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ABSTRACT Recently, there has been an ever-growing demand for virtual reality (VR) and 360◦ video
applications. Different from conventional 2D videos, 360◦ videos take users into an immersive experience by
providing them with a navigable panoramic view. However, achieving adequate quality of experience (QoE)
levels poses significant network challenges, especially in mobile delivery setups. Despite the tremendous
improvements offered by 5G and beyond mobile networks, streaming 360◦ videos in a similar fashion to
2D videos is suboptimal, while scaling at high numbers questions the feasibility of the endeavor. This
paper explores the utilization of caching and multicasting solutions for the mobile delivery of VR and
360◦ videos. First, an overview of immersive technologies and their distinctive characteristics is provided.
Then, we discuss the network challenges associated with 360◦ videos and the role of implementing robust
caching and multicasting schemes that exploit the unique features of 360◦ videos and capitalize on the
correlations among end-users’ viewports. Having established the foundations and challenges of 360◦ video
streaming, we continuewith a comparison of the state-of-the-art literature, while focusing on video streaming
optimization aspects. We conclude our work by discussing the status and future research directions.

INDEX TERMS Edge caching, multi-access edge computing (MEC), multicast, optimization, video
streaming, VR, 360◦ videos.

I. INTRODUCTION
In recent years, immersive technologies have been utilized
for a variety of applications including education, healthcare,
sports, and cultural events [1], [2], [3], [4]. Several augmented
and virtual reality (AR/VR) equipment options exist in the
market nowadays, which contributes to accelerating the adop-
tion of AR/VR technologies, in the broader extended/mixed
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reality (XR/MR) era. In fact, over 10million AR/VR headsets
have been shipped in 2022 [5] with over 171million VR users
worldwide [6]. Meta Quest, formerly Oculus Quest, [7], HTC
Vive VR headsets [8], and PSVR [9] are among the most
reputable options for VR headsets. Microsoft HoloLens [10]
and Lenovo’s ThinkReality A3 [11] smart glasses are exam-
ples of commercial AR headsets. Available head-mounted
displays (HMDs) differ in terms of resolution, field of view
(FoV), frame rate, and other technical features giving users
the option to choose according to their needs and preferences.
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The rapid development of multimedia technologies and the
increasing demand for new forms of immersive content make
it difficult for mobile networks to meet the specifications
required for such applications [12]. 360◦ videos tend to have
significantly higher bitrate demands than 2D videos [13]. The
spherical nature of VR 360◦ videos contributes to a large
volume of data that needs to be stored and transmitted. The
close distance between the display screen and the viewer’s
eyes (typically a few centimeters) necessitates the use of
high spatial resolutions. For example, the task of delivering
8K resolution videos of 90Hz temporal resolution, suggested
to ensure comfortable use, creates additional challenges for
mobile network operators in terms of high data rates that
translate to a huge burden on core networks. As a result,
mobile network operators invest and resort to transformative
solutions in their future designs that would allow them to
address the projected massive network traffic.

In addition to the high data rates, VR and 360◦ videos are
subjected to strict latency requirements. Quality of experi-
ence (QoE) in VR applications entails additional distinctive
aspects to those required by traditional videos and other appli-
cations [14], [15]. Presence is one such key feature needed
to provide a satisfying virtual experience. Presence implies a
sensation of being physically present or located in the virtual
world. On the other hand, immersion refers to the illusion of
being enveloped by the virtual environment [16]. Realizing a
present and immersive experience relies heavily on display-
ing convincing and realistic content that instantly responds
to changes in users’ viewing direction. A mismatch between
users’ movement and the movement of the VR environment
causes a feeling of discomfort, dizziness, or nausea among
other symptoms [17]. The term cybersickness or VR sick-
ness is used to describe this phenomenon that is experienced
by VR users during or after VR sessions. High motion-to-
photon (MTP) latency, which is the time needed to display
movements in the VR environment to the user, is a primary
cause of cybersickness [18]. The specific QoE characteristics
and their corresponding quality of service (QoS) require-
ments demanded by VR videos impose significant challenges
in mobile communication networks. For example, stringent
delay requirements, needed to provide a smooth and immer-
sive experience, involve a recommended MTP latency of less
than 20ms [19], [20].

Contemporary 5G and future 6G networks need to address
the upcoming challenges by means of innovative network
designs and smart content delivery algorithms. With the
development of VR applications and their associated network
demands, providing a reliable service that can keep up with
the high QoS requirements for AR/VR content has triggered
the need for drastic network improvements [21], [22], [23].
5G networks provide gigabit speeds and millisecond laten-
cies with new network functionalities that can help in
handling immersive applications. However, the huge data
traffic and ultra-low latency requirements necessitate not only
new network architecture designs but also smart network

management algorithms which consider the specific features
of immersive videos.

Caching popular videos at a close distance from mobile
users reduces the experienced latency and relieves core net-
works from handling unnecessary traffic. When multiple
users are watching a common video, multicast transmission
allows for the efficient use of the spectrum resources. In the
case of 2D video streaming, many approaches have been
proposed for the optimization of conventional video deliv-
ery [24], [25], [26], [27], [28], [29], [30], [31], [32], [33].
Nonetheless, more sophisticated algorithms are needed for
the specific case of 360◦ videos.

Implementing new caching and multicasting schemes is
essential for bringing VR 360◦ videos over wireless net-
works [34]. 360◦ videos are normally projected and divided
into 2D rectangular tiles. At any specific moment, a VR
user views only part of the overall tiles. Specifically, those
comprising their current FoV. Moreover, analyzing user head
movements while watching 360◦ videos reveals interest-
ing patterns and correlations among users’ viewports as
humans tend to focus on specific engaging parts of their
given scene. Consequently, designing caching and multi-
casting methods for 360◦ videos should take advantage of
these criteria for optimal network utilization. Streaming tiles
related to a user’s FoV, for instance, reduces the required
bandwidth significantly. Moreover, correlations between
multiple users’ FoVs can be leveraged for optimizing the
available network resources. Such observations have been
examined for designing efficient 360◦ video delivery algo-
rithms inmobile networks, includingmobile multicasting and
caching.

This paper is dedicated to surveying the different
approaches in optimizing the mobile delivery of VR/360◦

videos. In section II, we present some of the existing surveys
and identify the unique contributions of our work. We then
introduce spherical video projection methods, 360◦ video
viewing behaviors, and network-related aspects in section III.
In section IV, we present state-of-the-art 360◦ caching and
multicasting solutions along with a detailed comparison.
Finally, we discuss some key challenges and future research
directions in section V.

II. EXISTING SURVEYS
Our work is motivated by the proliferation of VR-enabled
applications that rely on the delivery of VR/360◦ video con-
tent in mobile networks. Optimized streaming techniques
of conventional videos have been the focus of earlier sur-
veys, as depicted in Table 1. In the case of immersive video
applications, however, existing surveys focus on general
aspects and challenges of 360◦ video streaming, as well
as on network-level solutions, but fail to provide a com-
prehensive overview of the specific techniques adopted for
optimizing the resources of mobile networks. In this context,
we dedicated our work in this article to reviewing state-of-
the-art VR and 360◦ video streaming studies with emphasis
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TABLE 1. Summary of existing surveys.

on the optimization techniques utilized in mobile 360◦ video
caching and multicasting.

References [35] and [36] discuss the role of multi-access
edge computing (MEC) in video streaming and survey
state-of-the-art developments of edge video caching and pro-
cessing. Although [35] and [36] bring some attention to the
challenges presented by AR/VR and 360◦ video streaming,
they do not explicitly focus on existing streaming solutions
in this regard.

The articles [37], [38], [39], [40], [41] overview existing
works in caching and multicasting of conventional videos.
In [37], the authors survey popularity-based video caching
methods in wireless networks. They analyze the presented
works based on their adopted prediction algorithms, features,
and performance evaluation metrics. [38] reviews machine
learning (ML)-based edge caching strategies and makes an
extensive comparison based onML aspects, caching policies,
and network scenarios. Similarly, [39] investigates the use
of deep learning (DL) techniques for data caching in edge
networks. Multicasting in mobile networks has also been a
major focus of some survey papers. Reference [40] discusses
the arising challenges for multicast applications in 5G net-
works, whereas [41] provides a comprehensive survey of
multicast/broadcast schemes in mobile networks and makes
an intricate classification of the presented works.

References [42] and [43] discuss edge caching and com-
puting for AR/VR applications. Both papers, however, are
brief and serve as an introduction to the topic in ques-
tion. Reference [44] presents a survey on adaptive 360◦

video streaming. The survey focuses on end-to-end adap-
tive streaming based on MPEG-DASH [45]. Although they
consider the roles of MEC, they are mostly focused on the
network architectures of the presented works and do not
delve into the employed optimization techniques. The authors
in [46] overview network architectures and enabling solutions
for video delivery, caching, and analytics at the wireless edge.
Although the authors address some of the challenges and

FIGURE 1. Watching 360◦ videos.

streaming solutions of 360◦ videos, an extensive review that
is more dedicated to VR/360◦ videos is still lacking. Further-
more, the rapidly evolving merit of the topic necessitates a
more up-to-date survey that covers the latest developments.

Therefore, this article is distinguished from earlier surveys
by reviewing state-of-the-art 360◦ video MEC-based caching
and multicasting techniques, while focusing on the opti-
mization methods and goals adopted in the reviewed works.
Table 1 summarizes the discussed surveys in this section and
illustrates the contribution of our survey.

III. BACKGROUND
The objective of the present study is to capture the current
landscape and identify the challenges concerning the mobile
delivery of immersive videos. Thus, it is important to discuss
the fundamental principles of 360◦ videos and their streaming
properties, in addition to providing an adequate introduction
to relevant mobile networking paradigms. The following sub-
sections aim to introduce the necessary basic concepts.

A. VIEWING 360◦ VIDEOS
360◦ videos, also known as panoramic videos, are typically
captured by omnidirectional cameras, or generated by stitch-
ing multiple views recorded simultaneously by a group of
cameras. Users have the option of watching 360◦ videos on
their mobile devices, personal computers, or on customized
HMDs. They can navigate through the spherical view either
by mouse clicks or by moving their heads when an HMD
equipped with a head-tracking mechanism is used. In this
case, users move around the spherical scene by simply mov-
ing their heads toward the desired direction as depicted in
Figure 1.
VR provides users with a fabricated environment imitat-

ing real-life visual and audio scenes. An HMD is typically
required to view VR content and to position the user in
an immersive world. At any given time, the user’s viewing
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direction, along with the HMD specifications, define the
FoV to be rendered and shown to the user. The axes or
directions over which users are allowed to navigate the
videos are referred to as the degrees of freedom (DoF).
In a 3DoF environment, three rotational movements (pitch,
yaw, and roll) define the three axes which can be navigated
by the user through their head movements while standing
still or sitting on a chair. In a 6DoF scenario, the user can
freely move around in physical space which yields three
transitional movements in addition to the rotational head
movements [47], [48].

B. 360◦ VIDEO CODING AND PROJECTION
As the size of panoramic videos highly exceeds that of
traditional videos, developing new means for reducing the
required streaming bandwidth is essential for providing 360◦

video content at a high scale. In practice, spherical scenes are
typically transformed by mapping methods into other geo-
metrical shapes or formats to benefit from advanced 2D video
codecs such as Advanced Video Coding (AVC) / H.264 [49],
High-Efficiency Video Coding (HEVC) / H.265 [50], and
AV1 [51]. Versatile Video Coding (VVC) / H.266 [52] was
launched in 2020 to claim the best compression efficiency
to date and to accommodate a diverse set of applications,
including 360◦ video streaming. VVC provides specific cod-
ing tools for facilitating 360◦ video streaming.
One of the simplest and most adopted mapping meth-

ods is the equirectangular projection (ERP). ERP has been
used for map projection where Earth’s longitude and latitude
lines are flattened, along with the spherical shape of Earth,
to form the vertical and horizontal lines in a 2D rectangular
map [53]. When applied to 360◦ videos, the ERP map-
ping scheme results in suboptimal pixel distribution across
the scene, as more information is given to the upper and
lower points of the sphere (i.e., the poles) compared to other
parts.

Cubemap projection tries to overcome this problem by
reforming the spherical view into a six-sided cube where
each side of the cube represents part of the original sphere.
Cubemap reduces video size by 25% compared to ERP and
reduces deformations that occur in the transformation pro-
cess. However, Cubemap projection still causes a notable
imbalance in pixel density. Hence, the equi-angular cubemap
(EAC) was proposed to address this problem by adjusting
sampling to be at uniform distances and assigning equal pixel
densities regardless of the position on the sphere [54].

Pyramid projection is an example of a viewport-dependent
projection scheme in which the mapping process relies on the
requested FoV. Like Cubemap, pyramid projection stretches
the entirety of the spherical scene and projects it inside of
a pyramid-shaped view [55]. However, in pyramid format
only currently watched FoV is rendered at full resolution (i.e.,
the bottom side of the pyramid). Other sides of the pyramid
are still rendered to account for changes in FoV but at a
gradually decreasing quality. Pyramid encoding is reported to

FIGURE 2. Common projection methods.

reduce video size by 80%. Figure 2 illustrates the discussed
projection methods in this subsection.

Modern video codecs divide videos into independent rect-
angular regions (i.e., tiles) which can be compressed in a
parallelized manner. Tiling provides additional advantages
when applied in panoramic video streaming. Streaming tiles
outside users’ FoVs results in a significant waste of band-
width. Therefore, many recent works suggest segmenting the
equirectangular projected scene into equal tiles and transmit-
ting only tiles that are relevant to the user to avoid wasting
resources on unwatched tiles [56]. In some scenarios, it is
advisable to anticipate users’ head movements by addition-
ally streaming tiles that are adjacent to the current FoV to
serve as a safe margin. Another approach is to transmit the
whole panoramic scene at a lower resolution, in addition to
the higher resolution FoV tiles. These approaches mitigate
cases where users end up viewing black/empty regions and
achieve higher QoE at the price of a slight increase in band-
width usage.

C. USERS VIEWING BEHAVIOR AND PERCEPTION
Observing human behavior while watching 360◦ and VR
videos is integral in designing new optimized stream-
ing techniques specifically for this type of application.
When analyzing people’s viewing habits, we can iden-
tify patterns and correlations among their head movements,
eye gaze positions, and/or FoVs. These patterns can be
leveraged to optimize video transmission by anticipating
users’ interests and prioritizing certain video parts, and by
designing the video compression and streaming strategies
accordingly.

A dataset for viewing trajectories is provided in [57]. The
dataset includes navigation trajectories, given as yaw and
pitch values, of people viewing twelve 360◦ videos belonging
to different categories. The authors provide an analysis of
these traces and show that, depending on the video category,
most people tend to view the same areas of the videos as
their attention is directed towards specific objects in each
scene. The analysis also shows that horizontal exploration of
the videos (yaw) is more dominant than vertical exploration
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(pitch) and that the vertical direction is concentrated in central
regions.

HMDs are capable of tracking head movements and
viewers’ eye gaze movements. Many works use previously
collected viewing data, oftentimes assisted by informa-
tion about the video content, to predict the future viewing
point [58], [59], [60], [61], [62]. Having accurate predic-
tions of viewers’ future FoVs can help in taking proactive
and efficient network decisions. Other works even consider
directing users’ attention in omnidirectional videos to guide
them through the videos and make them focus on the most
important parts for a more engaging experience. This can
be achieved either by changing the user’s viewing direc-
tion forcibly or by giving guidance to the user through
visual or auditory hints [63], [64], [65]. These studies show
that although automatic control results in faster redirection,
it may cause discomfort and less feeling of presence for the
users.

D. 360 VIDEO QUALITY ASSESSMENT
The endmost objective of a content delivery service is to
provide the user with the best quality of experience pos-
sible. Oftentimes, streamed and downloaded videos reach
users with a level of distortion caused during compression,
transmission, and processing. This in turn results in the
degradation of the perceived visual quality of the videos.
Video quality assessment (VQA) methods provide objective
metrics as an indication of the actual perceived video qual-
ity. Previously, full reference VQA primarily relied on the
application of image quality assessment (IQA) metrics on
a video frame-by-frame basis [66]. Nowadays, predicting
perceptual quality using objective VQAmetrics that integrate
vital temporal (i.e., motion) aspects in quality assessment is
an area of active research [67], [68], [69]. No-reference (i.e.,
blind) methods that utilize regularized natural scene statistics
descriptors, such as normalized pixel intensities distribution,
or employ machine learning to learn from a set of distor-
tions, are increasingly used and likewise are emerging DL
models [70].

The performance of VQA metrics is measured in terms of
the correlation between the objective VQA scores and the
perceptual ratings provided by human subjects as differential
or mean opinion scores (DMOS/ MOS) [71], [66]. Similarly
in medical VQA, the medical experts assess the diagnostic
capacity of a compressed video, based on clinically estab-
lished protocols [72].

In terms of 360◦ VQA, early methods such as spher-
ical PSNR (S-PSNR) [73], Craster parabolic projection
PSNR (CPP-PSNR) [74], and weighted-to-spherically-
uniform PSNR (WS-PSNR) [75] focused on extending 2D
IQA methods for 360◦ video quality assessment. Recent
methods attempt to integrate content and visual attention
in the assessment process [76], [77], [78], also leverag-
ing DL methods [79], while emerging ones integrate the
temporal dimension for a realistic and objective video
evaluation [80], [81], [82], [83].

Understanding user perception of visual content plays a
vital role in designing effective streaming algorithms. For
instance, [84] provides a subjective study of human percep-
tion of omnidirectional images. As human eyes are most
sensitive to quality in central regions, they fix the resolution
of central regions and gradually reduce the resolution of
peripheral parts of users’ FoVs until they notice a drop in
quality. At a tile level, the authors in [85] examine the effect
of mixing tiles encoded at different quality levels. They show
that considerable bandwidth savings can be achieved without
affecting the perceived quality or at the cost of an acceptable
drop in quality. These observations can be integrated for more
flexible delivery solutions.

E. 360◦ VIDEOS DATASETS AND TOOLS
Datasets of 360◦ videos and user-collected data are required
to test and verify the various techniques related to omnidirec-
tional video delivery. Moreover, specialized tools are needed
for processing and evaluating 360◦ videos. Thus, the develop-
ment of 360◦ video delivery and the advancement of research
in this field is subject to the availability of such software
tools and datasets. In this subsection, we present the most
prominent and useful open-source tools and datasets related
to omnidirectional videos and 360◦ video transmission.
Real-life viewing data of 360◦ videos is essential for imple-

menting and testing 360◦ video delivery methods in practical
settings. Reference [86] provides a set of 28 omnidirec-
tional videos and records the viewport traces of 60 subjects
(17 female and 43 male) watching these videos using HMDs.
Reference [87] similarly presents a dataset of head track-
ing information for 48 users watching 18 omnidirectional
videos. In [88], both head motion and eye gaze information
have been collected. The dataset contains 27 videos from
different categories and the viewing data has been captured
from one hundred participants at 120Hz sampling frequency.
AVtrack360 [89] presents the head movement data collected
from 48 users watching 20 videos, in addition to a software
tool for recording the rotational angles when a user is watch-
ing a 360◦ video using an HMD.
Other datasets have been provided for the study of the

quality assessment of 360◦ videos. Reference [90] presents
a dataset of 60 reference videos in 4K to 8K resolutions.
The dataset also contains 540 impaired videos resulting from
mapping and compressing the reference videos. Three pro-
jection schemes and three compression levels have been
used to produce the impaired videos. Moreover, 221 users
participated in the collection of eye movement (EM) and
head movement (HM) data, MOS, and DMOS scores. Ref-
erence [78] first provides a dataset of 48 videos and the
recorded viewing directions of 40 users. The authors analyze
the dataset to show that users tend to view content close to
the equator more than other regions with high consistency
of viewing behavior among different users. Based on their
findings, they develop subjective and objectiveVQAmethods
that incorporate human viewing direction.
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There are several available tools for processing and eval-
uating 360◦ videos. FFMPEG [91] offers a set of libraries
and tools for encoding, manipulating, and streaming video
content which can be applied to 360◦ videos. The dash-
360 [92] and video2DASH [93] tools can be used for tiling
and preparing 360◦ videos for DASH-based adaptive stream-
ing. 360tools [94] provides tools for 360◦ video projection
and quality evaluation. It allows for the calculation of 360◦

VQA metrics and the conversion between nine supported
projection formats, which makes it a powerful tool for com-
pression and VQA experiments. Likewise, Omnieval [73]
offers conversion and quality assessment functionalities for
omnidirectional videos, whereas Transform360 [95] can be
used for transforming ERP to cubemap format with high
efficiency in terms of memory usage and processing speed.

F. RELEVANT NETWORK CONCEPTS
Recent advancements in mobile communications paved the
way toward the realization of reliable mobile XR and mobile
360◦ video streaming. 5G and beyond systems offer excep-
tional data speeds and ultra-low latency. Several technologies
and network paradigms have contributed to this, including
device-to-device (D2D) communications, small cells, and
massive multiple-input multiple-output (MIMO) transmis-
sion [96], [97]. Moreover, the adoption of millimeter-wave
(mmWave) communications utilizes the huge bandwidth
resources available at the mmWave spectrum, allowing for
the beamforming of signals [98].

MEC systems bring computational and storage capabil-
ities closer to the mobile user, i.e., to the network edge.
Rather than traveling all the way to a far centralized cloud,
data can be fetched from a nearby MEC server, reducing
the end-to-end latency and offloading data traffic from core
networks [99], [100]. The deployment of MEC servers can
be performed at base stations (BSs) or access points (APs) to
achieve high benefits for mobile users and network operators.
MEC is considered a key enabler technology in 5G networks
for delivering new services, including panoramic videos and
various AR/VR applications.

Conventional video streaming methods employ edge
caching by placing popular videos in the proximity of end
users. By anticipating users’ requests for popular videos,
optimized caching schemes result in reducing backhaul net-
work traffic and delivery delay [24], [25], [26], [27], [28].
Moreover, video multicasting allows for the simultaneous
delivery of content to a group of users watching a common
video [101]. Multicasting avoids redundant transmission of
the same videos by enabling point-to-multipoint transmis-
sion. Many algorithms have been proposed for optimizing the
available resources using efficient multicast/unicast decisions
and multicast grouping [29], [30], [31], [32].

IV. DELIVERING 360◦ VIDEOS IN MOBILE NETWORKS
Several approaches have been investigated to address the
challenges of delivering high-quality next-generation 360◦

videos on mobile networks. These efforts have focused on
lessening the burden on the backhaul network and on meeting
the low latency requirements of these applications [102].
Segmenting 360◦ videos into tiles was suggested to support
efficient VR transmission in cellular networks [103]. With
the help of head movement prediction, transmitting relevant
tiles, rather than whole videos, greatly reduces bandwidth
consumption. Moreover, sending slightly larger viewports
than the ones required by the users to mitigate imperfections
in head movement prediction was found to increase QoE.
The authors in [104] investigate the potential benefits of
MEC-enabled FOV rendering. The authors address the task
of delivering VR videos in mobile networks as a trade-off
between latency, throughput, and computation. They show
through experiments in a 4G long-term evolution (LTE) lab
setup how rendering VR content at the network edge to only
transmit the user’s FOV could result in ∼80% bandwidth
savings compared to transmitting the full 360◦ content to
be rendered at the user’s side. In the presence of multiple
VR users, additional optimization opportunities arise from
correlations among users’ requests. Caching andmulticasting
schemes can utilize such correlations by storing popular tiles
at nearby MEC servers or by grouping mobile users with
common tile requests to be served simultaneously. Thus,
achieving higher scalability while maintaining lower latency
and optimized resource utilization.

This section presents state-of-the-art efforts in mobile
caching and multicasting of 360◦ videos. We provide a dis-
cussion on the scenarios and optimization techniques used
in each of the presented works and make a comprehensive
comparison between them.

A. CACHING
Caching popular content in the proximity of mobile users
(e.g., at base stations) allows for shorter delays and mitigates
the need for sending the same content repeatedly over the
backhaul network [105]. Many caching policies have been
suggested for traditional video content to meet users’ requests
in MEC systems [24], [25], [26], [27], [28]. Although these
caching schemes can be directly applied to 360◦ videos, the
performance would be suboptimal. Therefore, it was neces-
sary to develop caching algorithms that target the uniqueness
of omnidirectional videos.

1) TILE-BASED CACHING
In the context of VR and 360◦ videos, information about
users’ FoVs can be leveraged for the development of smarter
caching policies where only certain parts (e.g., subsets of the
overall tiles) of popular videos need to be cached.

The authors in [106] propose a caching strategy that
exploits the correlation between users’ FoVs for determining
which tiles need to be cached at high quality. In their work,
a base station with caching capabilities serves users equipped
with VR headsets. A user chooses a 360◦ video to watch
and request tiles within their FoV in high or low resolution
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depending on the underlying network condition (i.e., avail-
able bandwidth). They also request tiles outside their FoV but
only at the lower available resolution. The proposed caching
policy learns from historical requests of the users to predict
whether a certain tile in a video will lie within users’ FoVs.
The caching policy estimates the tile probability of potentially
being requested, which translates to the need of being cached
at the higher available resolution. The acquired information is
thus utilized for cache replacement decisions upon the arrival
of new requests. The provided simulation results show a sig-
nificant improvement in cache hit ratio (CHR) and bandwidth
savings, as well as in the number and duration of rebuffer-
ing events, compared to the legacy baseline approaches:
least recently used (LRU) and least frequently used
(LFU) [107].

An additional degree of caching flexibility can be intro-
duced by considering the difference between requested and
delivered qualities. A satisfactory tile resolution can be sub-
jected to its position within the user’s FoV. A drop in the
quality of a tile at the FoV edge may not affect the user’s
QoE. Whereas the importance of center tiles or tiles which
lie directly toward the viewer’s gaze is much higher. The
authors in [108] consider this viewing characteristic and aim
at optimizing tile caching where users are expected to have
different resolution needs across their viewports. They intro-
duce a metric that portrays the difference between requested
and delivered tile resolutions to be used in their optimization.
A layered video scenario and a multiple-resolution video sce-
nario are both considered separately and are formulated as a
multiple-choice knapsack problem and as a k-medoids prob-
lem, respectively. The authors evaluate their quality-aware
model against a popularity-based approach and demonstrate
the improvements introduced by their method in terms of
higher CHR and lower delivery time. Nonetheless, the overall
delivered quality must also be assessed to study the trade-off
introduced by the proposed method.

In [109], users’ requests can be found in a common
MEC cache either in 3D or 2D forms. In the first case,
the 3D tiles are directly transmitted whereas in the latter
case, the MEC server converts the requested 2D tiles into
3D before transmission. In case the requested tiles are not
found on the MEC server, they are sent from a remote
server to the MEC server. 2D and 3D caching decisions
consider both the downloading delay and the MEC energy
consumption resulting from 3D projections. The authors uti-
lize the combinatorial multi-armed bandit (CMAB) theory for
co-optimizing delay and energy consumption in a sequen-
tial decision-making process. They specifically develop an
improved combinatorial UCB (CUCB) algorithm which con-
siders the nature of VR content distribution. They compare
the results of their improved algorithm to LRU, LFU, and
another UCB-based algorithm. The presented simulation
results show considerable improvements delivered by the
proposed CUCB algorithm in the form of reduced delay and
energy consumption.

Most 360◦ video caching schemes rely on dividing the
video into multiple tiles. However, they usually assume fixed
tiling in their implementation. Rather than dividing video
frames into fixed tiles, dynamic tiling, with a varying tile size
and location, proves to be a more flexible and bandwidth-
efficient solution. To investigate the gains of applying
variable tiling in MEC-based caching, OpCACH [110] has
been proposed as an optimized caching strategywith dynamic
tiling. In OpCACH, the overlapping between requested and
cached tiles is found to decide which tiles should be retrieved
from the content server. The authors formulate an integer
linear programming (ILP) optimization problem aiming at
finding the optimal cache tile configuration that minimizes
the need for retrieving data from the content server and mini-
mizes cached pixel redundancy. The simulation results show
that OpCASH provides better cache utilization and reduces
the overall delay compared to traditional methods.

2) COLLABORATIVE CACHING
The caching policies introduced by [106], [108], [109], [110]
address the question of which tiles should be cached and at
what qualities. In the presence of multiple cooperating cache
entities, however, the question of ‘‘where’’ to cache those tiles
also arises.

Reference [111] presents a collaborative approach between
small-cell base stations (SBSs) to optimize caching, comput-
ing, and streaming of AR/VR content in cellular networks.
In the adopted setting, the requested viewpoint content is
rendered and served by the local base station or by a neigh-
boring base station, or it can be retrieved from the internet.
The authors consider the limited caching and processing
capabilities of the SBSs in their optimization and formulate
reward values to be maximized. The assigned rewards depend
on the quality of the delivered videos and the place where
the rendering/serving occurs (highest reward for local ren-
dering/serving). Dynamic programming is used to provide
an approximate solution for the formulated NP-hard prob-
lem. Simulation results confirm the benefits of the proposed
algorithm as a significant reduction in energy consumption
compared to LRU and non-cooperative caching. In multi-cell
MEC 5G networks, collaboration among MEC servers for
optimized caching can result in further latency reduction and
efficient use of resources.

In [112], the authors propose a collaborative caching
scheme for VR videos and couple it with the optimization
of the rendering operation. They first perform tile popularity
prediction based on video popularity and estimated saliency
maps. Then they formulate the rendering-aware caching
problem as a multi-knapsack problem under storage and
computational constraints. The authors also propose a routing
algorithm to deliver the requested tiles based on their cache
location within the network to achieve maximized latency
saving. Simulation results show significant latency reductions
compared to non-cooperative caching and to solutions with
decoupled rendering/caching.
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Within the scope of cooperative tile-based caching, [113]
discusses a scenario of multiple SBSs, each equipped with
caching capabilities and connected to a content delivery
network (CDN) through a common macrocell base station
(MBS). In this work, each of the available videos is encoded
at a base quality layer and at several enhancement lay-
ers which are used to construct higher resolutions of the
requested tiles. Long-short-term memory (LSTM) is used
for popularity forecasting of videos at the base layer and of
each tile at higher resolutions. Each SBS performs popularity
prediction and uses the acquired predictions to cache popular
videos at the base layer and popular tiles at higher quality in
place of the least popular in the cache. Three baseline meth-
ods are used for assessing this approach: LFU, LRU, and the
first-in-first-out (FIFO) scheme. The evaluation demonstrates
that the proposed caching strategy outperforms the simulated
baselinemethods in terms of delivered video quality andCHR
while maintaining the least backhaul usage.

Another cooperative MEC caching and transmission
strategy is proposed in [114]. The authors of this work
consider a multi-MEC 5G architecture. They formulate
the collaborative transmission and caching problem as a
k-shortest paths problem and suggest a low-complexity
optimized solution to the problem. The suggested solution
results in low-latency transmission while maintaining high
scalability.

3) PROACTIVE CACHING AND VIEWPORT PREDICTION
Proactive tile-based caching anticipates users’ head move-
ments and prefetches tiles with high viewing probabilities.
Successful proactivity requires accurate long-term viewport
predictions to achieve tangible latency savings. To this end,
many 360◦ video caching frameworks employ DL models
for predicting future viewpoints and tile popularities. These
models are trained using previous viewing directions and
sometimes are assisted by the actual video content.

A DL approach that makes use of the 360◦ video con-
tent represented by the saliency maps of the videos can be
found in [115]. First, the authors justify their choice of using
saliencymaps by providing an analysis of users’ behavior and
viewing patterns while watching 360◦ videos. They suggest
the use of two neural networks within their MEC caching
scheme. An LSTM network is employed for video popularity
prediction based on previous video requests. Saliency maps
of popular videos are fed to a convolutional neural network
(CNN). The CNN performs binary classification to decide
which tiles within each video should be cached at the BS.
Without assuming the popularity distributions, the proposed
solution yields an improvement over the baseline methods in
terms of CHR and backhaul usage and proves to be the closest
to the optimal solution.

The authors in [116] propose another proactive caching
scheme for VR videos, in which they leverage saliency maps
and historical viewing orientations. In this work, saliency
maps are obtained beforehand using a CNN+LSTM+ Gaus-
sian mixture model (GMM). An LSTM prediction model at

the MEC server uses previous viewing directions and video
saliencymaps to produce tile viewing probabilities. Tiles with
the highest probabilities are hence proactively cached at the
MEC server. An analysis of the proposed system performance
is provided by applying diffusion approximation and is vali-
dated by means of computer simulation.

A proactive and collaborative VR caching strategy is
suggested in [117]. In this work, interactive content gener-
ation and background delivery are performed independently.
Interactive VR content contains dynamic data that changes
depending on human interactionwith the environment. Often-
times, however, the scene background is stable and can be
separated from the changing interactive content, and thus
transmitted independently. For the low latency transmission
of background content, the authors propose a proactive and
collaborative caching algorithm that utilizes graph neural
networks (GNN). The authors examine the effect of the
proactivity period on users’ request prediction accuracy. They
show that their GNN model is more accurate than LSTM and
motion-based prediction methods. Moreover, the evaluation
of the proposed caching scheme shows significant improve-
ment over LFU-based caching in terms of CHR and QoE.

4) RL-BASED DYNAMIC CACHING
Implementing optimized caching policies becomes more
challenging as the system complexity increases. With the
increased network heterogeneity associated with emerging
network designs, researchers started investigating the uti-
lization of reinforcement learning (RL) for making 360◦

video caching decisions. RL makes efficient decisions in a
variety of dynamic environments and can be used to imple-
ment intelligent caching policies that adapt to the system
intricacies. In [118], deep reinforcement learning (DRL) is
utilized for implementing a transcoding-enabled 360◦ VR
video caching and wireless transmission framework. The
authors consider a collaborative case of a heterogeneous
network, consisting of a centralized MBS and multiple
SBSs. All BSs are assisted by edge caching and comput-
ing capabilities and employ non-orthogonal multiple access
(NOMA)-based multicasting. To minimize the total compu-
tational and communication latency, the authors first employ
multi-agent DRL to address the delivery preparation phase
which involves transcoding-assisted caching decisions. After
that, they address the multicasting subproblem in the delivery
execution phase using a two-tier matching algorithm. A thor-
ough performance evaluation of the suggested framework
shows its effectiveness in terms of latency and CHR.

Another DRL-based strategy for 360◦ video caching and
transcoding is proposed in [119]. A systemwith collaborating
transcoding-enabled BSs is considered, where requested tiles
can be delivered directly from a nearby home base station,
other collaborating neighboring base stations, or from the
CDN server. A deep deterministic policy gradient (DDPG)
agent is trained to make collaborative edge caching and
transcoding decisions with the goal of reducing delay, trans-
mission cost, and qualitymismatch levels. The proposedDRL
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TABLE 2. Summary of works on VR/360◦ video caching techniques.
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method surpasses LRU and a transcoding-enabled version of
LRU as shown through the simulation results.

Other variations of RL have also been considered for dif-
ferent mobile communication settings. In [120], the authors
study caching and transmission in cellular networks where
unmanned aerial vehicles (UAVs) are the source of VR
videos. Cache-enabled SBSs receive VR content from UAVs
to serve mobile users’ requests. An SBS can receive either
full 360◦ videos or the visible contents of specific users.
The authors develop transmission and caching algorithms that
consider the processing time at the SBSs and at the UAVs to
provide a reliable VR experience that meets the application
delay requirements. They use a novel DRL approach that uses
a liquid model and an echo state network (ESN) model, rather
than feedforward neural networks (FNNs).

The authors in [121] employ federated deep reinforcement
learning (FDRL) to provide a stable and effective solution.
The work on jointly optimizing caching and bitrate adapta-
tion of VR videos in hierarchical clustered MEC networks.
An agent is trained to optimize a reward function that incor-
porates CHR, video quality, quality changes, and rebuffering
time, in addition to bandwidth and transcoding costs. Perfor-
mance analysis shows that FDRL results in improving CHR
and QoE over other DRL-based algorithms.

In [122], the VR device and a set of serving APs are
all equipped with caching and computing capabilities. Thus,
a viewpoint-based cooperative computational offloading and
caching strategy is proposed to minimize transmission rate
requirements. The optimization problem is formulated as a
Markov decision process which is then tackled using a deep
DDPG algorithm. The provided simulation results show the
benefits of the proposed method in terms of a significant
reduction in the required transmission rates. In this work,
even though video popularity is considered, the viewpoint
popularity is assumed to be uniform across each video.
User viewing data and statistical analysis can be applied for
practical viewpoint popularity modeling that would help at
improving the obtained results.

Table 2 summarizes the literature discussed in this
subsection. It draws a comparison between 360◦ video
caching techniques in terms of optimization methods and
objectives, in addition to the adopted scenario in each work.

B. MULTICASTING
When multiple mobile users belonging to a common BS or
AP are expected to be requesting the same content, multi-
casting of the data to these users can result in lower latency
and noteworthy bandwidth savings while allowing for higher
scalability.

1) TILE-BASED MULTICASTING
360◦ video tiles lying within the FoVs of multiple users
can be sent via multicasting for more efficient transmis-
sion. [123], [124] take advantage of this fact and aim
at optimizing the multicasting transmission of VR videos.

In both works, the authors assume a single BS serving mul-
tiple users with random viewing directions that follow a Zipf
distribution. In [123], they assume a time division multiple
access (TDMA) system, whereas in [124], they adopt an
orthogonal frequency multiple access (OFDMA) system in
which the BS transmits the 360◦ video tiles to the users
through multicasting on a set of available subcarriers. With
the assumption of knowing the system channel state and
users’ FoVs, the authors formulate two non-convex optimiza-
tion problems for each multiple-access scenario and provide
their solutions. The first problem is to minimize the required
energy for specified encoding rates. In the second problem,
they assume a given energy budget and maximize the video
quality. The benefits of applying tile-based multicast over
the unicast approach are illustrated for both systems through
simulation as the proposed optimized multicasting schemes
result in lower power consumption and higher delivery rates.
Although multiple quality levels are considered in these
works, all users receive the tiles at the same quality levels.
In practice, users experience different channel conditions and
might have different quality preferences, which necessitates
more flexible solutions that adapt to all users’ conditions and
needs.

The authors in [125] take users’ heterogeneity into account
and explore the transmission gains associated with mixing
tiles of different resolutions. Mixing tiles of different, but
close, quality levels within a viewer’s FoV oftentimes does
not degrade their perceived QoE. Given this, the authors
consider two cases for tile quality variation: one where all
the tiles within an FoV must be of the same quality level,
i.e., absolute smoothness, and one where tiles can vary in
quality within a specified range, i.e., relative smoothness.
They also consider two playback modes where transcoding at
the user side is and is not enabled. In the four resulting cases,
the authors aim to utilize the available multicast chances
associated with each case to achieve optimal wireless stream-
ing of multi-quality 360◦ VR videos. In wireless TDMA
systems where multiple users are connected to a single BS (or
AP), they providemathematicalmodeling tominimize energy
consumption for the four cases. They consider transmission
energy in the two cases where user transcoding is disabled
whereas in the two user-transcoding-enabled cases they min-
imize a weighted sum of transmission and transcoding energy
consumption. In the case of absolute smoothness without
user transcoding, they transform the resulting non-convex
problem into an equivalent convex problem and solve it using
standard convex optimization techniques. In the other three
cases, they follow the convex-concave procedure for obtain-
ing the optimized solutions. The provided simulation shows
that introducing more multicasting opportunities, which
emerge from enabling relative smoothness and user transcod-
ing, results in reduced energy consumption in wireless VR
streaming.

In [126], a multi-user VR delivery system is introduced
where the authors suggest a bit-assignment algorithm for
tiles based on the available bandwidth. They propose a
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unicast/multicast tile delivery scheme that takes the deci-
sions depending on the estimated viewing tiles and the
similarities among users’ views. Simulation of the suggested
method shows an improvement in delivered video quality
while avoiding redundant transmissions. In particular, the
resulting viewport-normalized PSNR and the associated traf-
fic rates were evaluated to demonstrate the benefits of the
proposed solution compared to the uniform bit assignment
scheme.

2) PROACTIVE MULTICASTING AND VIEWPORT PREDICTION
The previously presented works assume that the users’
FoVs, or their estimated ones, are known to the system.
However, the low MTP delay requirements for immer-
sive applications motivated many researchers to incorpo-
rate viewport prediction models within their transmission
frameworks [127], [128], [129].

In [127], motion patterns among users are exploited and
temporal motion prediction is performed to assist the wireless
multicasting of 360◦ videos. A neural network is trained to
forecast motion over the three rotational axes based on current
and previous viewing positions. Based on the acquired pre-
dictions, the wireless AP decides on which parts of the video
should be sent through multicast or unicast transmission. The
proposed multicasting scheme is designed to optimize the
use of available bandwidth in wireless networks and achieves
50% bandwidth saving compared to the simple full-frame
multicast.

Reference [128] suggests another proactive wireless mul-
ticasting framework where users’ FoVs are predicted using
a deep recurrent neural network (DRNN) based on gated
recurrent units (GRUs). In the presence of multiple SBSs,
the authors develop a multicasting scheme that clusters the
users depending on their FoV overlaps and relative locations
in a VR theater. SBSs mounted across the theater, operating
in the mmWave band, transmit a set of VR 360◦ videos to
the users. Each group of users is assigned to a specific SBS
and a beam of the multi-beam transmission of that SBS.
Scheduling the users for their multicast beams is formulated
as amatching theory game tomaximize viewing quality under
low latency constraints. Simulation of the proposed solution
shows considerable improvements in delivery rates compared
to the unicast transmission while keeping lower delay values
than the real-time multicast approach.

In [129], the authors use linear regression (LR) for pro-
ducing tile weights estimations and assess the transmission
based on the resulting viewport quality. Tiles of 360◦ videos
are encoded using Scalable Video Coding (SVC) where
each tile is encoded as a base layer and several enhance-
ment layers. Based on the obtained tile weights estimations,
resource blocks are assigned to multicast and unicast streams
with the goal of maximizing the overall QoE, which is
described as a weighted summation of the delivered tiles.
A formulation of the optimization problem is provided using
binary integer programming (BIP), and an algorithm is sug-
gested to prioritize tiles with higher utility over cost ratio

by transmitting them at higher layers. Simulation results
demonstrate the benefits of the proposed method in terms of
higher delivered viewport quality compared to the reference
methods.

3) MULTICASTING IN INNOVATIVE 5G NETWORKS
As discussed in section III-F, the recent developments in
5G and beyond networks paved the way for a more reli-
able VR mobile transmission. Therefore, recent multicasting
techniques consider emerging network paradigms in their
designs. Although such paradigms create new multicast-
ing opportunities, the increased system complexity makes
the resulting multicast optimization problems more diffi-
cult to solve. In [130] for instance, a transmission mode
selection algorithm is suggested for D2D-assisted 5G het-
erogeneous networks (5G-HetNets). In the adopted scenario,
the mobile VR user receives VR content through a macro-
cell broadcast, a small-cell mmWave unicast transmission,
or through D2D multicast. To address the complexity of the
problem, selection between the three transmission modes
is performed using online reinforcement learning with the
goal of optimizing the total system throughput. Furthermore,
an unsupervised learning strategy is presented to construct the
D2D clusters depending on users’ locations. Evaluation of the
proposed multicasting scheme shows a throughput increase
over traditional broadcasting strategies while keeping
adequate resource utilization levels.

The authors in [131] also study VR video delivery in
5G-HetNets and propose a multi-user crowd-assisted frame-
work. Their adopted scenario consists of one MBS and
multiple SBSs with edge computing capabilities and mobile
users with enabled D2D communication among them. Con-
trary to many existing approaches that focus on transmission
delay, the authors introduce a multicast method to opti-
mize the users’ average buffer level, which is more tied to
viewers’ QoE. Considering video transcoding at the base
stations which is managed by the MBS, they propose a
multicast-aware transcoding offloading algorithm that jointly
optimizes the multicasting and transcoding tasks. Further-
more, they introduce a crowd-assisted delivery algorithm on
the users’ side to complement the discussed algorithm in
the case of segment loss. When poor channel conditions
exist between a user and a BS, the user requests the missing
tiles from other users in their multicast cluster through D2D
communication and drops its viewing resolution for future
requests. The simulation of the proposed framework shows
improvement in terms of throughput and latency compared
to other existing solutions and demonstrates the highest QoE.

Among the wireless technologies adopted in 5G commu-
nications, beamforming techniques and the use of multiple
antennas enhance system performance and capacity. In [132],
the authors investigate the optimality of 360◦ VR wireless
streaming in MIMO-OFDMA systems. Specifically, a multi-
antenna BS that streams a multi-quality tiled 360◦ VR video
to single-antenna mobile users. They consider two separate
cases: with and without user transcoding. For the first case,
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TABLE 3. Summary of works on VR/360◦ video multicast techniques.

they formulate the problem of minimizing the total trans-
mission power as a mixed discrete-continuous optimization
problem. Similarly, they formulate a two-timescale mixed

optimization problem for minimizing the weighted sum of
transmission and transcoding power in the case where user
transcoding is enabled. In both cases, they provide general
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suboptimal solutions and globally optimal solutions under
special circumstances. Simulation results demonstrate the
benefits of the proposed algorithms in reducing power con-
sumption and show that new multicast opportunities arising
from enabling user transcoding result in reducing the overall
power consumption.

Table 3 summarizes the literature discussed in this
subsection. It makes a comparison between the multicasting
schemes used with 360◦ videos in terms of optimization
methods and objectives and delivery scenarios.

C. LESSONS AND RESEARCH DIRECTIONS
In this subsection, we provide potential research topics based
on the discussion provided in the last two subsections and the
limitations of the presented works. We identify some gaps
in the literature that need to be addressed in the upcoming
future to keep up with the challenges associated with 360◦

video delivery. We divide our research directions into five
main points as follows:

1) QoE-BASED TRANSMISSION
By analyzing the caching and multicasting techniques in this
section, we observe that most existing optimization methods
target network-level metrics rather than optimizing the actual
perceived quality. Instead of maximizing the delivered video
rate, for instance, a more ambitious approach would be to
maximize the corresponding objective 360◦ VQA metrics by
leveraging the video content and viewport information in the
optimization process. Although higher video rates typically
result in better QoE, the mapping between the two is not
straightforward. Hence, benefiting from the advancements in
360◦ VQA methods, more reliable solutions can be imple-
mented. Quality assessmentmetrics give a better indication of
end users’ experience and can result in a better overall QoE.
This will also be dependent on the development and verifica-
tion of accurate objective VQA metrics for omnidirectional
videos that reflect users’ subjective quality.

2) PROJECTION SCHEMES
Although there are several projectionmethods available, most
delivery methods assume ERP projection with fixed-size
tiles. This is due to the simplicity of ERP compared to other
projection schemes. However, serious research efforts must
be undertaken towards investigating variable size tiling and
the various existing projection methods for more flexible
360◦ video caching and multicasting schemes.

3) VIEWPORT PREDICTION
The importance of leveraging viewport information is unde-
niably crucial for implementing effective 360◦ video delivery
frameworks. Analyzing human behavior while watching
omnidirectional videos reveals interesting patterns that are
used, with the help of viewport prediction, for making intel-
ligent network decisions. Viewport prediction has become an
integral part of 360◦ video streaming and the development of
more accurate models that extend the prediction time would

allow for higher proactivity. Moreover, implemented trans-
mission methods must be able to identify cases of viewport
prediction uncertainties or failures in order to address these
cases and achieve an uninterrupted watching experience.

4) EMERGING VARIATIONS OF 360◦ VIDEOS
A variety of immersive applications that need researchers’
attention have been appearing recently. While 3DoF 360◦

videos are intended to be watched from a fixed position,
6DoF VR provides users with additional navigation axes that
correspond to the user’s position in the physical environment.
Volumetric videos provide a similar experience by represent-
ing the environment as 3D scenes and objects. Streaming
of 6DoF and volumetric videos is even more challenging
than 3DoF 360◦ videos as they require higher bandwidth and
computational power [133], [134], [135]. Such videos are
alsomore challenging in prediction and have a lower potential
for exploiting common FoVs. In view of this, new caching
and multicasting methods must be developed to handle the
particular challenges of these applications.

5) 6G ERA
Several caching and multicasting approaches have been pro-
posed in the literature for delivering omnidirectional videos
in mobile networks. On the network architecture level, many
of the existing works utilize the new developments in 5G net-
works, such as mmWave and D2D communications, which
allow for implementing different innovative solutions. Recent
technologies that have been proposed for advancing towards
6G communications, including THz communications and
reconfigurable intelligent surfaces (RIS) [136], create new
opportunities for VR and 360◦ video delivery. Therefore,
upcoming delivery techniques of omnidirectional videos
must aim at benefiting from these network changes for more
efficient transmission.

V. CONCLUSION
The availability of advanced commercial HMDs enabled the
widespread usage of VR and 360◦ videos in a variety of
applications. At the same time, the high data rate demands
and ultra-low latency requirements of omnidirectional videos
pose significant challenges for mobile communications.
In the case of conventional 2D video delivery, mobile
edge caching, and multicasting are two effective networking
paradigms, which hold great potential also for 360◦ video
delivery. Consequently, the unique criteria of 360◦ videos
inspired researchers to explore innovative caching and multi-
casting solutions that are specific to 360◦ video delivery.

In this work, we surveyed 360◦ video caching and multi-
casting techniques in mobile communication systems. First,
we introduced the viewing mechanisms and criteria of 360◦

videos and presented prominent encoding and projection
methods. A discussion was then provided on human percep-
tion and behavior while watching omnidirectional videos.
Next, we analyzed state-of-the-art caching and multicast
schemes with an emphasis on optimization methods and
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objectives, while also discussing the network architectures
and scenarios in the surveyed works. Based on our anal-
ysis, we highlighted the limitations of current 360◦ video
caching and multicasting methods and suggested some criti-
cal research areas that need further investigation.

Mobile networks need to accommodate the upcoming
demand for omnidirectional videos and be ready to provide
a satisfying experience for mobile users at a high scale.
To achieve this, delivery methods must exploit the character-
istics of 360◦ videos. Moreover, new transmission schemes
must consider emerging mobile communication technologies
and architectures, while leveraging the advancements in opti-
mization and DL techniques.
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