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ABSTRACT Time-Sensitive Networking (TSN) has enabled a lot of advancements in industrial automation,
aviation, tactile networking, and other ad-hoc networking applications. The bounded latency, reliability,
and self-recovering mechanisms for a network are some of the core attributes of the TSN architecture. The
reliability of bench-marking of a given TSN architecture, when done with simulators, will not match with that
of hardware systems. But the TSN hardware needs more capital investment along with more development
time as it involves understanding the hardware-specific parameters. The research in this paper has solved this
shortcoming by implementing an open-source and secured SDN(Software Defined Networking)-based TSN
framework integrating IEEE’s 802.1 Qbv and 802.1Qcc standards. The novelty of implementation involves i)
Realization of Centralized User Configuration (CUC), Centralized Network Configuration (CNC) with open
source tools. ii) An algorithm called Dynamic TSN Path Finder (DTPF) is implemented for automatically
identifying TSN edges participating in TSN flow. iii)) Emulation of hardware environment leveraging
Linux-based queuing disciplines and traffic shapers. This unique open source-based TSN architecture is
then tested with both TSN and Non-TSN traffic, to demonstrate the gating logic and the delay characteristics
based on queuing discipline when applied to virtual queues.

INDEX TERMS Software-defined networking, open-source, scheduling, switches, queuing disciplines,
time-sensitive networking, IEEE protocols.

I. INTRODUCTION

TSN is an effort to integrate Operational Technology (OT)
and Information Technology(IT) enabling the co-existence of
time-bounded control traffic and best-effort traffic to reduce
the infrastructure cost. The IEEE 802.1 TSN standards pro-
vide real-time capabilities to the Ethernet, which have opened
up a large number of applications in Industrial Automa-
tion, Audio Video Bridging (AVB), Aerospace, Automotive,
and in-vehicle communication domains [1]. These standards
aim at providing deterministic data delivery with bounded
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latency for heterogeneous data and shared networks creating
a vendor-independent and converged network.

In current automotive and industrial networks, the recon-
figuration of the network is not possible on the fly whenever
there is a need. This evidently affects the efficiency of the
network as it is more time-consuming because of man-
ual effort, which is vulnerable to human errors [5]. Hence
there is a need for a centralized controller which can
perform automatic scheduling in case of network reconfig-
uration. [4], [17], [35], [39]

The SDN architecture has a centralized controller that con-
trols flow tables of switches connected to it. Hence leveraging
SDN architecture for TSN brings down the development time
significantly [22], [24], [39]. Most of the papers propose
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customization to the existing SDN framework that is required
for realizing TSN architecture. The paper [5] proposes one
such SDN-based TSN model using NEON controller and
APIs required for communication with TSN bridges which
are compliant with IEEE’s 802.1Qbv and 802.1AS standards.

Similarly, the author in [7] proposes and implements
the TSN network architecture for industrial automation
especially for dynamically interconnected time-sensitive
end devices, using SDN-based centralized configuration
and Open Platform Communications-Unified Architecture
(OPC-UA) which serve as the data exchanging technology
between applications of industrial automation.

The author in [12] has created an SDN-based TSN network
for industrial Ethernet applications with multiple Quality of
Service (QoS) requirements. Depending on the application’s
QoS requirements the appropriate TSN schedules are pushed
from the SDN-based controller to its connected switches.
The scheduling strategies are calculated at the SDN con-
troller and are used at the switches to update their Gate
Control List(GCL). The communication between the SDN
controller and the TSN switches is done through the NET-
CONF protocol. The Satisfiability Modulo Theories (SMT)
based scheduling and rate monotonic scheduling have been
realized.

In the paper [14], the author proposes the partitioning
of available bandwidth for implementing IEEE 802.1Qbv
scheduling. This approach enables the SDN controller to
calculate the configuration of dynamic flows independently
without disturbing the static configuration. The simulation for
finding the end-to-end delay and jitter for various in-car net-
work nodes is carried out in an OMNETH-+ based simulator.
Hence the results presented do not take real-time constraints
into consideration.

The paper [15] implements an SDN-based TSN net-
work using source routing and IEEE 802.1Qbv in its data
plane to check the performance of the network for bounded
latency using Linux TAPRIO(Time Aware Priority Queuing)
queuing discipline. The virtual local area network’s Vir-
tual LAN(VLAN) Priority Code Point (PCP) based traffic
class mapping is used with the multiple virtual queues. The
research work under [15] does not give much detail on how
virtual queues are created and also does not emphasize the
classification of packets required for queuing discipline. The
source-based routing is proposed in [15] without discussing
the overhead imposed on TSN traffic.

The author of the paper [19] proposed a reconfiguration
framework based on the IEEE 802.1Qbv standard in col-
laboration with the IEEE 802.1Qcc standard using SDN
controller to implement a control mechanism that incorpo-
rates the 802.1Qcc variables, including the flow instantiating
parameters and the 802.1Qbv gate control parameters. The
author modeled his own queue structure for the simulation of
aforesaid IEEE standards. The paper [19] does not convey the
type of SDN controller used. The information given as part
of virtual queues is not justifiable with respect to gate control
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logic that has been proposed by IEEE 802.1Qbv standards.
Also, the Author in [18]explains the SDN model, to imple-
ment the inter-domain TSN network, and the author in [20]
builds a test bed to demonstrate the unified control-plane
Time-Sensitive Software-Defined Networking (TSSDN).

The fully centralized architecture inspired by the SDN
model of TSN is proposed by IEEE [25]. According to this
CUC is a software that considers the requirements from TSN
end nodes and sends the requirement to CNC. The CUC
collects the requirements of TSN end devices through CUC
and sends this information to TSN switches. TSN switches
are capable of transmitting and receiving the Ethernet frames
according to the schedule. TSN talkers and listeners are the
source and destination of the TSN flows. This model has
knowledge of the entire network and hence manages the
transmission schedule and paths.

In [44], the author discusses about the issues in integrating
the SDN control plane for TSN. Implements a small-scale
hardware test bed using NXP LS1028A to build CUC,
CNC, and TSN switches and NXP iMX8MP as TSN end
nodes. The delay for TSN data is evaluated. As SDN-
based architecture might produce high latency when network
reconfiguration is done in the control plane, the author con-
cludes that the proposed architecture, Fully time-sensitive
software-defined networking helps in optimizing the
problem.

Creating a complete hardware setup is a costly and com-
plex task, especially for a large-scale TSN network. The
author in [46] implements the hybrid simulation testbed,
where software-generated traffic is combined with real sensor
data. With this setup, they test for security, data process-
ing, protocol testing, and performance measurement. The
hardware components used are Ubertooth One and Libelium
Waspmote for generating sensor data, C1-Toradex as SDN
controller, and for software Mininet and Mininet-Wifi in a
Linux environment are used.

In [33], the author proposes and implements open-source
scheduling strategies for Linux systems. The new TT(Time
Triggered) scheduler achieves real-time guarantees. The
details on various scheduling mechanisms for real-time
applications are mentioned. This paper doesn’t consider
SDN-based architecture.

As discussed in the previous paragraphs, many papers are
present in the literature which implements and tests TSN net-
work with simulation tools [ 14], hardware test beds [41], [44],
[45] and hybrid of both hardware and software [46]. As we
have used virtual queues for our work, it is important to
discuss the virtual queues and compare them with hardware
queues.

The hardware queues are part of NICs that enable offload-
ing of network processing tasks from the host’s CPU. Hence
this reduced CPU utilization helps in boosting networking
performance. Whereas the virtual queues are implemented
in software. The networking stack of the host operating sys-
tem takes the full onus of handling traffic passing through
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virtual queues. The virtual queues are typically used for
communication between different network namespaces or
containers within a host. Hence, the CPU speed of the host,
the networking stack efficiency, and the system load are some
of the factors impacting the service rate of the virtual queue.
This might lead to increased latency and lower throughput
compared to the hardware queue. Intel®) Ethernet Controller
1210 (Network Interface Card)NIC from Intel is one of the
TSN-aware NIC with hardware-based queues. These kinds
of hardware-based NICs provide bounded latency communi-
cation for industrial applications. [41].

The continuous evolution of the kernel bypass techniques
and software data planes have greatly succeeded to address
the performance limitations of traditional software-based
networking stacks, narrowing the performance gap between
virtual queues and hardware queues. Intel’s Data Plane
Development Kit (DPDK) enables user-space applications
to achieve high packet processing rates by bypassing
kernel [42].

In our paper, we have shown how software containers and
their virtual queues can be used to provide deterministic oper-
ations suitable for industrial networks. On the same lines the
research proposed under [41] demonstrates the accuracy of
software application timing and offset control is within a few
hundred- psecond range, which can satisfy the requirements
posed in the cloud environment.

Our research work proposed in this work emphasizes on
using our architecture for TSN-aware PoC(Proof of Concept)
as our novel architecture uses open-source tools to bring
down the PoC cost.

IEEE proposes scheduling strategies like IEEE 802.1Qbv
(Time Aware Shaper), IEEE 802.1Qbu(Frame Preemption)
and IEEE 802.1Qav(Credit Based Shapers). In our work,
we assume that TSN traffic is periodic and the TSN traf-
fic arrival time is known prior. For this requirement, IEEE
802.1Qbv is the apt scheduling scheme. TAS ensures that the
egress port which is designated for TSN traffic is idle when
TSN traffic is scheduled. It ensures this by using the gating
logic. TAS assigns the queues to each traffic class and the
gates to their allocated queues are kept open or close based
on the schedule. As in periodic TSN data transmission, the
schedule is known prior to the gate corresponding to the TSN
traffic class being kept open, so that a particular queue gets
attached to the egress port. This makes sure that TSN traffic
egresses at the scheduled time [31], [43], [47], [48].

Since our work mainly focuses on TSN traffic where the
traffic schedule is already known to the admin, we have
decided to do the research using IEEE802.1Qbv. Moreover,
we wanted to explore the performance of the veth queue with-
out pushing ourselves into the number of queue limitations.

IEEE 802.1Qcc proposes 3 architectures. Fully distributed,
fully centralized and hybrid architecture [44]. We use fully
centralized architecture as it proposes centralized manage-
ment and control which enables seamless pushing of policies
to all the connected edges. We have leveraged the SDN model
to implement a fully centralized architecture which helps in
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FIGURE 1. IEEE 802.1Qcc Fully centralized architecture [3].

pushing TSN schedules to all the switches participating in a
TSN path/flow.

The paper is structured in various sections as mentioned
here. Section II- Describes the existing research gaps and
the objectives of our paper. Section III describes our design
approach carried out for the implementation of open source
secured and SDN-based TSN architecture and section IV
explains our contribution. SectionV discusses the results and
conclusion.

Il. RESEARCH GAP AND OBJECTIVES

A. RESEARCH GAP

In literature, many papers discuss about the need for a cen-
tralized SDN structure for TSN. There is a need for taking
the real-time traffic and real constraints into consideration for
bench-marking the results.

When SDN architecture is implemented for IEEE
802.1Qbv, using Linux queuing disciplines, configuration
related to multiple virtual queues needs to be discussed with
related details. These are missing in the present literature.

TAPRIO queuing discipline demands traffic classification
at ingress and egress queues for allocation of queues. But
the papers mentioned in the introduction do not present con-
figuration and implementation details. Most of the papers
modify OpenvSwitch to incorporate QoS functions needed
for TSN. This may lead to some errors as OpenvSwitch may
not modify every Linux kernel feature due to non-registered
bugs if any [29]. To address the above-mentioned gaps the
following objectives are defined in section II-B.

B. OBJECTIVES

o Perform the validation of the IEEE 802.1Qbv gating
strategy by considering the real-time traffic.

o Provide complete implementation details of multiple
virtual queues for the egress port of the switch.

« Discuss all the configuration details on TAPRIO, traffic
class, filtering, and traffic scheduling in detail.

« Instead of modifying the OpenvSwitch for incorporating
QoS functions, use the Linux traffic control utility “tc”.

o Implement and validate the algorithm DTPF for TSN
traffic for routing.

« Make communication secure by using Paramiko.
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FIGURE 2. Basic building blocks of an SDN-based TSN network based on IEEE 802.1Qcc.

Ill. WORK DONE

A. DESIGN APPROACH

We propose a TSN network, that is based on IEEE 802.1Qcc
fully centralized network as depicted in figure 1.

According to this CUC is software that communicates with
the end devices and CNC. CUC gets the requirements of the
end devices and makes requests to the CNC for deterministic
communication with specific requirements for the traffic.
Whereas CNC defines the schedule on which all TSN frames
are transmitted. The CNC application is provided by the
vendor of the TSN bridges. By taking this as a reference,
we build the software for CNC, CUC, and TSN agents.
We consider 2 traffic classes, one for TSN traffic and the sec-
ond one for Non-TSN(Best Effort) traffic. We have 2 source
nodes and 2 corresponding destination nodes as shown
in fig.2. The following subsection explains the functions
and implementation details of each component mentioned
in Fig.2.

1) CENTRALIZED USER CONFIGURATION (CUC)

The CUC is a vendor-specific implementation for associated
TSN nodes [26], [28]. This is an independent device provided
by the vendor. In our implementation, CUC is hosted as
a docker container. Under this container, a program called
CUC-agent communicates with the Talker, Listener, and the
CNC over a secured channel provided by SSH [2]. CUC
is responsible for generating the TSN flow by pulling the
requirements from TSN end nodes. CUC will then query
the topological information from CNC using REST APL
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The topological information is filtered to form TSN flow,
using our algorithm DTPF. Eventually, this TSN flow is sent
to CNC. A TSN flow is a unidirectional path from talker to
listener including the intermediate nodes as clearly depicted
in Fig. 2

2) CENTRALIZED NETWORK CONFIGURATION (CNC)

We have used the OpenDaylight controller as CNC. But,
we have not customized any OpenFlow API’s for TSN archi-
tecture. Instead, a program called CNC-agent discovers the
entire topology and returns it to the CUC when queried
as mentioned in subsection III-A1 . On receiving the flow
requirements from the CUC, the CNC will generate the
TSN schedule according to IEEE 802.1Qbv standard. A TSN
schedule contains the configuration which specifies the allo-
cation of priority, queue, and time slice for a particular or set
of traffic classes.

3) TSN ENABLED SWITCH
This is an SDN’s OpenvSwitch in our implementation.
To make this switch TSN aware a program called TSN agent
is executed on the switch which deploys the TSN schedules
as received from the CNC.

4) TALKER AND LISTENER

In our implementation, these are the two docker containers.
The TSN end devices are responsible for generating and
receiving the time-sensitive data respectively. The greater
details on the classification of TSN data traffic are given in
section IV-C
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FIGURE 3. TSN flow/ TSN path with ethernet interfaces.

TABLE 1. Tools used for experiment.

Name of the component Version

Mininet 2.3.1.bl
OpenDaylight controller 3.0.3

OpenVswitch 2.17.5

Python Programming language 3.8.10

Ubuntu O.S 20.04

"tc" utility iproute 2 22200127

1) Talker’s MAC and IP
2) Time slice of TSN data.
3) Listener’s MAC and IP.

As mentioned in the objectives, we use secured commu-
nication between the components in our network by using
SSHv2( Secure Shell Protocol Vesrion 2) Scripting protocol.
The Python program uses paramiko, a module that imple-
ments the SSHv?2 protocol for authenticating to a server using
a password and SSH keys. Only after successful authenti-
cation, further data communication is done over a secured
channel.

B. TOOLS AND COMPONENTS

Table 1 lists the information on open-source tools and other
Linux utilities used in this work.

IV. OUR CONTRIBUTION

A. DYNAMIC TSN PATH FINDER (DTPF)ALGORITHM

For configuring the TSN schedule on edges and core switches
involved in a TSN flow, the TSN path has to be identified
first. To identify the TSN path we have implemented an
algorithm called Dynamic TSN Path Finder which extracts
the nodes that are part of the TSN flow. The input data for
this algorithm is the topological information obtained from
CNC using REST API by CUC. The proposed algorithm is
mentioned in the algorithm section.

B. NOT CUSTOMIZING SDN AND OPEN vSwitch MODELS
FOR TSN

The research in this paper does not propose customization
of SDN controllers as opposed to the paper discussed in the
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Algorithm 1 Dynamic TSN Path Finder Algorithm

Input: srcmac, dstmac, sip, dip, ms

Output: tsnpath

: Get edges connections info from CNC using REST API
: Get talkerswitch using smac

: Get listenerswitch using dmac

: prevswitch = none

: get nxtswitch (switch connected to Talker switch)

: curswitch (Talker switch)

: tsnpath += nxtswitch

: While nxtswitch # listenerswitch do

: prevswitch = curswitch

9: curswitch = nxtswitch

10: nxtswitch = Get the switch connected to nxtswitch
11: tsnpath += nxtswitch

11: EndWhile

12: Tsnpath has all intermediate TSN edges constituting
TSNpath

00N 1N U B~ W~

introduction section. Typically SDN controller customization
involves writing/rewriting SDN flow APIs as per the require-
ment of the TSN network. These APIs in turn communicate
to OpenvSwitch for updating its flowtable. This involves
the configuration of a subset of Linux kernel QoS features.
OpenvSwitch forum claims that it cannot configure every
Linux kernel QoS feature because of unreported bugs related
to QoS if any [29]. To avoid any side effects of unknown bugs
we have configured the QoS using Linux traffic control utility
“tc”. [21], [30]. The SDN concept was proposed by Open
Networking Foundation (ONF) that decouples the control and
data planes. The framework is not directly usable for TSN
architecture, as TSN demands core Linux QoS parameters
modifications. If the underlying architecture of TSN is SDN,
then all the challenges that are applicable to SDN also hold
good for TSN. The main requirement in the TSN network is
to have bounded latency between TSN talkers and listeners.
Hence this paper does not propose a modification to the SDN
controller model.
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TABLE 2. Commands to classify ingress traffic.

sudo tc qdisc add dev s1-eth] clsact

sudo tc filter add dev sl-ethl ingress prio 1 u32 match ip dst
10.0.0.3 action skbedit priority 1

sudo tc filter add dev sl-ethl ingress prio 1 u32 match ip dst
10.0.0.4 action skbedit priority 0

C. TSN TRAFFIC CLASSIFICATION

Fig. 3 shows the topology with egress and ingress port details
of TSN edge and core switches. As we already discussed in
section II-B the TSN traffic is not controlled using Open-
vSwitch internal commands. Instead, we use a native Linux
tool called ““tc”’. TSN-based flows involve multiple queues
controlling egress traffic based on various classes of traffic.
But, Mininet by default creates virtual ethernet links with a
single transmit and receive queue. To enable multiple queues
under TSN aware switch we have modified the veth configu-
ration under mininet version 2.3.1bl to increase the number
of transmit queues to 8. [30]

1) INGRESS TRAFFIC CLASSIFICATION
The ingressing traffic on the s1-eth1 port should be classified
as TSN traffic. This also implies that the TSN traffic should
be handled with high priority. To achieve this, Linux queuing
discipline called ‘“‘clsact” is used. The queuing discipline
“clsact” enables the user to classify the packets based on the
direction of the traffic on a given port. The classification can
be made based on parameters like port, IP, and MAC [32]. The
priority assigned to such classified traffic maps internally to
socket buffers data structure ““skb’’ priority member [4]. The
skb->priority will be used by the Linux scheduler to dispatch
the packets for processing based on the priority value. The
higher value of skb->priority depicts more priority and is
handled first. Table 2 shows the detailed ““clact” commands
used for classifying the ingressing TSN traffic on a port.
The command “tc” is a Linux utility for controlling the
traffic. Under this utility, the user is able to provide various
queuing disciplines as per the requirement. We use TAPRIO
queuing discipline to implement IEEE 802.1Qbv scheduling.
Fig.6 and Fig. 7 shows the results of traffic filtering done
using “‘skbprio” at the ingress port of s1 for TSN and Non
TSN data.

D. TAPRIO QUEUING DISCIPLINE

After classifying the ingressing TSN traffic, we need to apply
a queuing discipline on the egress port of the switch which
should dequeue the prioritized packets at the ingress. To do
this we have used Linux queuing discipline called TAPRIO,
which is a simplified implementation of scheduling state
machines as defined by IEEE 802.1Q-2018 Section 8.6.9.
Each gate corresponds to a queue that dispatches outgoing
traffic based on the traffic classes. TAPRIO operates on traffic
mapped to different hardware queues [23]. We have used
“veth” based virtual queues as we are using a native Ubuntu
operating system running on Intel(R) Core(TM) i5-8265U
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TABLE 3. Command to add virtual Ethernet interface.

ip link add name %s numtxqueues 8 type veth peer name %s

TABLE 4. Commands to execute TAPRIO on the egress port.

sudo tc qdisc add dev s1-eth3 parent root handle 100: taprio
num_tc 2

map 10

queues 1 @0 1@1

base-time 0

sched-entry S 01 300000

sched-entry S 02 700000

clockid CLOCK_TAI

Q. Q1 Q2 Q@ Q4 Q@ Q6 Q7

Traffic
class 0 1 NA MNA NA NA NA NA
Priority 1 o MNA NA NA NA NA NA

FIGURE 4. Traffic classes and priorities at the egress port of each switch.

CPU @ 1.60GHz which has a single hardware transmit and
receive queue. For configuring virtual queues on Mininet’s
OpenVswitch interface we have edited the util.py of Mininet.
This modification adds 8 transmit queues to the veth interface
of OpenvSwitch. The modified version of the command to
add the veth interface is given in Table 3 for reference.

Where “%s” is the OpenVswitch interface. For exam-
ple, “sl-ethl” is the ethl interface of switch-S1. The
“numtxqueues’ specifies the number of transmit queues for
each interface type.

Table 4 gives a detailed TAPRIO command executed on
the egress port [34]. In our examples, 2 traffic classes are
used. As shown in Figure 4 TSN traffic is class 0 and Best
effort is class 1. Traffic class 0 has priority 1 and traffic
class 1 has priority 0. Traffic class 0 uses the Oth queue and
traffic class 1 uses the first queue. We expect the TSN traffic
at the Oth queue and the best-effort traffic at the first queue.
As TSN traffic considered here is periodic, the time slice for
TSN traffic is 300 us and for best-effort, it is 700 us out of
a 1000 us switch cycle. Fig. 9 shows the results on TAPRIO
queuing discipline implementation.

E. SOFTWARE MODULES

When the topology comes up various software modules inter-
act with each other for handling the TSN traffic as per
the configuration. The relevant software modules are imple-
mented for carrying out the operations responsible for the
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4

[ cucmodule | [

4

CNC module ]

FIGURE 5. Software module interaction.

creation of TSN flow and generation of TSN schedules for
TSN-aware switches. The flowchart presented in figure 5
gives the sequence of events involving below software
modules.

1) CUC.py -THIS MODULE IS RESPONSIBLE FOR THE
FOLLOWING TASKS
1) Pulling out TSN flow requirements from talker and
listener.
2) Creating a TSN flow using the REST API involved
DTPF.
3) Sending TSN flow to CNC.

2) CNC.py - THE CNC IN OUR IMPLEMENTATION IS A
NON-CUSTOMIZED OpenDaylight CONTROLLER

Since the SDN-based controller has already well-defined
control operations using OpenFlow protocol, our goal is
to not overload with TSN-related operations. Hence, the
CNC.py just parses the TSN flow as received by CUC and
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TSN agents under

switch pulls its
schedule from CNC

h 4
TSN agents applies
TSN schedule on it's
ingress and egress
interface

Is
TSN traffic
at ingress

Apply lowest
priority to
incoming traffic

Yes

Apply TAPRIO and
assign highest priority

[ TSN Agent module ]

generates TSN schedules for switches involved in the TSN
path using native Linux QoS commands.

3) TSNagent.PY

The OpenvSwitch is made TSN aware by adding the TSNa-
gent.py module. We emphasize the point that there is no
customization of OpenvSwitch. The TSNagent.py will pull
the TSN schedule from CNC and execute the commands
present in the schedule on both the ingress and egress inter-
faces of the TSN switch.

V. RESULTS
Following subsections explain various results observed with
our proposed TSN architecture.

A. PACKET CLASSIFICATION USING SKB PRIORITY

The commands output in Fig.6 and Fig.7 shows the match-
ing criteria for classification of the TSN and BE packets
respectively. We are classifying packets based on destination
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:~% tc -s -d filter show dev si-eth1 ingress

filter protocol all pref 1 u32 chain @

filter protocol all pref 1 u32 chain ® fh 800: ht divisor 1
filter protocol all pref 1 u32 chain ® fh 800::800 order 2048 key ht 800 bkt ® terminal flowid ?2?? not_in_hw

match @aeeeEE3/FFffffff at 16
action order 1: skbedit priority :1 pipe

index 1 ref 1 bind 1 installed 1168 sec used 257 sec

Action statistics:
Sent 252 bytes 3 pkt (dropped 8, overlimits @ requeues 0)

backlog 8b @p requeues 0

filter protocol all pref 1 u32 chain @ fh 800::801 order 2049 key ht 800 bkt ® terminal flowid ??? not_in_hw

match faeeooed4/FFffffff at 16
action order 1: skbedit priority none pipe

index 2 ref 1 bind 1 installed 1168 sec used 1168 sec

Action statistics:

Sent @ bytes @ pkt (dropped @, overlimits @ requeues @)

backlog @b @p requeues @

FIGURE 6. Results on packet classification at s1-eth1 using skb priority.

:~5 tc -s -d filter show dev sl-eth2 ingress

=

filter protocol all pref 1 u32 chain @

filter protocol all pref 1 u32 chain ® fh 880: ht divisor 1
filter protocol all pref 1 u32 chain ® fh 800::800 order 2048 key ht 800 bkt ® terminal flowid ??? not_in_hw

match ©aGeeeR4/ffffffff at 16

action order 1: skbedit priority none pipe
index 3 ref 1 bind 1 installed 1179 sec used 1133 sec

Action statistics:

Sent 84 bytes 1 pkt (dropped ®, overlimits © requeues @)

backlog @b @p requeues 0

FIGURE 7. Results on packet classification at s1-eth2 using skb priority.

IP address. The destination IP addresses ‘“0a000003” and
“0a000004™ are of listener and peer BE nodes respectively.
The destination IP address if matched to that of listener node,
then the “skb” priority of “1” is assigned to that packet.
Whereas the destination IP address if matched to that of
peer BE node, then the “skb” priority of “0” is assigned to
that packet. This assignment will stay intact till the TAPRIO
queueing discipline is applied on the packet at the egress-
ing interface ““sl-eth3” of switch “s1” Point to note that
“sl-ethl” and ‘“‘sl-eth2” are ingress interfaces on TSN
switch “s1” connected to TSN and BE nodes respectively.

B. GCL CHARACTERISTICS

In this section, the results of the realization of gating logic
according to IEEE 802.1Qbv is discussed. Fig.8 and 9 depicts
the gating logic involving time window allocation for TSN
and Best Effort traffic respectively. As per the queuing logic,
the first 300 us of the duty cycle is for TSN traffic and the
remaining 700 us of the duty cycle is for Best-Effort traffic.
The observed average time windows during which the TSN
queue(QO) was closed and opened were 734.8 us and 281.4
us respectively. This pattern is repeated for every switch
cycle of 1000 us.

Simulation is carried out for 10 ms and packets are gen-
erated at the rate of 1 packet per us using ping utility. The
graph in the Fig.8 and Fig.9 depicts that from 0-300 us of the
switching cycle TSN traffic of 1 packet per us is egressing
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FIGURE 8. Demonstration of gating logic for TSN traffic.

through its respective queue. And from 301-1000 s the TSN
traffic is not allowed through the egress port. This is repeated
for each switch cycle of 1000 us.

The command output in Fig.10 shows the details on
TAPRIO queueing discipline applied on interface “s1-eth3”.
The numbers 3000000 and 7000000 represent the time win-
dows of TSN and BE traffic in nanoseconds, constituting the
duty cycle of 10000000 nanoseconds or 1000 seconsds. The
gatemasks 0 x 1 and 0 x 2 represent the TSN and BE traffic
getting mapped to queue 0 and 1 respectively.

C. DELAY CHARACTERISTICS
In this section, various types of delays involved in transmit-
ting TSN data from the TSN talker to the TSN listener are
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FIGURE 9. Demonstration of gating logic for Best-effort traffic.

:~$ sudo tc -s qdisc show dev sil-eth3
qdisc taprio 160: root refcnt 9 tc 2 map 1 @00 6 00O 00006006060
queues offset ® count 1 offset 1 count 1

clockid TAI base-time © cycle-time 1000000 cycle-time-extension @
index @ cmd S gatemask ©x1 interval 300000
index 1 cmd S gatemask ©x2 interval 700000

FIGURE 10. Results on TAPRIO queuing discipline.

Delay in transmitting TSN packets

Delay in sending TSN packets to listener

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

Time in microseconds

FIGURE 11. Delay in transmitting TSN packets from talker to listener.

discussed. The delay experienced at the egress interface for
any switch is given by

D = Dpr + Dqu + Dtr + Dpg. D

In Eq.(1) Dpr is the processing delay, which is the time
taken for a packet to get processed before queuing, and
Dqu is the queuing delay, which is the time that a packet
spends in a queue while waiting for other packets to be
transmitted, Dtr is the transmission delay, which is the
time required to put a whole packet on to the transmis-
sion medium and Dpg is the propagation time, which is
the time taken by the packet using the link to reach the
destination.

We emphasize that there is no control over processing
delay as processing delay is completely application depen-
dent. The transmission delay is directly proportional to
the processing delay and Queuing delay. By selecting the
appropriate queuing discipline we can claim some con-
trol over transmission delay. We can definitely control the
propagation delay with our DTPF algorithm. And we can
control queuing delays by classifying the traffic and applying
TAPRIO queuing discipline. According to our results, the
average delay in transmitting TSN packets from talker to
listener is 7.45 wus. Fig.11 depicts the delay in TSN packet
transmission.
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FIGURE 12. Inter-packet latency at the egress port of TSN switches.

1) INTER-PACKET LATENCY

The Fig.12 shows the behavior of inter-packet latency on the
TSN nodes participating in TSN path/flow. We can observe
slightly higher inter-packet latency on the interface s1-eth3
which is the egressing interface of the first TSN switch of our
TSN path as depicted in Fig.12, as compared to the rest of the
TSN switches. This is because packet classification is being
done in userspace using the tc command at ingress interfaces.
The internal implementation of the tc command uses netlink
hooks to send specific messages to the kernel to update the
configuration accordingly [40]. On the rest of the interfaces,
the inter-packet latency is found to be stable.

VI. CONCLUSION AND FUTURE SCOPE

In this paper, the TSN architecture is realized using open-
source tools with an SDN framework. The Linux-based queu-
ing discipline is configured with multiple virtual queues. The
results show that the egress ports of each TSN switch function
as per the gating logic defined in Table 4. The delay in TSN
data delivery and the inter-packet latency have been analyzed
with results. Hence the overall observation on virtual queue
performance are also promising which paves the way to use
our unique architecture for PoC. The novel DTPF algorithm
efficiently identifies the switches participating in a TSN flow.
As a future work, this model can be further enhanced to gen-
erate an adaptive approach for rescheduling the TSN flows
by selecting the optimal path among the multiple available
backup paths.
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