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ABSTRACT In this paper, the problem of integration and scheduling of automated guided vehicles
(AGVs) and inspection machines in medical sample-testing laboratories is addressed with the objective of
minimizing the maximum turnaround time (TAT). A genetic algorithm (GA) with a sliding time window
(STW) heuristic algorithm (GA-STW) is proposed for the studied problem while incorporating the vehicle
assignment algorithm (VAA) for decoding operations. A mathematical model for AGV and inspection
machine integration scheduling is established, and a dual-coding method for the inspection process and
machine is used to solve the model. VAA was used to assign suitable AGVs to each transportation task
during the decoding stage. The STW heuristic algorithm was used to further optimize the initial solution
and allocate samples to appropriate inspection machines while scheduling the shortest transportation time
for AGVs. The crossover operators, mutation operators, and elite numbers were experimentally optimized.
A numerical simulation of standard examples demonstrated the superiority of the proposed algorithm.

INDEX TERMS Genetic algorithm, integrated scheduling, sample testing laboratory, sliding time window.

I. INTRODUCTION
With the continuous development of information, logistics,
and automation technologies and their widespread applica-
tion in the healthcare industry, total laboratory automation
(TLA) has become the goal of medical sample-testing labo-
ratories [1]. This technology connects sample transportation
systems, transport robots, automatic analyzers, process con-
trol, and related software and hardware [2], enabling the
automatic processing and tracking of samples, reducing the
TAT of test samples, improving laboratory productivity, and
reducing costs. The TAT refers to the duration from the arrival
of a test sample at the laboratory to the release of the test
results. This is an essential component of comprehensive
quality management in the laboratory, reflecting the timeli-
ness of generating test reports for sample analysis. The TAT
serves as the standard formeasuring efficiency. In this system,
the key to improving the TAT and testing efficiency is the
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joint scheduling and optimization of sample transportation,
AGV task allocation and scheduling, and testing equipment
scheduling. It is essentially a joint scheduling optimization
problem for samples, AGVs, and testing equipment.

The sample testing laboratory is composed of various
biomedical instruments and testing machines. Depending on
the specific testing requirements, the corresponding reagent
type and testing machines need to be considered for different
testing projects to conduct appropriate testing operations on
different samples. Automation can enhance the efficiency
of a laboratory and reduce safety risks, as demonstrated by
studies conducted by Lam and Jacob [3], Seaberg et al. [4],
Sarkozi et al. [5], and Melanson et al. [6]. Scholars from
different countries have conducted comprehensive research
on reducing TAT in sample testing laboratories, which can be
categorized into strategic decision-making [7], [8], tactical
decision-making [9], [10], [11], and management decision-
making [12], [13], [14], [15]. However, there has been limited
research on the integration and scheduling of AGVs and
machines in sample testing laboratories. Therefore, this study
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primarily focuses on the integration and scheduling problem
of AGVs and machines with the goal of minimizing maxi-
mum TAT in the laboratory.

The integrated scheduling problems of AGVs and
machines primarily involve machine allocation, process
sequencing, AGV allocation with task handling, and AGV
path planning [16]. The abstraction and simplification of
an actual problem are often required during modeling. The
constraint conditions of models in the literature can be
classified into three categories: process, machine, and AGV.
Some scholars have considered special constraints when
modeling, such as the loading and unloading times studied
by He et al. [17]; however, they were incorporated into
the machine processing time for handling. Lyu et al. [18],
He et al. [17], Zou et al. [19], and Deng et al. [20] achieved
integrated scheduling under the premise of no-conflict paths
by introducing time windows into the model. Li et al. [21] and
Li and Liu [22] considered the impact of the charging factors
on scheduling in their research. In the static scheduling
problem of AGVs, some scholars have also considered the
multi-load environment of AGVs, including Liu et al. [23],
Ge et al. [24], and Wu et al. [25], which helps optimize the
AGV travel route and reduce the running distance. However,
there is still little research on factors such as workpiece arrival
time and delivery time. Ma et al. [26] considered delivery
time constraints and minimized the total delay as one of the
optimization objectives.

Optimization algorithms for studying such problems can
generally be classified into four categories: exact algorithms,
heuristic algorithms, intelligent optimization algorithms, and
simulation methods. Owing to the complexity of the AGV
and machine integration scheduling problems, current opti-
mization algorithmsmainly focus on the latter two categories.
In recent years, scholars have improved these algorithms
to obtain optimal solutions. For example, Homayouni and
Fontes [27] proposed a biased random key genetic algorithm
based on operations with multiple starts. Zou et al. [28]
presented a hybrid genetic algorithm based on time win-
dows and the Dijkstra algorithm. Yuan et al. [29] introduced
a hybrid genetic algorithm based on simulated annealing.
Dai et al. [30] developed an improved genetic algorithm
to minimize the maximum completion time, AGV trans-
portation energy consumption, machine processing energy
consumption, and other resource energy consumption. Li and
Lei [31] proposed a feedback-based imperialist competitive
algorithm to minimize the above-mentioned four objectives
and average job delay time, achieving satisfactory results.
Furthermore, Qin et al. [32] addressed sequence order-
ing, factory allocation, machine selection, and job blocking
using a collaborative iterative greedy (CIG) algorithm. Sim-
ilarly, an improved exchange based iterative greedy search
(IGS) algorithm was proposed in [33] to solve this prob-
lem. Two perturbation strategies were designed to enhance
the local and global search capabilities of this solution and
reduce the impact of blocking constraints on job sequences.

The paper [34] introduces a new flow shop combinatorial
optimization problem was introduced, and an iterative greedy
algorithm that includes two key technologies was proposed.
One is the decoding process for calculating the completion
time of job sequences, and the other is the neighborhood
probability selection strategy for jobs with families and
blocks. Additionally, emerging hybrid algorithms, such as
whale optimization based on genetic algorithms [35], multi-
objective evolutionary algorithms based on reverse learning
strategy [36], improved flower pollination algorithm [37],
and hill-climbing algorithm based on delayed acceptance
strategy [27], have also been introduced.

Based on the above analysis, current research in the context
of medical sample testing laboratories generally focuses on
improving TLA devices, training personnel, and machine
upgrades. However, with the gradual widespread application
of AGVs in hospitals, research on the integration and schedul-
ing issues of AGVs and machines in this context is limited.
Furthermore, most of the proposed algorithms are not appli-
cable to the problem studied herein, and the research models
related to integrated scheduling problems are mostly based on
standard cases. Therefore, this article addresses the integrated
scheduling problem in the context of a sample testing labora-
tory, taking into account the peculiarities of medical testing,
such as the sample arrival time, limitations in testing projects
that can be completed by each machine, AGV scheduling,
and latest testing time, which must be considered to mini-
mize the TAT as the objective of establishing a model that
embeds the AGV andmachine scheduling subproblems in the
iterative solution process. To avoid premature convergence
and the occurrence of local optima, a GA-STW algorithm
was developed to address the integration and scheduling
problem between the inspection machine and AGVs in the
sample testing laboratory. The parameters that fit the model
proposed in this study were calculated. The algorithm first
uses a GA to encode the processes and testing machines
separately, and then generates machine scheduling solutions.
During decoding, a VAA is introduced to optimize the AGV
scheduling. To prevent blank time windows in feasible solu-
tions, a STW heuristic algorithm seeks better solutions given
machine scheduling to minimize the maximum TAT and
improve the efficiency of the laboratory.

II. PROBLEM DESCRIPTION AND
MATHEMATICAL MODEL
A. DESCRIPTION OF SAMPLE TESTING LABORATORY
INTEGRATED SCHEDULING PROBLEM
This study investigates the integrated scheduling of AGVs
and machines in sample-testing laboratories, with the goal of
minimizing the TAT of the laboratory. The problem considers
the scheduling of both testing machines and AGVs as well as
constraints such as the arrival time of test samples, processing
(testing) time, transport time, and deadline time. A dual-
constraint model for transporting AGVs and testing machines
was established. TAT refers to the time from when a doctor
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requests a test project to when the patient obtains the test
report and includes nine steps: doctor requests, specimen
collection, confirmation, transport, preprocessing, testing,
result reporting, analysis, and corresponding measures. This
study mainly considered a narrow definition of TAT: the time
from transportation of the sample to the laboratory to the
production of the result, also known as laboratory TAT [38].
Test samples were placed in batches on a sample rack and
delivered to the laboratory. The sample racks were placed
on the table, with each sample rack containing r test sam-
ples; inspection there were n sample racks {J1, J2, . . . , Jn}.
The samples were first sent to the preprocessing machine
and then transported to the corresponding testing machine
{s{M1,M2, . . . ,Mm} for testing. After testingwas completed,
the samples were placed in the buffer area of the testing
equipment and transported to the refrigerator for storage.
The sample transfer between each link in the testing process
was completed using v identical AGVs {R1,R2, . . . ,Rl}. The
sample preparation process is illustrated in Fig. 1.

FIGURE 1. Sample flow chart.

Owing to inconsistent reagent positions in the different
testing machines, the available test items were not completely
consistent. In this study, it is necessary to select suitable
testing equipment for each testing process and appropriate
AGVs for the transportation task to ensure that the samples
are tested within a specified time and to improve the testing
efficiency.

To better analyze the problem, the following assumptions
are made:

1) Information such as the selected testing machine, pro-
cessing time, arrival time, and deadline is known for
each testing sample.

2) At time 0, all AGVs and testing machines are in an idle
state.

3) The testing machines have infinite buffer areas.
4) The testing samples in each sample rack have no

priority.
5) The testing equipment can only test one sample rack at

a time.
6) Machine failure, reagent replacement, and other factors

are not considered.
7) The reagent positions and testable items are not

identical.
8) The testing sample cannot be stopped once the testing

process begins.
9) An AGV can transport only one sample rack at a time,

and the transportation process cannot be interrupted.
10) AGV failures, charging, congestion, and other condi-

tions are not considered; theAGVs operate at a constant
speed.

B. MATHEMATICAL MODEL
1) PARAMETER SYMBOLS AND DEFINITIONS
Ji: set of sample racks, J = {J1, J2, . . . , Jn}, n = number of
sample racks;
Mk : set of machines, M = {M1,M2, . . . ,Mm}, m = num-

ber of testing machines;
Rv: set of AGVs, R = {R1,R2, . . . ,Rl}, l = number of

AGVs;
Oij: indicates the j-th testing process of Ji, j =

{1, 2, . . . , h};
Gi: indicates the number of test samples in the i-th sample

rack;
tk : indicates the time for the k-th testing machine to test the

sample;
Sijk : indicates the start time of Oij on Mk ;
Eijk : indicates the end time of Oij on Mk ;
Ti: indicates the TAT of sample rack i;
Ai: indicates the arrival time of sample rack i;
Di: indicates the deadline of sample rack i;
Pijk : indicates the testing time of Oij on Mk ;
Oi′j′ : indicates the preceding testing process of Oij on the

current testing device;
Si′j′k ′ , Ei′j′k ′ , Pi′j′k ′ : indicates the start time, end time, and

testing time of Oi′j′ on Mk ;
Tvij: indicates the time required for AGV to transport Oij

for delivery;
Tbv, Tev: indicates the start and end time for AGV to be

empty;
Tbvij, Tevij: indicates the start and end time for AGV to

transport Oij for delivery;
MSk : indicates the start time ofMk being idle;
MEk : indicates the end time ofMk being idle;
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Mvij, M ′
vij: indicates the machine where sample rack i is

located and the machine where AGV is located during the
delivery of Oij;

L: indicates a sufficiently large positive number
Decision variables:

Xijk =

{
1, if Oijis tested on Mk

0, otherwise
(1)

Yijv =

{
1, if Oijis transported byRv
0, otherwise

(2)

XPpqijk =

{
1, if Opq is tested on Mk prior to Oij testing
0, otherwise

(3)

YPpqijk =

{
1, if Opq is transported earlier than Oij on Mk

0, otherwise
(4)

Z (Mk) =

{
1, if The current testing machine is in use
0, otherwise

(5)

2) MODEL REPRESENTATION

f =min (max(T1,T2, . . . ,Ti)) (6)
m∑

k=1

Xijk = 1 (7)

n∑
i=1

Xijk = 1 (8)

n∑
i=1

Yijv = 1 (9)

Sijk + Pijk + Tvi(j+1) ≤ Si(j+1)k (10)

Si′j′k + Pi′j′k ≤ Sijk (11)

Eijk = Sijk + Pijk (12)

Sijk+L(1 − XPpqijk ) ≥Epqk (13)

Tbvij+L(1 − YPpqijk ) ≥Tevpq (14)

Tbvij ≥ Eijk (15)

Ti ≤ Di (16)

Pijk = Xijk ∗ (Gi ∗ tk ) (17)

MSk≥Ei′j′k ,MEk≥Sijk + Pijk (18)

Tvij = T
(
M ′

vij,Mvij
)
+T

(
Mvij,Mk

)
(19)

Xijk = 0, 1 ≤ i ≤ n, k /∈Mi (20)

Tevij = Tbvij + Tvij (21)

Ti = Eihk (22)

The goal of the objective function (6) is to minimizes the
maximum TAT. Constraint (7) indicates that the sample rack
can be inspected using only one testing machine at a time.
Constraint (8) indicates that the machine can inspect only

one sample rack at a time. Constraint (9) indicates that an
AGV can transport only one sample rack at a time. Constraint
(10) indicates the constraint between two adjacent inspection
processes for the same sample. Constraint (11) indicates the
inspection constraint of the previous process for the same
inspection device. Constraint (12) indicates the completion
time for the inspection Oij. Constraint (13) indicates the
inspection capacity limitation of the testing machine. Con-
straint (14) indicates the capacity limitation of the AGV.
Constraint (15) indicates that the AGV must transport the
sample rack after inspection is completed. Constraint (16)
represents the deadline constraint for an inspected sample.
Constraint (17) represents the inspection time of the sample
rack i on machine k. Constraint (18) indicates that a sam-
ple can only be inspected when the machine is available.
Constraint (19) represents the transportation time of Oij by
the AGV. Constraint (20) indicates that the sample rack can
only be scheduled for machines that inspect the type of
sample. Constraint (21) indicates that the completion time
of the transportation task by the AGV is the sum of the start
time of transporting the sample rack and transportation time.
Constraint (22) represents the TAT of the sample rack i, which
is the completion time of the last inspection process for that
sample.

With the specificity of sample testing in the laboratory,
this study also considers whether samples need to undergo
pretreatment to creat constraints. Depending on the avail-
ability of the testing machine, the following conditions are
considered.

If there is a pretreatment process for the sample and the
testing machine is available, the start time of the test is the
sum of the sample rack arrival time and the time required for
the AGV to transport the sample rack. If the testing machine
is unavailable, the start time of the sample test is determined
as the maximum time between the arrival time, time required
for the AGV to transport the sample rack, and idle time of the
machine.

Si1k =

{
Ai + Tvij, Z (Mk) = 0
max

(
Ai + Tvij,MSk

)
, Z (Mk) = 1

(23)

III. GA-STW ALGORITHM DESIGN
A GA-STW algorithm is proposed for the model in this
study. Machine scheduling and AGV scheduling problems
are embedded in the iterative solving process. The main
idea of the algorithm is to apply the MSOS-I encoding
method [39]. During the decoding process, the VAA is used
to process the AGVs. The VAA attempts to search for the
AGVwith the shortest transportation completion time in each
transportation route to minimize the transportation time and
start-time deviation for each operation. After generating the
initial scheduling results, a STW heuristic algorithm [40] is
used to further optimize the solution to the problem. STW
checks whether a given number of AGVs can complete all
transportation routes within the time window generated by
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the machine scheduling subproblem. Based on the different
conditions, the time window was adjusted while considering
the idle status of the AGVs and the earliest start time for
sample inspection to construct a new time window. This
algorithm can effectively improve the inspection rate without
violating any constraints, while avoiding long waiting times
for sample inspection and AGV transportation.

A. ALGORITHM ENCODING AND DECODING
1) ALGORITHM ENCODING
Owing to the unique nature of the model used in this study,
both AGV and inspection machine scheduling must be con-
sidered. Thus, the problem can be decomposed into two
subproblems: the machine allocation problem, which selects
machines that meet the constraint conditions and optimiza-
tion goals for each process, and the AGV allocation problem,
which arranges suitable AGVs for each process and deter-
mines the starting and ending positions of the AGVs and their
corresponding time nodes for each transport until all sample
racks are inspected. As the encoding and solution spaces are
mapped, the encoding method affects the size of the search
space for the subsequent algorithm searches. An encoding
strategy based on the inspection process and machine was
designed for the model constructed in this study, as shown
in Figure 2. The encoding method is divided into machine
selection and process order strings. The AGV allocation sub-
problem is solved using the VAA algorithm and completed
during the decoding process.

FIGURE 2. Chromosome encoding.

Each chromosome consists of two parts. The first part is
encoded based on the testing process; the number appearing
at the gene locus represents the sequence of the sample tray
in the testing process. For example, the number 3 on the
third gene locus represents the first process of sample tray 3,
number 1 on the fourth gene locus represents the second
process of sample tray 1, and so on.

The second part is encoded based on the testing machine,
and the number at the gene locus represents the selected
machine number for the corresponding testing process. For
example, number 5 on the first gene locus indicates that the
first process of sample tray 1 is tested using machine 5;
number 2 on the second gene locus indicates that the
first process of sample tray 2 is tested using machine 2,
and so on.

2) ALGORITHM DECODING
The aforementioned encoding operation can solve the prob-
lem of sample rack selection in an inspection machine, and
the AGV scheduling is implemented in the decoding process.
In this study, a VAA is used for processing, which considers
the scheduled inspection process name, start time, and name
of the previous the inspection process as the input information
received from the chromosome decoding process. It is a
greedy algorithm that can achieve good results in a short time
after determining the arrangement of inspection processes
and inspection machines. It searches for the best AGV to
obtain the earliest inspection start time on the designated
inspection machine.

TABLE 1. Sample test data.

TABLE 2. Transport time matrix.

FIGURE 3. An illustration of the VAA.

Table 1 and Table 2 present the data used to illustrate the
decoding methods. This paper assumes that the VAA consid-
ers how to transport J3 after arranging the first operations of
J1 and J2. At this point, the first operation of sample rack 3,
from the inspection table to the corresponding first inspection
equipment, was assumed to be inspection machine M2. Two
scenarios were considered, as shown in Figure 3.

1) Figure 3.(a) shows that AGV1 is used for trans-
portation. AGV1 is located on machine M1. When
dispatching this AGV, AGV1 travels empty from M1
to the inspection station, and then loads J3 from the
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inspection station to machine M2. The inspection of
rack 3 was completed at 23.

2) Figure 3.(b) shows that AGV2 is used for transporta-
tion. At this time, AGV2 is located on machine M2.
After dispatching AGV2, it travels empty from M2
to the inspection station, loads J3 to the inspection
station, and returns toM2. The inspection of rack 3 was
completed at 37.

From Figure 3, it can be observed that selecting AGV1
for transportation in this case results in a shorter completion
time for the inspection of sample rack 3. Thus, AGV1 was
chosen to handle the transportation task for sample rack 3.
Themain decoding concept of VAA is to stretch the generated
machine schedule when considering the transportation time
of AGVs for a given operation sequence represented by a
process-based encodingmethod. This is because the start time
of each process changes. In other words, ideally minimizing
the start time of the processes can generate the shortest overall
time for a combined schedule of AGVs and machines. The
VAA attempts to determine the AGV with the shortest trans-
portation time for each run to minimize the offset in the start
time of each process.

B. ALGORITHMIC OPERATOR DESIGN
1) SELECTION OPERATORS
The selection operation can increase the survival probability
of genes with higher fitness, ensuring the passing of excellent
traits from the parent generation to their offspring, effectively
improving the efficiency of the algorithm. This study refers to
the operation of selecting two parent strings to generate a new
string (i.e., a substring), as used by Murata et al., which has
demonstrated good performance in solving such problems
and can achieve stronger selection intensity [41]. Let Npop
be the number of solutions in each population in the genetic
algorithm; Npop is the population size. The notation 9t =

{x1t , x
2
t , . . . , x

Npop
t } is used to represent the Npop solutions in

the t-th generation. Each solution xit is selected as a parent
string based on its selection probability, Ps(x it ). The following
selection probabilities are used in the simulation:

Ps
(
x it

)
=

[
fM (9t) − f

(
x it

)]2∑
xit∈9t

[
fM (9t) − f

(
x it

)]2 (24)

Function f (x it ) is the objective function (makespan) to be
minimized in scheduling problems, and fM (9t) is the worst
value of f in the t-th generation.

fM (9t) = max{f (x it )|x
i
t ∈ 9t } (25)

2) CROSS OPERATOR
The crossover operator is an important component of the
GA. Utilizing the advantageous genes of chromosomes and
ensuring feasible solutions can help inherit better features
from the fittest solutions. Based on the characteristics of the

problem in this study, two different crossover methods are
applied to the process and the machine.

First, we randomly divide all sample racks into two groups
{J1, J2}, randomly select two different parental process chro-
mosomes, reserve the process positions belonging to J1 in P1
to C1, reserves the process positions belonging to J2 in P2 to
C2, copy the process positions belonging to J2 in P2 to the
remaining positions in P1, and copies the process positions
belonging to J1 in P1 to the remaining positions in P2. The
crossover process is illustrated in Figure 4.

FIGURE 4. Cross-operational process of procedures.

Subsequently, a cross is performed on the testingmachines.
Two different parent machine chromosomes are selected, and
the positions of the procedure for machine cross-validation
are randomly generated as the crossing positions of parent
P1’. Cross-validation is performed at the corresponding posi-
tion on P2. For example, the first process of sample rack 3 in
P1 is selected as the crossing point, and the corresponding
position is determined in P2 for crossing. The crossing pro-
cess is illustrated in Figure 5.

3) MUTATION OPERATORS
Mutation operations help the GA to reach as many points as
possible in the search space. They can be viewed as searching
from the current solution to the local solutions. This study
uses different mutation methods for processing and inspec-
tion machines, described as follows.

First, there is a variation in the process. Using the exchange
mutation method, a segment of the parent chromosome is
selected, and only two positions of the process are randomly
selected and exchanged. To prevent the testing machine from
becoming unavailable, adjustments must be made according
to the process-exchange method. For example, after exchang-
ing the first process of sample rack 1 with the first process
of sample rack 4, the corresponding testing machine was
changed, and the machines needed to be exchanged simul-
taneously. In other words, the testing machine was changed
from machine 5 to machine 2 after the exchange. The muta-
tion process is illustrated in Figure 6.

Next, this paper focuses on the variations in the testing
machine. A segment of the parental chromosome is selected,
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FIGURE 5. Verification of cross-operation process of machinery.

FIGURE 6. Process of variation in operation procedures.

and multiple mutation points are randomly generated. The
machine is reselected from the machine set corresponding
to the testing process. For example, when the first process
position of sample rack 3 undergoes a mutation, the available
machine set is {J3, J4}. A random number with a length equal
to that of the set is generated, and the corresponding machine
is selected based on a random number. The mutation process
is illustrated in Figure 7.

FIGURE 7. Verifying the variation of machine operation process.

4) ELITE RETENTION STRATEGY
An elite individual is the individual with the highest fitness
value discovered by the genetic algo5rithm during the evo-
lution of the population, possessing the best genetic structure
and advantageous traits. The advantage of using elite reserva-
tion is that the genetic algorithm does not lose or destroy the
most optimal individual that has appeared thus far during the
evolutionary process in the selection, crossover, and mutation
operations. The elite reservation strategy plays a significant
role in improving the global convergence ability of standard
genetic algorithms. Rudolph [42] theoretically demonstrated
that a standard genetic algorithm with elite reservation is
globally convergent.

This study uses the elite retention method proposed by
De Jong [43], assuming that a(t) is the best individual in the
population in the t-th generation. Let A(t+1) be the new-
generation population. If there is no individual in A(t+1)
better than a(t), then add a(t) to A(t+1) as the (n+1)-th
individual, where n is the size of the population. To maintain
a constant population size, if an elite individual is added to the
new-generation population, the individual with the minimum
fitness value can be eliminated.

C. STW HEURISTIC SCHEDULING ALGORITHM
A feasible solution to the problem model can be obtained
using GA encoding and VAA decoding. However, in the solu-
tion process, the computation is based on the assumption of an
infinite number of idle AGVs. In reality, the number of AGVs
is limited. When introducing the AGV quantity limitation,
the condition where the machine inspection completion time
and the available time point for calling AGVs in the previ-
ous section overlap and whether there is a time difference
between the transportation time and the machine inspection
completion time must be considered. AGVs are scheduled
to be dispatched only after completion of the inspection; it
must also be considered whether idle AGVs are available for
transportation at that time. If idle AGVs are available for
transportation and can travel empty, the optimized time at
this point is the time for the AGV to reach the machine from
its current position. This study introduces an STW to further
investigate this condition.

1) OVERVIEW OF STW ALGORITHM
An STW does not divide the fixed start and end points of
time windows. Instead, it uses the arrival time of each request
as the endpoint of the statistical time window. The starting
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point is the time point obtained by pushing back the length
of the time window from the endpoint [40]. An STW divides
the time window into smaller intervals. Each time an interval
passes, the time window slides one grid to the right and each
interval has an independent counter. When calculating the
total number of requests in the entire time window, all the
counters in each time interval are accumulated.

Problems that can be solved using the STW approach typ-
ically have elements within the window that are continuous,
meaning that the abstract sliding window is continuous on
the original array or string, and can only slide from left to
right and not backward. This means that the left and right
boundaries of the window can only increase from left to
right and cannot decrease, even locally [44]. The algorithmic
approach for a simple STW is presented as follows:

1) Using the left-right pointer technique, we initialize
left = right = 0 and refer to the closed interval [left,
right] as a [window].

2) The right pointer is continuously increased to
expand the window [left, right] until it meets the
requirements.

3) The window [left, right] is narrowed by stopping
the right pointer and continuously increasing the left
pointer until the string in the window no longer satisfies
the requirements. The result is updated for one round
with each increase in the left pointer.

4) Steps 2 and 3 are repeated until the right side reaches
the end.

Step 2 is equivalent to finding a feasible solution and
Step 3 determines the optimal solution. The left and right
pointers alternately move forward; the window size con-
stantly increases and decreases, causing the window to slide
to the right.

2) STW ALGORITHM OPTIMIZATION STEPS
Using the STW to further optimize the model, first constrain
the time window Wi.

C(i−1)jm + Tvij ≤ Wi ≤ Cijk − Pijk (26)

As shown in Figure 8, when Oi(j−1)m is tested in the
j-1st process at stationMm, the inspection completion time is
Ei(j−1)m. The next inspection for sample rack i was carried out
at stationMk ; the completion time ofOi′j′ tested atMk isEi′j′k .
Assuming that there is a free AGV at the time point Ei′j′k ,
the inspection of sample i can be performed immediately
after completion of the inspection of sample rack i’, which
means that the earliest inspection time for sample rack i is
Ei′j′k . However, according to the GA andVAA algorithms, the
instruction to transport sample rack i by the AGV is triggered
only when the time point Ei′j′k is reached, resulting in the
actual inspection time of sample rack i being:

Sijk = Ei′j′k + Tvij (27)

In an ideal scenario, when there is a blank time period,
if there is a free AGV at time Ei(j−1)m, then the AGV can

FIGURE 8. A blank time window condition.

FIGURE 9. STW scenario 1.

be scheduled to transport sample rack i at that time, and it
can arrive at Mk for inspection at time Ei′j′k . To avoid blank
periods, this study introduces an STW algorithm to optimize
the problem. To determine the optimal solution for the model,
it is necessary to analyze different conditions and consider the
relationship between the time point Ei′j′k and the availability
of AGVs at timeEi(j−1)m. Two conditions must be considered.

1) As shown in Figure 9, when Ei′j′k ≥ Ei(j−1)m + Tvij,
if there is a free AGV at time Ei(j−1)m, the AGV with
the shortest transportation time is selected to transport
sample rack i. The starting time of the sample rack
inspection is:

Sijk = Ei′j′k (28)

If there is no available AGV at that moment, the slide time
windowWi to the right and check whether there is any avail-
able AGV at time Ei′j′k+Wi. If so, select the AGV; otherwise,
continue sliding the time window until an available AGV is
obtained. The starting time of the sample rack inspection is
presented as follows, where n is the number of STW.

Sijk = Ei′j′k + n∗Wi (29)

2) As shown in Figure 10, at this time Ei′j′k ≤ Ei(j−1)m +

Tvij. If there is an available AGV at time Ei(j−1)m, the
AGV with the shortest transport time is selected to
transport sample rack i. The starting time of the sample
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FIGURE 10. STW scenario 2.

rack inspection is:

Sijk = Ei(j−1)m + Tvij (30)

If no AGV is available at this time, the time window Wi
slides to the right. This study examines whether there is a free
AGVatEi′j′k+Wi. If there is one, select AGV; otherwise, slide
through the time window until there is an available AGV. The
starting time of the sample rack is:

Sijk = Ei′j′k + Tvij + n∗Wi (31)

The STW concept is consistent with the subproblem of
AGV scheduling; given a solution to the machine scheduling
subproblem, there are specific operation sequences and spe-
cific completion times Cmax for each machine. The earliest
and latest completion times are calculated by sliding the
STW backward [45]. The main process framework of STW
is shown in Figure 11.

IV. EXPERIMENTAL AND COMPUTATIONAL RESULTS
To determine and verify the performance of the GA-STW
algorithm proposed in this study to solve the integrated
scheduling problem between AGVs and inspection machines
in hospital laboratories, experiments were conducted in
a Python 3.11 programming environment on a processor
with Intel(R) Core(TM) i5-7300HQ CPU @ 2.50 GHz
and 16.0 GB of memory. This study focuses on the inte-
grated scheduling problem between AGVs and inspection
machines in a sample-testing laboratory. Because of the spe-
cific nature of this problem, it differs significantly from
typical workshop-scheduling problems. In this study, the
problem size is set as n = 5 sample racks, m = 4 inspection
machines, and l = 2 AGVs. Additionally, during inspection,
some samples required preprocessing before testing, whereas
others did not, resulting in two or three processing steps in
the model. The corresponding parameters are set and the
experiments are conducted.

FIGURE 11. The main process framework of STW.

A. COMPARATIVE ANALYSIS OF ALGORITHM
PARAMETER OPTIMIZATION
When using GA to solve problems, it is necessary to ensure
a balance between the local and global search capabili-
ties, which are determined by the crossover and mutation
probabilities. GA achieves a balanced search capability by
coordinating and competing through crossover and mutation
operations, thus obtaining optimal solutions that consider
both global and local searches. The term ‘‘coordination’’
refers to a population that is stuck in a hyperplane in
the search space during evolution and is unable to escape
crossover alone; mutation can help overcome this prob-
lem. The term ‘‘competition’’ refers the mutation operation
destroying the expected building blocks formed by crossover.
Similarly, in the iterative process of GA, adopting an elitist
retention strategy can prevent the loss or destruction of the
best individuals selected, crossed, and mutated during the
iteration, preserve excellent individuals from the parent popu-
lation to the offspring population, accelerate the convergence
speed of the algorithm, and retain good genes.

Thus, when solving the model, selecting different
crossover and mutation probabilities and numbers of elites
can result in varying degrees of disturbance and convergence
speeds for the same problem. To solve the problem proposes
in this study, different parameter selections are considered
to examine the potential impact on the results, and suitable
parameters for the model are chosen through comparison.
The experimental parameter settings are as follow: population
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FIGURE 12. Comparison of iteration plots for different parameters.
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FIGURE 12. (Continued.) Comparison of iteration plots for different
parameters.

size P= 100, maximum iteration numberM= 100, crossover
probabilities PC of 0.9, 0.95, and 0.99, mutation probabilities
Pm of 0.1, 0.05, and 0.01, and number of elites of 5, 10,
and 15.

TABLE 3. Analysis and comparison of algorithm parameters.

Figure.12 presents the best results obtained after running
the model 20 times independently. Three sets of parameters
were compared, each with three different options, resulting in
a total of 3∗3 = 27 combinations. Each of the figures shown
in the graph represents only one variable and is analyzed and
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compared from two perspectives, as shown in the following
Table 3.

The optimal solution of 114 is obtained when PC = 0.95,
Pm = 0.1, and elite=10, assuming that the other parameters
remain unchanged. Although the fastest convergence speed is
achieved with PC (=0.9, Pm = 0.01, elite = 5) and (PC =

0.99, Pm =0.1, elite = 15), the corresponding optimal values
are 126 and 116, respectively. The difference in the solution
time between iterations is less than 1s. The parameters result-
ing in the optimal solution are chosen as follows: crossover
probability PC = 0.95, mutation probability Pm = 0.1,
and number of elite individuals = 10. This parameter set
has a relatively fast convergence speed and optimal results
compared to the other parameters; thus, it is used to optimize
the experiment in the following sections.

B. CASE SOLVING
This section provides a solution for the aforementioned cases,
and the Gantt chart obtained from the experiment is shown in
Figure 13.

FIGURE 13. Example Gantt chart.

The Figure 13. shows the optimal scheduling scheme
for the proposed example. The vertical axes represent the
inspection machine and AGV, and the same rectangle repre-
sents different processes for the same workpiece. The colors
displayes on the AGV represent the transportation of the
correspondingworkpiece, with white indicating that the AGV
is currently idle. This follows the standard format uses in
academic journals.

The inspection process of the sample rack in the scheduling
plan shown in the figure is described as follows: The first
inspection process of sample rack J2 is arranged on inspection
machineM1. J2 must be transported from the waiting area to
inspection machine M1. At this time, both AGV1 and AGV2
are idle. As AGV2 requires less time to transport the sample
rack, it is selected to transport J2. The second process of the
sample rack J2 can be inspected using machineM3. Then the
AGV transports it to M3. At this time, machine M3 inspects
the sample rack J5. The inspection completion time of J2
at M1 plus the transportation time by AGV is less than the

inspection completion time of J5. In addition, there is an idle
AGV exists at this time; thus, AGV1 is scheduled to transport
J2 from M1 to M3. After J5 is processed, J2 can begin the
inspection. The transportation route of sample rack J2 is
M1 → M3 → M2. The transportation route for AGV1 is from
the waiting area toM1; and the transportation route for AGV2
is M1–M3–M2. The sample rack is placed in a refrigerator.
The total inspection completion time of the sample rack is
the sum of the first inspection time of 20 at M1, the second
inspection time of 18 atM3, the third inspection time of 10 at
M2, the transportation time from the beginning toM1 of 6, the
transportation time of M1 → M3 of 8, transportation time of
M3 → M2 of 6, and the transportation time from M2 to the
end of 10, which is 20 + 18 + 10 + 6 + 8 + 6 + 10 = 78.
The inspection process for subsequent sample racks followed
the same procedure.

C. ALGORITHM COMPARISON
To verify and evaluate the performance of the GA-STW
algorithm proposed in this study in solving the integration
scheduling problem of AGVs and machines in sample-testing
laboratories, a comparison is made with other algorithms
that solve similar integration scheduling problems. The main
comparison algorithms include six methods: the lower bound
algorithm (LB) proposed by Ulusoy and Bilge [46], taboo
search algorithm (MTS) proposed by Montane and Gal-
vao [47], NSGA-II algorithm proposed by Ma et al. [26],
improved iterative local search algorithm (ILS) proposed by
Hu et al. [48], discrete whale optimization algorithm (IWOA)
proposed by Zou et al. [49], and the original GA. The com-
parison data in this study are obtained from examples of AGV
and machine integration scheduling in a flexible job shop
proposed in [40]. The GA-STW algorithm proposes in this
study is independently executed 25 times for each example
to obtain the optimal solution. The results are compared with
those of other methods reported in the literature, as shown in
Table 4.

The Table.4 shows the optimal results obtained by the
different algorithms in solving the test problems. The LB
method proposed by Ulusoy yields a theoretically optimal
solution. However, it is difficult to achieve this value in practi-
cal application. Comparing the 40 test cases in the table, it can
be observed that the original GA has difficulty converging to
the global optimal solution and exhibits poor performance.
Compared with the results of the original GA, GA-STW
proposes in this study has better results in 19 test cases,
with improvements of over 5% in eight test cases, including
three test cases with improvements of 10%. Of the 40 test
cases presented in the table, GA-STW algorithm results are
not inferior to those of the other algorithms, with 20% of
the examples performing better than the other algorithms,
and 62.5% obtain good results as well as other algorithms.
Thus, it can be concluded that the GA-STW algorithm has
its own advantages in solving AGV and machine integration
scheduling problems, similar to the other algorithms.
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TABLE 4. Comparison of algorithm results. TABLE 4. (Continued.) Comparison of algorithm results.

D. ALGORITHM UNIFORMITY COMPARISON
To validate the uniformity of the GA-STW algorithm pro-
posed in this study, the aforementioned five algorithms,
excluding LB and the GA-STW algorithm, are repeatedly
executed for the case study EX51 fifteen times. A compar-
ative analysis is conducted on the discrete distribution of the
optimal solutions computed by the algorithms.

According to the calculated results in Table 5, the average
value of the optimal solutions obtained from the six algo-
rithms is computed. Additionally, the frequency of obtaining
the optimal solution and the standard deviation are also deter-
mined. The results are presented in Table 6.

According to Table 6, the proposed GA-STW algorithm
has a smaller average value of 84.5, whereas NSGA-II has the
largest average value. GA-STW outperforms the original GA
in terms of obtaining the most optimal solutions, demonstrat-
ing the effectiveness of the algorithm, with a probability of
achieving a global optimum of 46.7%. The standard deviation
comparison shows that GA-STW < NSGA-II < IWOA <

MTS < GA < ILS. Based on these three data analyses,
it can be observed that the proposed GA-STW algorithm
avoids the issue of the original GA becoming trapped in local
optima, exhibiting good stability and optimization capabili-
ties. Figure 14 is plotted based on the calculation data from
Table 5, providing a visual comparison of the stability of the
six algorithms during the computation.

Figure 15 presents a box plot generated based on the results
obtained from the algorithmic solution of the case study in
Table 5. The box plot offers the advantage of accurately and
reliably describing the discrete distribution of data, while
mitigating the influence of outliers. Each box represents the
overall performance of the six algorithms and displays the
maximum value, minimum value, median, and quartiles of
the dataset.
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TABLE 5. Comparison of algorithm solution results for EX51.

TABLE 6. Stability analysis of six algorithms.

According to Figure 15, it can be observed that the
GA-STW algorithm in this study has the lowest median,
indicating the smallest median value. Additionally, the area
of the box plot is relatively small, which demonstrates that
the algorithm produces better results when solving this type
of problem. Moreover, the area of the box plot represents the
size of the range, and GA-STW algorithm has the smallest
area, indicating the smallest range. This confirms that the
algorithm possesses strong stability.

E. CONVERGENCE VERIFICATION OF ALGORITHMS
The iterative curves of the six algorithms are shown in
Figure 16. It can be observed that NSGA-II, ILS, and MTS

FIGURE 14. Example line chart of experiment results.

FIGURE 15. Six algorithm box charts.

FIGURE 16. Algorithm convergence curve comparison chart.

exhibit faster speed and stronger capability in the early stages
of the search. However, their speed slows down after a cer-
tain number of iterations, especially ILS, whose convergence
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speed gradually decreases in the later iterations. Both IWOA
and GA maintain almost constant search speeds, with IWOA
demonstrating stronger local search capability and a higher
possibility of finding the optimal solution. GA shows better
in the later stages of the search. The GA-STW proposed
in this paper converges starting from the 50th generation
and exhibits a fast convergence speed, yielding superior
results. This demonstrates that in solving this type of prob-
lem, GA-STW presented in this study possesses excellent
computational capability.

V. CONCLUSION
This study proposes a GA-STW algorithm to address the inte-
gration and scheduling issues between AGVs and inspection
machines in sample-testing laboratories. The algorithm estab-
lishes a corresponding mathematical model to minimize the
maximum TAT. GA is used to perform double-layer encoding
of the process and the machine sequences during the solution
process. The VAA is used to find the AGV with the short-
est transportation time during decoding. To avoid idle time
windows, the STW heuristic algorithm is used to consider
the earliest inspection time of the sample and the idle status
of the AGV, using a STW to minimize the maximum TAT.
By optimizing the algorithmic parameter combinations, the
most suitable parameter combination is selected to solve the
test cases. A comparative analysis is conducted between
the GA-STW algorithm and other algorithms using standard
test cases. Additionally, the uniformity and convergence of
the algorithm are verified through calculations on the corre-
sponding test cases, thus demonstrating the applicability of
the GA-STW algorithm to the mathematical model proposed
in this paper.

With the continuous advancements in big data and tech-
nology, in future research, the scope of aspects that can
be studied in a sample testing laboratory is broader as it
presents a new background and new problems. For instance,
considerations may include testing machine malfunctions,
handling of emergency samples, and retesting of samples.
Furthermore, the sample testing laboratory is not an inde-
pendent department, and exploring its integration with other
departments will be an intriguing research direction. Simulta-
neously, to address such problems, it is desirable to enhance
the performance of the GA-STW algorithm, and introducing
reinforcement learning or deep learning may yield superior
results.
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