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ABSTRACT Recently, a large body of work has revealed a very accurate deep learning establishedmovement
categorization algorithmic technique for assistive technology applications. However, minimum seriousness is
given to its relative hardware execution. But direct mapping these algorithms onto battery-operated devices is
a point of care, edge devices would not yield optimum results necessitating an algorithm-architectural holistic
designmethodology. In the current study, we offered amethod for creating reconfigurable VLSI architectures
for deep learning established gesture recognition for rehabilitative technology applications. The ZYNQ
ultrascale + MPSoC zcu102 FPGA was used to implement the design. The on-chip power requirements
for LoCoMo-Net and MyoNet on FPGA are 3.5 and 5 Watts, respectively. Furthermore, gesture recognition
on the FPGA takes both networks at 1.876 ms and 61.988 ms, respectively. The accuracy comparison of
the most advanced networks is carried out on the CPU, GPU, FPGA, and ASIC platforms. The suggested
architecture was further synthesized utilizing GF 40-nm technology, which resulted in a 2.5× improvement
in performance in terms of speed and a 12–15× decrease in power consumption compared to FPGA in 2.046
mm2 of space and 300.8423 mW of power at 1.21 V.

INDEX TERMS Convolutional neural networks (CNN), long-term convolutional networks (LRCN), long
short-term memory (LSTM), LoCoMo-Net, MyoNet.

I. INTRODUCTION
Majority of the forelimb (hand) and hindlimb (leg) amputa-
tions occur due to sports and accidents. A finger amputation
is a simple procedure that involves working with nerves,
tendons, and skin to restore fine motor ability while limiting
hand use [1]. In accidents such as anterior cruciate ligaments
(ACL), sciatic nerve, and meniscus injuries an individual can
get a knee injury responsible for the dysfunction. Therefore
making the subject’s life easy and self-dependent on assistive
technology solutions plays a major role.
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approving it for publication was Ahsan Khandoker .

In the field of assistive technology applications deep learn-
ing has made a promising improvement. In this context, many
attempts have been made. Park and Lee in [2] proposed a
Convolutional Neural Network to predict hand movement
using sEMG-based data with an accuracy of 90%. Soman
et al. in [3] proposed a solution using a twin Support Vector
Machine (SVM) to recognize 15 wrist and finger flexion
movements from the muscles of the forelimb achieving an
average accuracy of 82%. Ulysse et al. [4], executed transfer
learning for hand gesture recognition with the slow fusion
model of CNN and reported 97.8% of accuracy. Atzori
et al. [5] introduced a CNN model for 50 movement clas-
sification and reporting 55% of average accuracy. Work
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by Zhai et al. [6], introduced a self-modifying sEMG pat-
tern recognition technology using CNN reporting accuracy
of 78.71%.

Similarly, for hindlimb, Zhang et al. [7] developed an
ARI (auto-regressive integrated) network to infer hinge joint
angle. In [8] Kianifar et al. utilized an inertial sensor to
evaluate knee joint angle. Kianifar et al. also proposed the
possibility of knee injury in the course of a one-leg squat.
Huang et al. [9] introduced a recurrent neural network to
estimate the real-time hinge joint movement fusing of sEMG
and inertial data. Lui et al. [10] utilized sEMG time-domain
data to estimate hinge joint angle. Chen et al. [11] proposed an
EMG signal-based artificial neural network to predict hinge
joint angle and also used parameters such as positive pulse
width, negative pulse width, and positive pulse amplitude
called as functional electrical stimulation (FES) parameters.
In our recently published research by Gautam et al., two
deep learning established networks, LoCoMo-Net [12] for
forelimb amputation and MyoNet [13] for hindlimb amputa-
tion, were proposed. LoCoMo-Net andMyonet have recorded
accuracies of 93.6% and 95.2%, respectively. In the view of
above it can be seen that deep learning has made a tremen-
dous improvement in designing an algorithm for assistive
technology applications. However, owing to the computa-
tionally intensive nature of DNN algorithms, implemented
onto the wearable device running on a battery backup or
harvested energy, may not be efficient with regards to low
power consumption and low area overhead. For real-time
performance, these algorithms need to be mapped onto their
corresponding hardware platform. Application-Specific Inte-
grated Circuit (ASIC) is a device that is designed for a specific
application. As the device is application specific and not a
general-purpose device hence consumes low power. Hence
a low-complexity VLSI architecture design without compro-
mising algorithmic accuracy will play a major role. Having
separate chips/systems for forelimb and hindlimb amputa-
tion costs more for designing two different chips/systems.
It also increases the design time and effort for having a
separate architecture for the forelimb and hindlimb. Hence a
single hardware architecture accommodating both the DNN
algorithm to serve hindlimb and forelimb respectively in a
reconfigurable fashion would even reduce power and area
consumption further. To the best of our knowledge, there have
only been a few attempts to develop such a unique recon-
figurable hardware design, which is essential to the work
that drives this research. Recently our preliminary results
in this context have been published in [14] however in this
article in addition to those preliminary results the following
contributions are made:

Our main contributions are highlighted as follows:
• proposal of reconfigurable, low complexity VLSI
architecture design for deep learning established fore-
limb and hindlimb gesture recognition for rehabili-
tation applications (LoCoMo-Net [12] and MyoNet
[13]) also, it’s detailed and elaborated architectural
description.

• succeeding implementation of the proposed architecture
on Zynq Ultra-scale+ FPGA and a thorough compar-
ison with state-of-the-art GPU platform affirming low
complexity and power efficiency (4-4.6× of reduction
in power), real-time (1.876ms for LoCoMo-Net and
61.988ms for MyoNet) implementation.

• subsequent design space exploration of the proposed
architecture has been done in the Application Specific
Integrated Circuit domain and the gate level netlist has
been synthesized using GF 40-nm technology utilizing
2.046 mm2 of the area and 300.8423 mW of power at
1.21 V. Power and area results are reported which to the
best of our knowledge is first of its kind.

The remainder of the paper is structured as follows: section II
provides the theoretical background, section III outlines
our suggested reconfigurable hardware architectural design,
section IV provides experimental findings and analysis, and
Section V closes with the scope of its future development.

II. THEORETICAL BACKGROUND
A. LoCoMo-NET
A Low-Complex Deep Learning Framework for sEMG-
Based Hand Movement Recognition for Prosthetic Control
[12] was created to differentiate between forelimb tasks for
amputee patients. It is a binary classifier with an average
accuracy of 93.6%. It classifies among 15 various fore-
limb tasks of finger and wrist movements with the rest
position of the forelimb. LoCoMo-Net consists of two con-
volutional layers with one fully-connected layer at last as
shown in Fig 1. The input layer provides 250 ms windows
of 1-D single-channel sEMG sensor data. LoCoMo-Net has
two 1D convolutional layers with seven 5 × 1 filters and
a stride of one. Following convolution, both layers use a
ReLU activation function (Rectified Linear Unit) followed
by a 2 × 1 maximum pooling operation. After that, the
Fully Connected layer is executed at the last layer. Because
LoCoMo-Net is a binary classifier, each task is divided into
two categories: tasks that are categorized (labeled class A)
and tasks that are not classified (labeled class B).

B. MyoNet
Myo-Net is one of the transfer-learning established Long-
term Recurrent Convolutional Network (LRCN) motion
recognition networks with an accuracy of 95.2% for hindlimb
movement categorization and joint angle prediction. MyoNet
distinguishes three hindlimb movements: class A (sitting),
class B (standing), and class C. (walking). It also forecasts
the knee joint’s angle. MyoNet uses convolutional layers to
obtain features from given data and Long Short Term Mem-
ory with a fully connected layer for hinge angle prediction. At
the output, the softmax loss function is generated for forecast-
ing the feature over time steps for classification [13]. From
the input layer, four-channel 1-D surface-Electromyography
sensor data having windows of 256 ms is fed to the convo-
lution layer. Before the ReLU (Rectified Linear Unit activa-
tion) operation and 4 × 1 maximum pooling function, the
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FIGURE 1. LoCoMo-Net network architecture.

convolution layer conducts 1D convolution with 20 kernels
each of 11 × 1 size and stride of 1. The movement catego-
rization and joint angle prediction block are then computed
in parallel. For classification among classes A, B, and C, the
movement classification block computes a dense layer with
the softmax function. Two LSTM layers make up the joint
angle prediction block. The first LSTM layer was 32 memory
units in size, while the second LSTM layer was 64 memory
units in size. Fig 2 depicts the MyoNet network topology.

C. CONVOLUTIONAL NEURAL NETWORKS
The exceptional performance offered by CNNs made them
an unavoidable choice for supervised learning tasks and
computer vision applications [15]. Convolutional Neural Net-
works (CNNs) are symmetrical to traditional Artificial Neural
Networks (ANN) and composed of interconnected neurons
that are fine-tuned through learning. Every neuron performs
an operation (viz. scalar product followed by a non-linear
function) on the input received on the basis of countless
Artificial Neural Networks [16]. Startingwith the input image
vectors to the category score as the final output, the whole
neural network will be expressing a single incisive score
function (the weight) [16]. The final layer of the convolu-
tional neural network contains the loss function to evaluate
the accuracy of the classes and all of the tuning methods of
ANN still apply [16]. Till now people have used CNN for
image-processing applications. In this paper, we propose a
reconfigurable hardware architecture for assistive technology
applications based on sEMG sensor data. LoCoMo-Net [12]
andMyoNet [13] are based on Convolutional Neural Network
(CNN). LoCoMo-Net consists of two convolutional layers
after that a fully connected layer and softmax function. Myo-
Net consists of 2 convolutional layers and 2 LSTM layers.

FIGURE 2. MyoNet network architecture.

D. LONG-TERM RECURRENT CONVOLUTIONAL NETWORK
(LRCN)
MyoNet [13] is based on LRCN (an architecture of DNN),
shown in Fig. 2 comprised of LSTM-based RNN preceded
by a CNN. CNNs are used to take out the complex char-
acter from the incoming input data which is followed by
a fully connected layer and softmax to evaluate the loss at
the output and to predict the task movement classification.
A transfer-learning-based approach is utilized for the move-
ment classification, wherein the trained sEMG data is directly
passed to the dense layer [13]. Features of the sEMG data
are already learned while performing the angle prediction
task, this avoids redoing the feature extraction again for
movement classification [13]. The output feature maps are
obtained through the extracted features of input data which
are described by kernel weights of convolution layers. This
is succeeded by an activation function (for introducing the
non-linearity for learning complex features), then the pooling
layer followed by a densely connected layer which gives the
classified output [17].

LSTM units, on the other hand, are a form of recur-
rent neural network (RNN) [18] that are good at capturing
long-term temporal relationshipswhile avoiding optimization
challenges. LSTM units are typically composed of a hidden
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state triggered by a nonlinear function, that employs a learned
gating operation to enable the condition to propagate with-
out alteration, be reset, or be updated [13]. LSTM’s have
recently obtained respectable results in biological domain
[19], voice identification [20], language conversion [21],
[22], and computer-vision applications [23].

E. HARDWARE-SOFTWARE CO-DESIGN
It involves hardware and software interaction to complete a
specific task using concurrent and coordinated design [24].
The system is composed of hardware and software that is
specifically designed for it and is mapped to a central process-
ing unit (CPU). The co-design-dependent method benefits
from the hardware’s power, speed, and parallelism, as well
as the software’s flexibility and modularity for constraint
optimization [25]. Extensive research in hardware-software
co-design with a focus on partition strategies [25] has led to
various developments in architectures, multiprocessing, mul-
tithreading, and multi-core environments. System-on-chip
(SoC) [26], which unifies all the elements of computation and
communication on a single chip, has just emerged as a new
paradigm for co-design. The Zynq-7000 SoC FPGA family,
the technology employed in this method, has the ability to
construct the entire hardware-software system on a single
platform, [26]. By offering a one-chip solution, these FPGAs
do away with the need for individual integrated circuits (IC)
for the CPU and hardware. The co-design method uses a
variety of soft-core processors that are readily available,
ready to use, and completely configurable to the needs of the
application processors in addition to the Zynq family with an
on-chip ARMprocessor, enabling quick prototype and design
implementation.

III. PROPOSED METHODOLOGY
To achieve the proposed reconfigurable VLSI architecture
for deep learning networks, we divided the approach into
two stages. First, we designed dedicated VLSI architectures
for LoCoMo-Net (described in subsection A) and MyoNet
(described in subsection B). Second, we figured out the over-
lapping and separate operations of both networks. Based on
these operations we propose reconfigurable VLSI architec-
ture with common hardware units for overlapping operations
and dedicated hardware for separate operations as described
in subsection C. First the VLSI architecture for LoCoMo-Net.

A. PROPOSED VLSI ARCHITECTURE FOR LoCoMo-NET
The VLSI architecture for LoCoMo-Net as shown in Fig 3
is described as follows: first, from the processor, the trained
model and the test data are loaded to primary storage (Block
RAM). For the first convolution, layer input is selected
from the primary storage, and for the next layer from the
local storage. Switching between the storage is done with
a 2:1 multiplexer based on the layers. After receiving the
data, the convolution block starts the MAC computation. The
partial products are passed to bias addition. Bias weights
are also stored in primary memory. Following bias addition,

FIGURE 3. Proposed VLSI architecture for LoCoMo-Net implemented on
FPGA.

ReLU activation is computed, followed by max pooling.
LoCoMo-Net [12] employs 2×1 max-pooling, necessitating
the usage of a two-input comparator. The address controller
is used to hold two input values in registers for 2×1 pooling.
The comparator receives these two values. The result of the
comparison is saved in the block RAM.

The results of max pooling of the first layer are stored
in the local storage. For the second layer inputs are selected
from the local storage and similar computations are per-
formed in the first layer. Once we get the max pooling results
for the second layer, data is passed to a fully connected layer.
After a fully connected softmax function is executed. In the
end, we get the final result whether the task is classified or
not.

FIGURE 4. Proposed VLSI architecture for MyoNet implemented on FPGA.

B. PROPOSED VLSI ARCHITECTURE FOR MYO-NET
The VLSI architecture for MyoNet as shown in Fig 4 is
described as follows: firstly the trained weights and test data
are loaded first to the primary storage. AsMyoNet has 4 chan-
nel sEMG data hence 4 convolution modules are utilized
(each module for each channel). The four-channel convolved
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output is concatenated and converted to a single dimension.
After concatenation bias addition after ReLU operation and
maximum pooling is performed. For Myonet two 2 input
comparators are required as it has a pooling size of 4×1.With
the help of the address controller, 4 input data samples are
saved in registers. These 4 data samples are fed to 2 compara-
tors in the first iteration. The two comparison outputs from
the first iteration are supplied to one comparator again in the
second iteration, while the other is deactivated. The output is
then stored in the block RAM.

For task classification, a fully connected layer is performed
with the softmax function. In the end, we have 3 task classi-
fications as shown in Fig 4. Parallel to the FC layer LSTM
layer is executed on the processor. After LSTM again a fully
connected layer is performed to get the joint angle prediction.

FIGURE 5. Proposed re-configurable, low-Complexity VLSI design
architecture for deep learning established forelimb and hindlimb gesture
recognition for rehabilitative technologies (LoCoMo-Net [12] and
MyoNet [13]).

C. PROPOSED RECONFIGURABLE VLSI ARCHITECTURE
As shown in Fig1 and Fig 2 that both networks have few
common operations. The first two layers of MyoNet and
LoCoMo-Net are convolutional layers that perform 1D con-
volution after ReLU and maximum pooling operations. And
MyoNet [13] has two LSTM layers whereas LoCoMo-Net
[12] does not use LSTM.Hence the common operation is kept
in the programmable logic part and the varying operations
are executed on the processor (processing system). Both the
networks have fully connected layers but with a different
number of classes hence we executed fully connected layer
operation on the processor. The main idea of partitioning
is to keep the static operations on the programmable logic
side and the dynamic operations to be executed at the pro-
cessor end. The proposed reconfigurable machine learning
hardware architecture for assistive technology applications is
as shown in Fig 5. The flow of architecture is as follows. First,
from the processor, the trained model and the test input data
are stored in the primary storage. Depending on the mode

selection architecture is reconfigured for the input-trained
network. The input from the primary storage is passed to the
convolutions. The output of a convolution is passed to fur-
ther blocks for concatenation, bias addition after that ReLU
activation, and max pooling. The output of max pooling is
stored in the local storage. Next data from local storage is
passed to the FC (Fully Connected) layer. The FC layer also
receives the trained weights from the processor and starts
computing the FC layer operations. FC layer output is then
passed to the softmax activation function which generates the
probabilities for the classification classes. At last, we get the
final output class at task classification.

• Master Controller: The master controller plays an
important role. It consists of controller logic for mem-
ory, channel, address, and mode selection with the
network’s information like the number of layers in the
network, filter size, stride, pooling size, and the number
of input channels. Depending on the mode selected, the
master controller will configure/reconfigure the entire
architecture.

• MemoryControllerAdvancedmemory layout and data
flow are critical for optimal hardware implementation.
The memory should be huge as CNN includes millions
of parameters. To preserve accuracy, all operations are
conducted with a 16-bit floating point. As a result, all
parameters are recorded with 16-bit precision. It costs a
lot of RAM to store all the parameters. DDR memory
is a viable option for such memory needs, although it
usesmore power. However, in the proposed design, DDR
memory is used as the main memory whereas Block
RAMs are used to store interim findings.

• Channel controllers The channel controller manages
the channel computation based on the input data. Only
one convolution block is active since LoCoMo-Net uses
single-channel data. Since Myo-Net uses four-channel
sEMG data, four convolution blocks are also enabled for
this algorithm.

• Address controller Address controller controls the
flow of Writing data from the processor and reading
it back to the processor from memory for the next
processing.

• Mode selection Mode selection determines whether
architecture will operate in LoCoMo-Net [12] or Myo-
Net [13] mode. It’s a one-bit signal.

• Convolution: In any network accelerator design con-
volution operation governs the computation complexity
and therefore engages the most computations. In the
proposed architecture there are four identical con-
volution modules each module having one multiply-
and-accumulate (MAC) unit. Also, each module is
re-configurable for 1D convolution. Fig 6 shows block
evel representation of the convolution module. An inter-
nal BRAM memory is utilized for storing the interme-
diate results between input data convolved with filter
coefficients. Due to a shortage of memory space, the
hardware is reused to compute the MAC (multiplication
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and addition) operations at the cost of a bit more latency
to output the feature map.
This results in a reduction in memory usage.

FIGURE 6. Block level representation of convolution operation
implemented on the proposed architecture.

FIGURE 7. Comparator based max-pooling logic to work in LoCoMo-Net
and MyoNet Mode.

• Rectified Linear Activation Function: The convolu-
tion procedure is immediately followed by the ReLU
Activation function. The negative data samples are set
to zero by this activation function, while non-zero data
samples are sent on exactly as they are. The activation
function receives the output of the convolution process.
The max-pooling algorithm is used to handle the output
of the ReLU activation function.

• Max-Pooling: To decrease computing complexity, the
maximum pooling layer is used. It also improves effi-
ciency by down-sampling the incoming data samples.
It returns the greatest data sample value of the chosen
region. The output of the activation function is initially
stored in registers. Input for Max-Pooling is chosen
from these registers. The address controller is used to
choose activation outputs. As illustrated in Fig 7, the
proposed architecture consists of two comparators to
obtain the max-pooled output. If the architecture works
in LoCoMo-Net mode then only one comparator is used.
If the architecture is configured to work in MyoNet
mode then both comparators are used.

• Fully Connected Layer: Neurons which are in Fully
connected layers will have complete associations with
the past layers. It is utilized to arrange data into different
classes in a neural net. We use the Softmax function
for the classification of labels based on the probabili-
ties of each input component [27]. The multiplication
and accumulation (MAC) operations are performed by
the fully connected layer. The maximum pooling out-
puts are sent into the FC layer. FC-layer outputs the
accumulated values based on the number of classes.

The probabilities are generated using the softmax loss
function after the aggregated outputs are prepared. The
categorization result is provided by the fully connected
layer based on the highest likelihood.

FIGURE 8. Accuracy comparison of LoCoMo-Net and MyoNet on CPU,
GPU, and FPGA platform.

• Concatenation: Concatenation is a function that allows
grouping items together in a sequence. Branching is a
term used for a few networks, such as [13], in which
numerous convolution processes are conducted in par-
allel. Pooling output must be concatenated before being
supplied as input to the next layer. However, three
activation and three maximum pooling procedures will
be required in this process, at the expense of greater
resource use and increased power consumption.
Instead of following the above-mentioned scenario, right
after convolution, we concatenate the outputs of four
parallel convolution operations, and the concatenated
output is fed for activation andmax-pooling function. By
following the second approach the proposed architecture
is able to compute the operation with fewer resources
utilization and hence comparatively less power is
consumed.

IV. RESULTS AND ANALYSIS
Table 1 shows the lower limb and upper limb movements to
be classified by Myonet [13] LoCoMo-Net [12] respectively.
Myonet classifies the lower limb task (walking, sitting, and
standing). However, LoCoMo-Net classifies among the tasks
performed by the upper limb (movement of each finger indi-
vidually, together movement of combination of two figures,
wrist flexion, wrist extension, all figure movement together,
hand grasp, pinch grip, and rest position). Fig 8 presents
the accuracy comparison of the state-of-the-art algorithms on
CPU, GPU, and FPGA platforms. It is observed that there is
no reduction in accuracy. Subsequently, the proposed recon-
figurable architecture is executed on the ZYNQ ultra-scale+
MPSoCZCU102 FPGA. Fig 9 shows the dataset collection of
the tasks mentioned in Table 1. The entire duration for dataset
collection is 50 seconds session of 4 trials. First, the subject is
asked to stay in a relaxed state for 5 seconds. Then the subject
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TABLE 1. Task to be classified by MyoNet and LoCoMo-Net.

is given a time of 2.5 seconds to get readymentally to perform
the task. Later the subject will perform the task for 5 seconds.
After finishing the task a break of 5 seconds is given in which
the subject has to relax and get ready to perform the next
task. The flow for testing the proposed VLSI architecture
is as follows. From the processor, we selected the mode in
which we wanted to work for example LoCoMo-Net mode
which means mode selection is set to zero. After selecting the
mode, the architecture is configured to work in LoCoMo-Net
mode (mode selection: 0). Now based on the input signal task
selected, the architecture will perform the computations, and
last it will give the output task classification. Similarly, if the
mode is selected as 1 then the architecture will work in Myo-
Net mode and gives the output task classification along with
join angle prediction. The FPGA is operated at a frequency
of 100 MHz. FPGA Resource utilization for LoCoMo-Net

and MyoNet is displayed in Table 2. As mentioned in [37],
an accumulator comes after a multiplier in the DSP slice.
Both multiply and multiply-accumulate operations require at
least three pipeline registers to operate at maximum speed.
From Fig 1 and Fig 2 it can be observed that LoCoMo-Net
processes single-channel data requiring only one multiply
and accumulator unit compared to MyoNet. Therefore the
proposed architecture utilizes more resources when work-
ing in MyoNet mode, however, in LoCoMo-Net mode, the
resource utilization is comparatively less.

The computational time is equal to 1.876 ms for LoCoMo-
Net and 61.988 ms for MyoNet. The calculation time listed
above is within the allowed limit of real-time prosthetic
control, which is 300 ms, as stated in the literature [34].
We conducted a comparison of power utilization between
the suggested methodology-based architecture execution on
FPGA and the direct mapping of algorithms on GPU (Jet-
son TX2) to demonstrate the low complexity nature of the
proposed architecture (zcu102). We used Nvidia Jetson tx2
GPU.The Jetson TX2 is an embedded system-on-module
(SoM) developed by NVIDIA. It is designed specifically for
artificial intelligence (AI) applications and edge computing.
The TX2 module incorporates a powerful GPU (graphics
processing unit) and a CPU (central processing unit) along
with other essential components, all integrated onto a single
board. Table 3 shows the power utilization of the pro-
posed reconfigurable architecture working in LoCoMo-net
and MyoNet mode on FPGA, GPU, and ASIC platforms.
The proposed architecture consumes 3.6 Watts and 5 Watts
of power on FPGA, 16 Watts and 23 Watts of power on
GPU, and 258.44 mWatts and 264.88 mWatts of power on
ASIC platform working on LoCoMo-Net and MyoNet mode
respectively. Reconfigurable architecture has been proven to
use 4-4.6 times less power than a GPU. The time consumed
by LoCoMo-Net is 90 sec, 1.879 ms, and 17.58 ms therefore,
the energy consumed is 1440 J, 0.67 J, and 0.0045 J on
GPU, FPGA, and ASIC respectively. For MyoNet the time
consumption is 120 sec, 61.988 ms and 50.78 ms energy
consumption is 2760 J, 0.31 J, and 0.0134 J on GPU, FPGA,
and ASIC respectively. For FPGAs, both energy and power
are important considerations. Energy efficiency is crucial to
optimize the overall energy consumption while managing
power consumption is essential to ensure reliable and stable
FPGA operation. For FPGA the power is evaluated from the
Xilinx Vivado Tool. For GPU, as we used Nvidia Jetson
tx2 GPU, there are power rails available we measured the
power rail reading and got the power consumption. For ASIC,
we reported the frontend results from Synopsys Design Com-
piler tool.

All the computations are performed on 16-bit format,
also the architecture is parameterized. On the GF 40nm, the
suggested Re-configurable, Low-Complexity VLSI Archi-
tecture architecture for deep learning-based forelimb and
hindlimb movement categorization assistive technologies
uses 2.046 mm2 of the area and 300.8423 mW of power.
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TABLE 2. FPGA resource utilization of proposed reconfigurable VLSI
architecture working in LoCoMo-Net and MyoNet Mode. (FF: Flip-Flops,
LUTRAM: Lookup table random access memory, LUT: Lookup Table, BUFG:
Global clock buffer, DSP: Digital signal processing, IO: Input/Output,
BRAM: Block RAM).

FIGURE 9. Experimental setup for dataset collection of sEMG data.

A. CHALLENGES
Firstly as LoCoMo-Net has a 5 × 1 filter size and MyoNet
has an 11 × 1 filter size. Challenges are faced in designing
a convolution module supporting various convolution sizes a
MAC unit is designed to have 1 multiplier and 1 adder which
can be utilized many times as per the requirement. Second a
reconfigurable max-pooling logic to support 2 × 1 and 4 ×

1 max-pooling operations which are used by LoCoMo-Net
and MyoNet respectively. The third control logic is to enable
4 convolution blocks in parallel forMyoNet mode and disable
3 convolution blocks while the first convolution block will be
enabled to work in LoCoMo-Net mode.

B. DISCUSSION
The strength of the proposed work is that to date lot of work is
done for improving the accuracy of the deep neural network.
However minimum efforts are made for designing equivalent
VLSI architecture for the same to have a chip/system solu-
tion. Having a single chip/system solution that can be used
by the amputated patients for performing daily life activities

easily. This will make the amputated patients self-dependent.
However, the proposed architecture can work in LoCoMo-
Net and MyoNet modes sequentially.

TABLE 3. Power utilization of proposed architecture on FPGA, Nvidia GPU
and ASIC.

V. CONCLUSION
This work offers a reconfigurable, low-complexity VLSI
architecture for assistive technology applications that uses
deep learning to categorize forelimb and hindlimbmovement.
The Zynq Ultra-scale+ FPGA has successfully implemented
the specified design. Less than 20% of the total FPGA
resources are consumed in this paper’s analysis of FPGA
resource usage. The suggested design consumes 4-4.6× less
power on FPGA than on GPU. The design is also synthesized
utilizing GF 40-nm technology, yielding 2.046 mm2 of the
area and 300.8423 mW of power at 1.21 V. The Future scope
of the proposed work is to do the front-end and back-end
design and get a device. The application of the proposed work
is that this device can be used by individuals having hindlimb
(upper limb) and/or forelimb (lower limb) amputation to
make their daily life activities easier. This device can work
in LoCoMo-Net and MyoNet modes to help the amputated
individual. As the proposed architecture is reconfigurable,
individuals having both hindlimb (upper limb) and forelimb
(lower limb) amputation need not wear two separate devices.
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