free-space vertices
decreases, the number of explored vertices does not decrease
significantly, and compared to other types of graphs, the
number of explored vertices is much lower. This suggests that
the random graph has paths that are nearly straight between
the start and end vertices, and the shortest paths are also
easily found in the original graphs. In other words, in random
graphs, blocking concludes faster compared to other graph
types, and a lower maximum iteration setting is sufficient.

Fig. 19 presents the change in the grid map accord-
ing to iterations of blocking. It supposes that only
20 to 50 iterations are needed to reduce the free space
sufficiently.

C. ADDITIONAL COMPARISON AND QUALITATIVE
VALIDATION
PBGG is an algorithm that decreases the number of
free-space vertices while ensuring the optimality of the
shortest path. To the best of our knowledge, research focusing
on reducing the search range while preserving path optimality
is relatively limited. One such algorithm is known as itera-
tively monotonically bounded A∗ algorithm (IMBA∗) [25].

Most of SP algorithms explore all paths with costs lower
than the estimated cost of the shortest path between the
start and end vertices. In contrast, IMBA∗ which is based
on A∗ algorithm initially reduces the search range to the
vicinity of the start and end vertices, thereby decreasing the
number of paths that require pre-examination. Then, it pro-
gressively expands the search range based on the results of A∗

algorithm. However, in graphs with a significant number of
obstacle vertices between two vertices, IMBA∗ must execute
A∗ algorithm multiple times to find the shortest path in a
wide area of free space vertices while avoiding obstacle
vertices. This leads to slower performance. Upon observ-
ing the average execution times of IMBA∗, it was found to

be approximately three times slower than when using A∗

algorithm alone, and around thirteen times slower compared
to ‘PBGG+A∗’. On the other hand, PBGG is robust to the
shape of obstacles, requiring only a single path search.

Examples of blocking various graphs are provided in
Fig. 20, where free-space vertices are sufficiently reduced.
Furthermore, Fig. 21 demonstrates the property of the block-
ingmethod in keeping the path away from the obstacle, which
can be desirable for certain applications, such as robots or
vehicles. The presented examples suggest that the proposed
blocking method can improve the overall pathfinding perfor-
mance and can be beneficial for various practical scenarios.

VI. CONCLUSION
We proposed a method to reduce free space in a grid graph
for efficient single-pair SP problems and guarantee that
the SP algorithm can find at least one optimal path. This
approach involves parallelly detecting various vertices using
pattern-matching techniques based on their respective local
3 × 3 subgraphs. The experiments found that the proposed
approach reduced the total pathfinding time by an aver-
age of 71% for A∗ algorithm across various problems and
conditions. The proposed algorithm can be applied to tasks
requiring efficient pathfinding on large graphs, such as for
robots in a warehouse or virtual spaces for games.

APPENDIX A
The appendix provides pseudo codes to aid in under-
standing this paper. Algorithm 1 demonstrates the imple-
mentation details of pattern matching, which is consis-
tently used in the Pattern-Based Grid Graph (PBGG).

Algorithm 1 Pattern Matching
def PatternMatching (X , K ):

# This function is operated by GPUs.
# Inputs: X : Input map, (H, W)-shape tensor
# K : Convolution kernels consisting of weight
and bias.
# K.weight: (C, 3, 3)-shape tensor.
#K.bias:C-shape tensor.

# Pad boundaries of the grid map as obstacles
1: X’ =pad(X , padding_size=[1,1,1,1], value=−1)

# Get correlation map between 3× 3 subgraphs and
3× 3 convolution kernel weights

2: Y =convolution(X’, K); # (C, H, W)

# For every vertex whose 3× 3 subgraph is matched
at least one of kernel weights, assign 1.

3: M = max(Y, dim=0); # (H, W)
4: M =greater(M , 0);

5: returnM ; # Result (H, W) tensor of pattern matching
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Algorithm 2 PBGG When the Cost Map Is Not Given
def PBGG1(M, s, e, maxIter; convKernels):

# This function is processed on GPUs.
# Inputs:M : Grid map, (H, W)-shape binary tensor
# s, e: start/end vertices
# maxIter: the maximum number of iterations
# Parameters: convkernels (4N: [Kerneldeadend4N ,
Kernelavoidable4N , Kernelα4N , Kernelnonblock4N ],
8N: [Kerneldeadend8N, Kernelavoidable8N, Kernelα8N ,
Kernelnonblock8N])

1: Ms =MakeStartEndMap(s, e); # start/end is True,
otherwise False.

2: i= 0;
3: while do
4: i= i+ 1;

# Make (H, W) tensor, 1 is a deadend.
5: Mdeadend = PatternMatching(M , Kerneldeadend);

# Make (H, W) tensor, 1 is an avoidable vertex.
6: Mavoidable = PatternMatching(M , Kernelavoidable);

# Make (H, W) tensor, 1 is an α-type vertex.
7: Mα = PatternMatching(M , Kernelα);

# Mark α-type/start/end vertices in one tensor.
8: Mα+s = logicalOR(Ms, Mα);

# Count α-type/start/end vertices in each 3× 3
subgraphs. If two or more exist, the vertex
is nonblockable.

9: Mnonblock = PatternMatching(Mα+s,
Kernelnonblock);

# Blockable: deadend or avoidable
10: Mblock = logicalOR(Mdeadend, Mavoidable);

# But– nonblockable or start/end is excluded.
11: Mblock = logicalAND(Mblock,

logicalNOT(logicalOR(Mnonblock, Ms)));

# Apply blocking to the grid map
12: M = clip(M − 2 × Mblock.type(int), -1, 1);

# Check end condition
13: if endCondition(|Mblock-M|, i, maxIter) then
14: break;
15: end if
16: end while
17: returnM ; # (H, W) tensor that the blocking is applied.

In Algorithm 2, we illustrate PBGG without a given cost
map. When a cost map is given, the identification of
avoidable vertices varies depending on the 4N and 8N

Algorithm 3 Identify Avoidable Vertices in 4N (w/ Vertex
Costs)

def GetAvoidable4NwithVertexCost(M, C; Kernelcost4N,
Kernelavoidable4N):
# This function is processed on GPUs.
# Inputs:M : Grid map, (H, W)-shape binary tensor
# C: Cost map, (H, W)-shape tensor
# Parameters: predefined 3× 3 conv. kernels.
(Kernelcost4N and Kernelavoidable4N)

# Condition1: obstacles are placed as Fig.13(a)
1: Mgrid−cond = convolution(M , Kernelavoidable4N);
2: Mgrid−cond = greater(Mgrid−cond, 0); # (4, H, W)

# Condition2: another path is equal to or cheaper than
the center path.

3: Mcost−cond = convolution(C , Kernelcost4N);
4: Mcost−cond = greater_equal(Mcost−cond, 0); # (4, H,W)

# Check subgraphs matched to 4 cases that satisfy
both conditions

5: Mavoidable = logicalAND(Mcost−cond, Mgrid−cond);
# (4, H, W)

# For all vertices whose 3× 3 subgraph matched,
assign 1 indicating avoidable vertices.

6: Mavoidable = max(Mavoidable, dim=0); # (H, W)

7: return Mavoidable; # (H, W) tensor, 1 is the
avoidable

Algorithm 4 Identify Avoidable Vertices in 8N (w/ Vertex
Costs)

def GetAvoidable8NwithVertexCost(M, C; Kernelcost8N,
Kernelavoidable8N, Kernelgrid−case, λ ):
# This function is processed on GPUs.
# Inputs:M : Grid map (H, W)-shape tensor.
# C: Cost map (H, W)-shape tensor.
# Parameters: predefined 3× 3 conv. kernels.
(Kernelcost8N, Kernelavoidable8N, Kernelgrid−case)
# λ : 2×(diagonal edge cost – directional
edge cost)
# Condition1: obstacles are placed as Fig. 13 (b-d)

1: Mgrid−cond = convolution(M , Kernelavoidable8N);
2: Mgrid−cond = greater(Mgrid−cond, 0); # (8, H, W)

# Condition2: another path is equal to or cheaper
than the center path.

3: Mcost−cond = convolution(C, Kernelcost8N)
-λ · convolution(M , Kernelgrid−case);

4: Mcost−cond = greater_equal(Mcost−cond, 0); # (8, H, W)
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Algorithm 4 (Continued.) Identify Avoidable Vertices in 8N
(w/ Vertex Costs)

# Check subgraphs matched to one of 8 cases that both
conditions are satisfied

5: Mavoidable = logicalAND(Mcost−cond, Mgrid−cond); #
(8, H, W)

# For all vertices whose 3× 3 subgraph matched, mark
as 1 indicating avoidable vertices.

6: Mavoidable = max(Mavoidable, dim=0); # (H, W)

7: returnMavoidable; # (H, W) tensor, 1 is the avoidable

Algorithm 5 PBGG When the Cost Map Is Given
def PBGG2(M, s, e, Cvertex , maxIter; convKernels):

# This function is processed on GPUs.
# Inputs:M : Grid map (H, W)-shape tensor.
# s, e: Start/end vertices
# Cvertex : Cost map (H, W)-shape tensor.
# maxIter: the maximum number of iterations
# Parameters: convKernels (4N: [Kerneldeadend4N,
Kernelavoidable4N, Kernelα4N , Kernelnonblock4N,
Kernelcost4N], 8N: [Kerneldeadend8N, Kernelavoidable8N,
Kernelα8N , Kernelnonblock8N, Kernelcost8N,
Kernelgrid−case])

# Make (H, W) tensor, 1 is start/end vertex.
1: Ms =MakeStartEndMap(s, e);
2: i = 0;
3: while do
4: i= i+ 1;

# Make (H, W) tensor, 1 is a deadend.
5: Mdeadend =PatternMatching(M , Kerneldeadend);

# Make (H, W) tensor, 1 is an avoidable vertex.
6: if config is 4N then
7: Mavoidable =

GetAvoidable4NwithVertexCost(M ,
C , Kernelcost4N, Kernelavoidable4N);

8: else then # 8N
9: Mavoidable = GetAvoidable8NwithVertexCost

(M , C , Kernelcost8N, Kernelgrid−case,
Kernelavoidable8N);

10: end if
# Make a (H, W) tensor, 1 is an α-type vertex.

11: Mα = PatternMatching(M , Kernelα);
# Mark α-type/start/end vertices in one tensor.

12: Mα+s = logicalOR(Ms, Mα);

# Count α-type/start/end vertices in 3× 3
subgraphs. If two or more exist, the vertex is
nonblockable.

13: Mnonblock = PatternMatching(Mα+s,

Algorithm 5 (Continued.) PBGG When the Cost Map Is
Given

Kernelnonblock);

# Blockable: deadend or avoidable
14: Mblock = logicalOR(Mdeadend, Mavoidable);

# But– nonblockable or start/end is excluded.
15: Mblock = logicalAND(Mblock,

logicalNOT(logicalOR(Mnonblock, Ms)));

# Apply blocking to the grid map
16: M = clip(M − 2 × Mblock.type(int), -1, 1);
17: if endCondition(|Mblock-M|, i, maxIter) then
18: break;
19: end if
20: end while
21: returnM ; # (H, W) tensor that the blocking applied.

Algorithm 6 Interface of SP Algorithm
def ShortestPathfinding(M , s, e, Cvertex , mode):

# Inputs:M : Grid map
# s, e: start/end vertices
# Cvertex : vertex costs (default value is 0).
# mode: dijkstra, A∗, JPS, . . .

1: if mode is ‘dijkstra’ then
2: SP_method = Dijkstra;
3: else if mode is ‘A∗’ then
4: SP_method = A∗;
5: else if mode is ‘JPS’ then
6: SP_method = JPS;
7: end if
8: path = SP_method(M, s, e, Cvertex);
9: return path; # list of vertices from s to e.

configurations, as described in Algorithms 3 and 5, respec-
tively. Algorithm 7 combines these approaches to showcase
PBGG with a given cost map. Algorithm 8 introduce
the interface of SP algorithms. Finally, in Algorithm 9,
we present the process that combines PBGG with the SP
algorithm.

A. PATTERN MATCHING
See Algorithm 1.

B. PBGG (w/o vertex costs)
See Algorithm 2.

C. IDENTIFICATION OF AVOIDABLE VERTICES IN 4N (w/
vertex costs)
See Algorithm 3.

D. IDENTIFICATION OF AVOIDABLE VERTICES IN 8N (w/
vertex costs)
See Algorithm 4.
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Algorithm 7 Improved SP Utilizing PBGG
def SP_with_PBGG(M , s, e, maxIter, Cvertex , mode):

# Inputs: M : Initial grid map (H, W)-shape binary
tensor. 1 is free-space, 0 is obstacle.
# s and e: start/end vertices
# maxIter: the maximum blocking iterations
# Cvertex : cost map
# mode: Dijkstra’s / A∗ / JPS / . . .

1: M← 2M- 1; # -1 is obstacle, 1 is free-space.

# Preprocessing: grid graph reduction
2: ifCvertex is not given then
3: M = PBGG 1 (M , s, e, maxIter);
4: else
5: M = PBGG 2 (M , s, e, Cvertex , maxIter);
6: end if

# 1 is free-space, 0 is obstacle or a blocked vertex.
7: M =(M+1) // 2;

# Apply SP algorithm
8: path=ShortestPathfinding(M , s, e, Cvertex , mode);

9: return path; # list of vertices from s to e

E. PBGG (w/ vertex costs)
See Algorithm 5.

F. INTERFACE OF SP ALGORITHM
See Algorithm 6.

G. IMPROVED SHORTEST PATHFINDING UTILIZING PBGG
See Algorithm 7.
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