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ABSTRACT Hydrologists usually gain insights into topographic variability by using a high-performance
algorithm to estimate the catchment area from a digital elevation model (DEM) image. In the literature,
the grid-based algorithms are more popular than the contour-based algorithms; however, the existing ones
cannot reduce the error when higher resolution DEM is available. This paper introduces a new contour-
based algorithm, formulated with the physically-based concept, to estimate catchment from contour-based
DEM data. The formulation was derived from the semi-analytical solution of Laplace’s partial differential
equation based on the boundary element method (BEM). With this approach, the algorithm can estimate the
catchment area along the smooth surfacewater paths (SWPs), which are delineated from the physically-based
algorithm. The proposed algorithm was validated with the standard synthetic surfaces, where the theoretical
specific catchment areas (SCAs) for error assessment are exactly known. When estimating the SCAs with
ordinary resolution, the average error of the estimated SCAs is between 14.19 and 2.32%, but the average
error from the popular grid-based algorithms is between 77.8 and 17.0 %. With higher resolutions, between
12.5 and 0.88 meters, the proposed algorithm significantly reduces the average error from 15 to 0.8%.

INDEX TERMS Digital elevation model (DEM), boundary element method (BEM), catchment estimation,
physically-based algorithms.

I. INTRODUCTION
The size of the catchment is the principal value for analyzing
the hydrological response of the catchment system [2]
because the catchment collects the amount of rainwater
and melted snow from ridgelines over higher areas into a
single water body. Moreover, the effective catchment area
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has become a significant factor in various applications, for
example, seasonal water availability assessment [3], water
resources management [4], [5], [6], flood risk manage-
ment [7], and water quality controls [8]. Therefore, the
accuracy of the catchment estimation influences a variety of
hydrological models, including a model for forecasting urban
floods [9]. However, the current catchment estimation over
a wide area inevitably has a residual error that cannot be
mitigated without the physically-based algorithm [10], [11].
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The researchers started developing models for estimating
catchment since surface elevation data were available from
the digital elevation model (DEM). To estimate a catchment,
the researchers have utilized the DEM data in grid-based
and contour-based forms [12]. Technologies of geographic
information systems and remote sensing help us improve
the quality of DEM from low-resolution [13], [14] to super-
resolution [15]. Then, many researchers expected that the
existing catchment estimation could give more accurate
results when exploiting high-resolution DEM. For example,
Li [10] used existing grid-based methods to delineate
catchment boundaries with artificial super-resolution DEM.
Surprisingly, both of them did not obtain better accuracy. This
indicates that grid-based methods do not extract important
topographic variabilities such as total dispersion area (TDA),
topographic wetness index (TWI), and total contributing area
(TCA) [16] from high-resolution DEM.

Governments worldwide have been aware that their people
suffer from flood disasters since the extreme effects of
climate and land use changes seem to intensify. To manage
the flood risk, hydrologists must estimate the catchment to
calculate the rainwater flow rate from the natural terrain into
the city. For example, [11] proposed a hybrid method that
separately considers the natural terrain areas in the first-level
catchment and the urban area in the second-level catchment.
Hydrologists employ conventional catchment estimation and
raw topographic data to estimate the first-level catchment.
Next, they use the estimated catchment at the first level as
the primary data for analyzing artificial drainage systems and
flow direction. In the case of a small and single catchment,
the existing catchment estimations are reliable tools for
understanding the effect of land use or land-cover change
on stream runoff dynamic [17]. However, these tools cannot
give less error in complicated or hybrid catchments, which
contain a problematic flat terrain between natural and city
areas. Therefore, the accuracy of the first-level catchment is
the critical factor in improving the calculation of the flow rate
of rainwaters flowing into the urban, especially on a larger
scale [18]. Hence, this work aims to improve the accuracy
of the catchment estimation over the sizeable natural terrain
area.

Developing the DEM-based catchment estimation is
categorized into grid-based, contour-based, and TIN-based
(Triangulated Irregular Network) methods [19], [20]. The
DEM grid-based methods that exploit the D8 algorithms
to delineate the surface water flow are simple and require
fewer computational resources [21], [22]. Since DEMs are
available, the DEM grid-based methods have been prevalent.
Unfortunately, using high-resolution DEMs in D8-based
algorithms does not improve accuracy [23], [24], [25], [26].
Moreover, using super-resolution DEMs does not help D8-
based algorithms to improve accuracy [27]. Recently, [10]
evaluated the accuracy of six enhanced D8-based algorithms,
namely Rho4, Rho8, D8-LTD, FDFM, DEMON, and D∞,
and their results indicate that the average area error ranges

from 16.3% to 75.2%. The major limitation of the enhanced
D8-based methods is the division of the catchment with
non-physically-based surface water path in the downstream
direction, which is calculated from the elevation difference
between one central grid and its eight adjacent grids instead
of the water movement concept.

On the other hand, the DEM contour-based methods in
the physically-based concept are suitable for hydrological
applications, and other geophysical processes [19], [28].
An essential step in all contour-based catchment estimation
methods is the delineation of surface water path (SWP)
between adjacent contour lines. The accuracy of SWP
positions extracted from a DEM image influences the
precision of the estimated catchment. In [29] and [30],
the gravity-driven movements of water and sediments are
considered in delineating a series of SWP segments between
adjacent contour lines. They can eliminate the spurious
SWPs found in grid-based algorithms. With the algorithm’s
effectiveness, many hydrologists, who need to estimate
a sub-catchment area based on SWP, implemented this
algorithm in the catchment model [31], [32]. However, when
SWP is delineated near a ridge, this algorithm must be
done manually. Accordingly, [33] automates this algorithm
by improving robustness when SWPs are delineated near a
ridge. The paper [34] further improves the SWP smoothness
by including skeleton construction techniques, but this
method loses the smoothness advantage when the distance
between adjacent contour lines is long. Nevertheless, when
all mentioned contour-based methods are used in complex
terrains such as a saddle over a large area, very high
computational resources are required because many grids and
unknown variables in spatial discretization between contour
lines represent that area. Moreover, estimating catchment
area from smooth SWPs demands enormous computational
resources [35]. In [1], the physically and BEM (Bound-
ary Element Method)-based SWP delineation algorithm is
proposed to improve the accuracy of SWP delineation
from high-resolution DEMs with inexpensive computational
resources. In the next step, the obtained SWPs can be used
to estimate catchment size parameters in the hydrological
model. Existing estimation algorithms are available in the
grid-based approach, which suffers an error floor even
though the resolution becomes higher [10]. This inspires
us to propose a different approach, which is physically and
BEM-based. The proposed algorithm accurately estimates
the catchment area from the delineated SWPs of [1] with
affordable computational resources, especially at high DEM
resolution.

Our proposed algorithm estimates catchment area by
maintaining the advantages of a physically-based concept.
In the first step, the unknown elevations at any points
between adjacent contour lines are interpolated to identify
the boundary of catchment area. Theoretically, the contin-
uous integral-form solution of partial differential equation
(Laplace’s equation) gives the interpolation, but practically
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FIGURE 1. A differential catchment area (shaded area), where a line
integral is calculated.

available elevation data are discrete. Therefore, this algorithm
replaces the integral-form solution by the boundary element
method (BEM) in [1], which is a numerical solution that
preserves SWP smoothness with affordable computational
resources even in case of complex terrain. In the second
step, the line integrals of hillslope (magnitude of gradient
of the interpolated elevation) are calculated along all smooth
SWPs (obtained by [1]’s algorithm) to estimate the lengths
of differential catchment area. Note that each line integral
starts from an outlet and ends at the hilltop. In the third step,
the line integral of differential catchment area is calculated
along the line of outlet to estimate catchment area as shown
in Fig. 1. Straightforwardly, the high-resolution DEM is of
great benefit to accuracy of line integrals in the second
and the third steps. The comparison with existing algo-
rithms shows that the proposed algorithm provides superior
accuracy. Also, we will show that the catchment estimation
accuracy can be further improved by using super-resolution
DEM.

The remainder of this article is structured as fol-
lows. Section II proposes a new algorithm to estimate
sub-catchment by autonomous partitioning of smooth SWPs,
delineated with contour-based algorithm of [1]. Next,
in Section III, we demonstrate and discuss the accuracy of
the estimated catchment over standard synthetic surfaces with
comparisons to existing algorithms. Last, we conclude the
paper in Section IV.

II. METHODS
This section presents the contour-based algorithm to estimate
the catchment area. First, we propose the physically-based
theory manipulating the theoretical catchment estimation.
Second, we numerically calculate the catchment size with
a line integral, where the outlet and the SWPs serve as the
boundary of catchment. This work determines the positions
of SWPs with the algorithm in [1]. Third, we calculate
the hillslope at points along each SWP. The computation
algorithm for the second and third steps will be given in the
last subsection.

FIGURE 2. Boundary of catchment area.

A. THEORETICAL ESTIMATION OF CATCHMENT AREA
This section proposes the theoretical estimation of the
catchment area. The size of the catchment area is the surface
integral over the catchment area, bounded by a set of
SWP positions, inlet, and outlet. Calculating the size of the
catchment area with the surface integration uses the value
of the hillslope, which is the analytical solution of Laplace’s
equation.

When the position of an outlet locating along a contour
line, [1]’s algorithm can reversely predict the position of the
surface water paths (SWPs) flowing from the outlet toward
the inlet. Then, this work applies the SWP positions to
identify the boundary of the catchment area and to calculate
the integral of the catchment size function over the surface
domain containing the positions of the fixed outlet and
delineated SWPs. For example, Fig.2 presents two different
catchment areas: the light green area and the light blue area.
The outlet of the light green catchment area locates along the
80-m elevation line. Its delineated SWPs are light green and
flow from a 200-m elevation line. The outlet of the light blue
catchment area locates on the same line. Its delineated SWPs
are light blue and flow from a 200-m elevation line. With the
same width of the outlet, the blue catchment area is wider
than the green area because the blue SWPs are converging
while the green SWPs are diverging. This means the size of
the catchment area depends on the shape of the SWPs flowing
from the inlet to the outlet.

In determining the catchment area’s size, the surface
integration domains are the contours’ and SWPs’ positions.
The real contours and SWPs are very complex curves,
not straight. Therefore, the analytical solution of Laplace’s
equation is often derived from the curvilinear coordinates
(s, t, v) instead of the cartesian coordinates (x, y, z) as shown
in Fig. 3. The notations uj and hi represent the jth-SWP
and the ith-contour, respectively. For example, point A is an
intersection between SWP uj and contour hi+1. The notation
ds defines an elementary arc length of the SWP segment from
point A to D, and the dt defines an elementary arc length of
the contour segment from point A to B.
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FIGURE 3. Contour and surface water path in curvilinear coordinate
system.

FIGURE 4. A segment of catchment area 1C .

1) LINE INTEGRAL FOR THEORETICAL CATCHMENT
Denote CAB as a theoretical catchment flowing into an outlet
segment between points A and B. To formulate the theoretical
catchmentCAB, we first consider an outlet segment from point
A to point B in the curvilinear coordinate system in Fig. 3.
Second, after obtaining positions of SWPs flowing into the
outlet from [1], we know the boundary of catchmentCAB. For
example, the boundary of CAB comprises (i) the segment of
contour line hi+1 from point A to B, (ii) the segment of SWP
uj+1 from B to E , (iii) the segment of contour line hi from
point E to D, and (iv) the segment of SWP uj from D to A.
Third, a width function, denoted by w(s′), gives the dis-

tance between SWPs uj and uj+1 at s = s′. A multiplication
between w(s′) and ds gives an infinitesimal element of
catchment area 1C(s′) as shown in Fig. 4. The size of the
element 1C(s′) is given by

1C(s′) = w(s′)ds. (1)

Last, the size of catchment CAB can be calculated with line
integral of the width function w(s′) along the uj-SWP from

FIGURE 5. A differential catchment area L(t ′).

point A to D:

CAB =
∫ D

A
w(s′) ds. (2)

To obtain the specific catchment area (SCA) referred
by [23], we define the differential catchment area at t = t ′

along the outlet from point A to B. When considering an
outlet with a width approaching zero, the rate of change of
the catchment area CAB with respect to t can be written as

L(t ′) =
dCAB
dt

∣∣∣∣
t=t ′

, (3)

and is referred to as a length function L(t ′), which quantifies
the distance between contours hi and hi+1 at t = t ′ as shown
in Fig. 5. The size of catchment CAB can be calculated by line
integral of length function L(t ′) along contour hi+1,

CAB =
∫ B

A
L(t ′) dt. (4)

2) CATCHMENT ESTIMATION WITH HILLSLOPE
To calculate the size of CAB, we can use the line integral with
either (2) or (4). This work selects the line integral in (2)
because thewidth functionw(s′) can be found from the known
SWP positions, while the length function L(t ′) is unknown.
Then, we will define the width function of w(s′) in terms of
the elevation gradient at point s = s′ along the SWP.

The elevation gradient can be found by applying the
two-dimensional divergence theorem [36] at a point inside
catchment CAB.∫

CAB
∇ · ∇h(s, t) dc =

∫
0

∇h(s, t) · n̂ dγ, (5)

where h(s, t) is the interpolated elevation function, and dc is
the differential area, and 0 is the boundary of the catchment
area, and dγ is the differential length, and n̂ is the outward
normal unit vector at a point on boundary 0. The left-hand
side is a surface integral of∇h(s, t) inside the catchmentCAB,
and the right-hand side is a line integral of ∇h(s, t) · n̂ along
the boundary 0 of catchment CAB.
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FIGURE 6. The boundary of catchment CAB for line integral.

In Fig. 6, the elevation gradient ∇h(s, t) can be considered
as the solution of Laplace’s equation ∇ · ∇h(s, t) = 0 in [1],
so the left-hand side of (5) becomes zero. Then, integrating
the right-hand side of (5) along the boundary of catchment
CAB gives∫ B

A
∇h · n̂ dt +

∫ E

B
∇h · n̂ ds

+

∫ D

E
∇h · n̂ dt +

∫ A

D
∇h · n̂ ds = 0. (6)

Since ∇h are perpendicular to n̂ along any SWP, the
integrals from B to E and from D to A become zero. On the
other hand, since ∇h are parallel to n̂, the integrals from A to
B and from E to D become −|∇h| and +|∇h|, respectively.
We obtain

−

∫ B

A
|∇h(P)|dt +

∫ D

E
|∇h(P′)|dt = 0, (7)

where P denotes any point along segment AB segment, and
P′ denotes any point along segment ED.
If the segments of both line integrals are infinitesimal,
|∇h(P)| and |∇h(P′)| becomes constant, and we obtain

−|∇h(P)|
∫ B

A
ds+ |∇h(P′)|

∫ D

E
ds = 0,

−|∇h(P)|1wAB + |∇h(P′)|1wED = 0, (8)

where1wAB and1wDE denote the arc lengths of the contour
line segments AB and ED, respectively, as shown in Fig 7.
Note that B is infinitely close to A, and E is infinitely close
to D. Then, we can obtain the relationship between the width
of the inlet segment DE and the outlet segment AB.

1wDE = 1wAB
|∇h(A)|
|∇h(D)|

. (9)

We can apply the relationship between the inlet width and
outlet width in (9) to move the inlet from segment DE to an
infinitely close inlet segment along an SWP. By moving the

FIGURE 7. Changing inlet width.

inlet to any segment D′E ′ along the SWP as shown in Fig. 7,
the inlet width changes from 1wDE to

1wD′E ′ = 1wAB
|∇h(A)|
|∇h(D′)|

. (10)

Substituting (9) into (2), we obtain the estimation of the
differential catchment area at any point A along the outlet AB:

1CAB = 1wAB|∇h(A)|
∫ D

A

1
|∇h(s)|

ds,

1CAB
1wAB

= |∇h(A)|
∫ D

A

1
|∇h(s)|

ds. (11)

Then, the differential catchment area at any point P along the
outlet AB is denoted by L(P), which is given by

L(P) = |∇h(P)|
∫ D

A

1
|∇h(s)|

ds. (12)

Finally, substituting (12) into (4), we obtain the size of
catchment CAB by calculating line integral of L(P) at any
point P, which is along the outlet from point A to B.

CAB =
∫ B

A
L(P) dt. (13)

B. NUMERICAL ESTIMATION OF CATCHMENT AREA
To calculate the catchment size CAB in (13), we have to
integrate the line integral of L(P) along the outlet from
point A to B. Numerical integration is needed because of the
contour-based DEM input, which is discrete-spatial. Also,
we calculate the function L(P) by evaluating the line integral
of hillslope |∇h| along discrete-spatial SWPs, which are
obtained from [1].

Fig. 8 shows an integral domain, which is the outlet from
point A to B. The line integral of L(P) in (13) is split into
(NSWP − 1) definite integrals, each of which is indexed by
j = 1 . . .NSWP−1. Each interval is [Pj,Pj+1], which is along
the outlet from pointA toB. Note that pointPj andPj+1 are the
points intersecting with the SWPs uj and uj+1, respectively.
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FIGURE 8. A subdomain for numerical integration of CAB and a
subdomain for numerical integration of L(P).

Then, the numerical integration is given by

CAB =
NSWP−1∑
j=1

∫ Pj+1

Pj
L(P)ds. (14)

We approximate all definite integrals with Trapezoid method
and obtain

CAB =
NSWP−1∑
j=1

1C(Pj) (15)

where1C(Pj) is the jth element of catchment area at point Pj,
which is given by

1C(Pj) =
1wj

2

[
L(Pj)+ L(Pj+1)

]
, (16)

where 1wj denotes the Euclidean distance between points Pj
and Pj+1. Finally, we obtain the catchment CAB in term of
L(Pj):

CAB =
NSWP−1∑
m=1

1wj

2

[
L(Pj)+ L(Pj+1)

]
. (17)

Next, we calculate L(Pj) in (17) with the integration
of (12). Fig. 8 shows an integral domain, which includes the
SWP positions from outlet AB to inlet DE . The line integral
of
∣∣∇h(P̃j,k )∣∣ is split into Kj − 1 definite integrals, each of

which is indexed by k = 1 . . .Kj − 1 and P̃j,k , k = 1 . . .Kj
denotes a split point. Each interval is [P̃j, k , P̃j, k+1], which is
along the SWP uj. Note that the number of intervals of each
SWP is not necessarily equal, that is, Kj ̸= Kj+1 because of
different SWP lengths or number of SWP positions. Then, the
numerical integration is given by

L(Pj) =
Kj−1∑
k=1

∫ P̃j, k+1

P̃j, k

Gj∣∣∇h(P̃j,k )∣∣ds, (18)

where Gj =
∣∣∇h(P̃j,k=1)∣∣. We approximate all definite

integrals with Trapezoid method and obtain

L(Pj) =
Kj−1∑
k=1

1L(P̃j,k ) (19)

where 1L(P̃j,k ) is the k th element of the differential
catchment area at point Pi,k , which is given by

1L(P̃j,k ) =
Gj1lk
2

 1∣∣∣∇h(P̃j,k )∣∣∣ +
1∣∣∣∇h(P̃j,k+1)∣∣∣

 , (20)

where1lk denotes the Euclidean distance between points P̃j,k
and P̃j,k+1, and the hillslope

∣∣∣∇h(P̃j,k )∣∣∣ will be calculated in
the next subsection.

C. CALCULATION OF THE GRADIENT OF INTERPOLATED
ELEVATION
For computational efficiency, the hillslope should be calcu-
lated only at the points P̃j,k that is used in (19). Therefore,
this paper uses the algorithm in [1], which can specify a point
to obtain the hillslope. Note that a point P̃j,k is between the
contours hi and hi+1 as shown in Fig.8.

In [1], the elevation gradient ∇h(P) is the solution of
the boundary integral equation, which is formulated from
Laplace’s equation and boundary integral equation method,
and can be expressed as

2π∇h(P) =
∫
C
A⃗(P,Q)

(
∇H (Q) · n̂(Q)

)
dc

−

∫
C
B⃗(P,Q)H (Q)dc, (21)

where Q represents the position of dc along the contour,
and the vector functions A⃗(P,Q) and B⃗(P,Q) are the shape
functions of points P and Q, and can be expressed as

A⃗(P,Q) =
−→
PQ∥∥−→PQ∥∥2 , (22)

B⃗(P,Q) =
n̂(Q⃗)∥∥−→PQ∥∥2 − 2

−→
PQ · n̂(Q⃗)∥∥−→PQ∥∥4 −→PQ, (23)

and H (Q) and ∇H (Q) are the boundary value function of
point Q.

The solution (21) is continuous, but the input DEM is
discrete. Accordingly, the numerical solution was formulated
in Section IV-B in [1] with boundary element method. This
numerical solution can interpolate the ∇h(P) by using the
elevation data along the discrete contour lines. This paper
rewrites the numerical solution to conform with the computer
algorithm in Section II-D.

2π∇h(P) =
Ne∑
e=1

∫ Qe+1

Qe
A⃗(P,Q)

(
∇H (Q) · n̂(Q)

)
dc

−

Ne∑
e=1

∫ Qe+1

Qe
B⃗(P,Q)H (Q)dc, (24)
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FIGURE 9. A subdomain for numerical integration of ∇h(P).

FIGURE 10. Chain of line segment.

where a contour representing discrete elevation data ofNe+1
is the domain for line integral, as shown in Fig. 9. The contour
contains discrete elevation data ofNe, and each segment starts
from Qe to Qe+1. The boundary value functions H (Q) and
∇H (Q) can be solved from DEM as shown in Section III
in [1].

D. ALGORITHM TO ESTIMATE CATCHMENT AREA
In this section, we propose a recursive algorithm for
estimating a catchment area, which is the concatenation of
several SWP segments over a catchment area, in which the
elevation is represented with contour lines in a DEM image.
The algorithm comprises four phases as follows.

1) ALLOCATING THE MEMORY ON A COMPUTER
The first phase is to format the computer’s memory to collect
input and output data. The input data is a sequence of the
sampled elevation data in a DEM image, which comprise
three-dimensional coordinates of all contours. The open-
source software packages such as QGIS [37] can generate the
contour-based data by duplicating it from the contour-based

DEM data or converting it from the grid-based DEM data.
Each contour is represented with polylines (chain of line
segments). The number of segments depends on the sampling
rate. For example, Fig. 10 presents the elevation along two
contour lines over a catchment area. The algorithm collects
each coordinate, denoted by Qe, on the contour lines hi
and hi+1.

2) ASSIGNING THE OUTLET OF CAB
To calculate the size of a catchment numerically with (14),
we have to assign the starting point A (Pj=1), and the endpoint
B (Pj=NSWP). Also, we designate NSWP, which is the number
of the SWP so that the number of the catchment element
equals NSWP − 1. When increasing NSWP, the accuracy of
the catchment estimation is higher at a cost of computational
time. Any pointPj along the outlet from pointA toB intersects
between the SWP uj and the lower contour hi+1. We use the
position of point Pj as the starting point in delineating the
SWP uj from the lower contour hi+1 to the upper hi. Note
that we delineate the SWP in the reverse direction because
the result provides meaningful information for hydrological
applications. The width of the outlet segment from Pj to Pj+1
is 1wj, which equal

∥∥−→AB∥∥/NSWP. The 1wj in x-component
and y-component are denoted by1xwj and1ywj , respectively.

3) ITERATIVELY CALCULATING 1Cj
To estimate the size of a catchment numerically with (14),
we have to use (16) to calculate 1Cj, which has the outlet
segment from point Pj to Pj+1. The position of Pj is obtained
from the previous phase. Each loop of 1Cj calculation needs
the values ofL(Pj) andL(Pj+1). Then, the number of the loops
is NSWP− 1, which is the number of the catchment elements.

4) ITERATIVELY CALCULATING 1L(P̃j,k)
To estimate L(Pj) numerically with (19), we have to loop
through (20) to calculate 1L(P̃j,k ) from k = 1 to k = Kj.
For each loop, we must find the starting point of the k th SWP
segment P̃j,k and the endpoint of the SWP segment P̃j,k+1.
To find both points for each loop, we follows Algorithm 2
to determine the starting point of the next SWP segment,
which is presented in Section V in [1]. Looping is stopped
when the endpoint touches or crosses the upper contour
line.

All four phases can be written as pseudocodes as shown in
Algorithm 1 and Algorithm 2, respectively.

III. RESULTS AND DISCUSSIONS
This section demonstrates that the proposed algorithm can
improve the accuracy of catchment estimation when the
resolution of the elevation data is increased. For a fair
comparison, this work follows the error assessment method
proposed by [10]. The method applies the standard synthetic
surfaces to measure the estimated catchment’s errors. At the
resolution available nowadays, the proposed algorithm can
givemore accuracy than the existing algorithms. In the future,
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Algorithm 1 An Algorithm to Estimate Catchment Area
Input: list of the zone’s names in this catchment, list of

the contour line’s names in each zone, list of the point’s
coordinates along the contour lines

Output: the size of catchment area (meters): CAB
1: Initialisation : PA← (xA, yA); PB← (xB, yB);

NSWP = 100; lk← 1.0; CAB← 0.0;
2: 1xwj ← ∥

−→
AB∥/NSWP in x-component;

3: 1ywj ← ∥
−→
AB∥/NSWP in y-component;

LOOP Process
4: j← 1;
5: xPj ← xPA ;
6: yPj ← yPA ;
7: while j ≤ (NSWP − 1) do
8: L(Pj)← 0.0;
9: k ← 1;

10: P̃j,k=1← Pj;
11: while (P̃j,k ∈ CAB) do
12: if k == 1 then
13: ∇h(P̃j,k )← Cal_Gradient(P̃j,k ) from (24);
14: ∥∇h(P̃j,k )∥ ← Find magnitude of ∇h(P̃j,k );
15: else
16: ∇h(P̃j,k+1)← Cal_Gradient(P̃j,k+1) from (24);
17: ∥∇h(P̃j,k+1)∥ ← Find

magnitude of ∇h(P̃j,k+1);
18: compute 1L(P̃j,k ) from ∥∇h(P̃j,k )∥,

∥∇h(P̃j,k+1)∥ with (20);
19: L(Pj)← L(Pj)+1L(P̃j,k ) with (19);
20: xP̃j,k ← xP̃j,k+1 ;
21: yP̃j,k ← yP̃j,k+1 ;

22: ∇h(P̃j,k )← ∇h(P̃j,k+1)
23: end if
24: ∇

2h(P̃j,k )← Cal_GradGrad(P̃j,k )
from (39);

25: P̃j,k+1← NEXT_Point(P̃j,k ) with Algorithm 2;
26: k = k + 1;
27: end while
28: if j == 1 then
29: L(Pj)← L(Pj);
30: else
31: L(Pj+1)← L(Pj);
32: compute 1Cj from L(Pj), L(Pj+1) with (16);
33: CAB← CAB +1C(Pj) with (15);
34: L(Pj)← L(Pj+1);
35: end if
36: xPj+1 ← xPj +1xwj ;
37: yPj+1 ← yPj +1ywj ;
38: j = j+ 1;
39: end while

when the super-resolution elevation data are available, the
proposed algorithm can further reduce the error while the
existing algorithms cannot.

Algorithm 2 NEXT_Point(P̃j,k )

Input: P̃j,k , ∇h(P̃j,k ), ∇2h(P̃j,k ), lk
Output: P̃j,k+1
1: hx ← Find ∇h(P̃j,k ) in x-component;
2: hy← Find ∇h(P̃j,k ) in y-component;
3: hxx ← Find ∇2h(P̃j,k ) in xx-component;
4: hxy← Find ∇2h(P̃j,k ) in xy-component;
5: Solve root:{ θmin, θmax } from (41);
6: xP̃j,k+1 ← xP̃j,k + r0 cos θmin;
7: yP̃j,k+1 ← yP̃j,k + r0 sin θmin;

A. THEORETICAL SCAs OF SYNTHETIC SURFACE
Hydrologists use the catchment estimation algorithm to
analyze the catchment and require continuous DEM data rep-
resenting bothmeasured and interpolated elevation data. Nev-
ertheless, the developers commonly evaluate the algorithm’s
performance by varying the input data’s scenarios, such as a
pure hilltop, pure sink, and pure inclined plane [23]. Also, the
developers measure the algorithm ’s accuracy by referencing
the exact value, which is the exact solution of the catch-
ment estimation over an artificial surface [23], [38], [39].
Therefore, artificial surfaces are usually used to evaluate the
actual performance of the catchment estimation algorithm.
For example, the paper [10] applied the synthetic surfaces
proposed by [23], namely ellipsoid surface, inverted ellipsoid
surface, and inclined plane, for evaluating the accuracy of
the existing grid-based algorithms. They measured the errors
of the extracted SWPs and the estimated SCAs relative to
the synthetic surfaces’ theoretical values. They found that
the D8 algorithm suffers from poor accuracy, and increasing
the elevation data resolution cannot reduce the errors of the
D8 algorithm and its extensions [10]. Later, the paper [1]
applied the same assessment method on a contour-based
algorithm and found that the contour-based algorithm can
improve the accuracy of the extracted SWP positions.
In assessment, synthetic surfaces have an advantage over real
terrain DEMs because the analytical solutions derived from
synthetic surface equations are unique [23], [38], [39]. Thus,
this paper also uses the [23]’s surfaces to discuss the error
assessment with [10]. We use the formulas of the mentioned
surfaces to generate the elevation data and determine the
errors with their theoretical SCAs. Moreover, we also adopt
the synthetic surfaces proposed by [39], which reformu-
lates the surfaces in [23] to make them close to realistic
terrains.

For fair comparisons, we consider the same surfaces
as [10]; namely, the ellipsoid, the inverted ellipsoid, and the
inclined plane, proposed in [23], with the same parameters.
In addition, the formulations in [39] are considered in case of
ellipsoid and inverted ellipsoid to observe the results close to
realistic terrains.
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1) ELLIPSOID SURFACE
An ellipsoid surface presents the elevation data, which causes
the SWPs to diverge from the hilltop. The [39]’s formula is
more hillslope than [23], but the theoretical SCAs are the
same. The formula of the Zhou’s surface [23] is

z = c ·
(
1−

x2

a2
−
y2

b2

) 1
2

. (25)

The formula of the Qin’s surface [39] is

z =
c
2
·

1+ cosπ

√
x2

a2
+
y2

b2

 . (26)

At any observed point, both surfaces have the same direction
of the surface water path with the formula

y = kx
a2

b2 , (27)

and they have the same values of the specific catchment area
with the formula

SCA =

√
a4y2 + b4x2

a2 + b2
, (28)

where a, b, c and k are constants.

2) INVERTED ELLIPSOID
An inverted ellipsoid surface presents the elevation data,
which causes the SWPs to converge into the pit. The [39]’s
formula is more hillslope than [23], but the theoretical SCAs
are the same. The formula of the Zhou’s surface [23] is

z = −c ·
(
1−

x2

a2
−
y2

b2

) 1
2

. (29)

The formula of the Qin’s surface [39] is

z = −
c
2
·

1+ cosπ

√
x2

a2
+
y2

b2

 , (30)

At any observed point, both surfaces have the same surface
water path, and they have the same values of the specific
catchment area with the formula

SCA =


(( xu

x

)m+1
− 1

) √
a4y2+b4x2

a2+b2
if x ̸= 0,((

yu
y

)m+1
− 1

) √
a4y2+b4x2

a2+b2
if x = 0,

(31)

where a, b and c are constants.

3) INCLINED PLANE
An inclined surface presents the elevation data, which causes
the SWPs to be parallel with the direction from the hilltop to
the bottom. The formula of the Zhou’s surface [23] is

z = ax + by+ c, if− A < x, y < A. (32)

At any observed point, the inclined plane surface has the
direction of the SWPs with the formula

y =
b
a
x + k, (33)

FIGURE 11. Ellipsoid surface.

and it has the value of the SCA with the formula

SCA =
(
A− x
a

)√
a2 + b2, (34)

where the flowpath intersects with x = A, or another formula,
that is

SCA =
(
A− y
a

)√
a2 + b2, (35)

where flow path intersects with y = A, and a, b and c are
constants.

B. ESTIMATED SCA OVER ELLIPSOID
This section demonstrates that the proposed algorithm can
estimate the SCAs over an ellipsoid more accurately than the
existing algorithms. The demonstration comprised four main
steps: i) the creation of elevation data, ii) the generation of the
contour lines, iii) the delineation of the extracted SWPs, and
iv) the estimation of the SCAs.

In the creation of elevation data, this work uses the ellipsoid
formulas of (25) and (26) to calculate the elevation data of
the Zhou’s surface and the Qin’s surface, respectively. For a
fair comparison, we refer to the constant values in Table 1
of [10] to substitute these constants into the formulas of (25)
and (26), where the constants a, b, and c equal 1600, 1600,
and 2000, respectively. Then, we plot the elevation data in
Fig.11. Note that there is a clear distinction between the two
surfaces’ elevations. The Qin’s surface is steeper than Zhou’s
surface.
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FIGURE 12. SWPs over Ellipsoids: Positions of sampled points along
contour lines and positions of the extracted SWPs, including Line-1,
Line-2 and Line-3. The sampled points are plotted by the black points.
The theoretical and extracted SWPs are plotted by the red lines and the
blue circle points.

To generate the contour lines, this work uses the same
shape of contour lines over Zhou’s surface and Qin’s surface
and plots them in Fig. 12. The positions of the six contours
are on the circumferences of circles having a radius of
900, 700, 500, 300, 100, and 10 meters, respectively. The
elevation levels of Zhou’s contours are 2000, 1996, 1964,
1899, 1798, and 1653 meters, whereas Qin’s contours are
2000, 1980, 1831, 1555, 1195, and 805 meters. To adjust
the resolution of the elevation data along the contour, the
number of discrete points along a contour depends on
the sampling rate, which is chosen to be every 5, 2.5,
or 1.25 degrees.

To delineate the SWPs over the ellipsoid, this work
determines the positions of the SWPs with the contour-based

FIGURE 13. SCA error over Zhou’s ellipsoid: The SCA errors at a sampling
rate of every 5, 2.5 and 1.25 degrees along a contour line are plotted by
the red square, green cross and blue star points, respectively.

algorithm [1]. The obtained SWP positions will be used to
estimate SCA in the next step. We locate three observed
points along the 900-meter contour and trace the SWPs in
the reverse direction, starting from the observed points to the
upper contour. Fig. 12a presents the three extracted SWPs
over Zhou’s surface in different azimuth angles, namely
60, 135, and 270 degrees, where the extracted SWPs are
labeled by ‘‘Line-1’’, ‘‘Line-2’’, and ‘‘Line-3’’, respectively.
Similarly, Fig. 12b presented the extracted SWPs over Qin’s
surface. The red lines in both figures present the theoretical
SWPs. The differences between the obtained SWPs and
the theoretical SWPs are not discernible for both Zhou’s
and Qin’s surfaces. Therefore, the algorithm of [1] can
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FIGURE 14. SCA error over Qin’s ellipsoid: The SCA errors at a sampling
rate of every 5, 2.5 and 1.25 degrees along a contour line are plotted by
the red square, green cross and blue star points, respectively.

be effectively applied to ellipsoid surfaces with various
hillslopes.

To estimate the SCAs, this work uses the positions of the
extracted SWPs to calculate the SCAs with Algorithm 1.
Then, we measure the error percentage of the estimated SCA
with the formula

E(%) =

∣∣SCAEst − SCAExact
∣∣

SCAExact
× 100, (36)

where SCAExact is the theoretical SCA, and SCAEst is the
estimated SCA.

In Zhou’s surface, Fig. 13 presents the SCA error E(%)
versus the distance from the upper contour to the observed

FIGURE 15. SCA error over Zhou’s ellipsoid: The observed points are
along the contour of the 900-meter radius. The SCA errors at a sampling
rate of every 5, 2.5 and 1.25 degrees along a contour line are plotted by
the red square, green cross and blue star points, respectively.

FIGURE 16. SCA error over Qin’s ellipsoid: The observed points are along
the contour of the 900-meter radius. The SCA errors at a sampling rate of
every 5, 2.5 and 1.25 degrees along a contour line are plotted by the red
square, green cross and blue star points, respectively.

points. The SCA errors E(%) at the points along the SWP
Line-1 are obtained from (36) and plotted in Fig. 13a.
Similarly, the SCA errors at the points along the SWPs Line-2
and Line-3 are plotted in Fig. 13b and 13c, respectively.
Next, Fig. 14 presents the SCA error E(%) over Qin’surface.
The SCA errors of Zhou’s and Qin’s surfaces are hardly
different. Only at a sampling rate of every 5 degrees (red
square markers), the average error is less than 15% for
both surfaces. At a higher sampling rate, namely every
2.5 and 1.25 degrees, the SCA errors significantly decrease.
For example, in Fig. 13a, at a radius of 900 meters, E(%)
along the SWP Line-1 decreases from 14.2807 to 3.1363.
The same trend can be observed from Qin’s surface in
Fig. 14a.
The proposed algorithm performs well not only at various

distances but also at various directions. Fig. 15 presents the
SCA error E(%) over Zhou’s surface versus the azimuth
angle. The SCA errors over Qin’s surface are plotted in
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FIGURE 17. Inverted Ellipsoid Surface.

Fig. 16. The SCA errors of Zhou’s and Qin’s surfaces are
hardly different. Only at a sampling rate of every 5 degrees
(red square markers), the average error is less than 15%
for both surfaces. At a higher sampling rate, namely every
2.5 and 1.25 degrees, the SCA errors significantly decrease.
The same trend can be observed from the Qin’s surface in
Fig. 16.

C. ESTIMATED SCA OVER INVERTED ELLIPSOID
This section demonstrates that the proposed algorithm can
estimate the SCAs over an inverted ellipsoid more accurately
than the existing algorithms. Similar to Section III-B, the
demonstration comprised four main steps: i) the creation of
elevation data, ii) the generation of the contour lines, iii) the
delineation of the extracted SWPs, and iv) the estimation of
the SCAs.

To create the elevation data, this work uses the inverted
ellipsoid formulas of (29) and (30) to calculate the elevation
data of Zhou’s and Qin’s surfaces, respectively. For a fair
comparison, we refer to the constant values in Table 1
of [10] to substitute these constants into the formulas of (29)
and (30), where the constants a, b, and c equal 1600, 1600,
and 2000, respectively. Then, we plot the elevation data in
Fig. 17. Note that there is a clear distinction between the two
surfaces’ elevations. The Qin’s surface is steeper than Zhou’s
surface.

To generate the contour lines, this work uses the same
shape of contour lines over Zhou’s surface and Qin’s surface

FIGURE 18. SWPs over inverted ellipsoids: Positions of sampled points
along contour lines and positions of the extracted SWPs including Line-1,
Line-2 and Line-3. The sampled points are plotted by the black points.
The theoretical and extracted SWPs are plotted by the red lines and the
blue circle points.

and plots them in Fig. 18. The positions of the six contours
are on the circumferences of circles having a radius of
10, 100, 300, 500, 700, and 900 meters, respectively. The
elevation levels of Zhou’s contours are −2000, −1996,
−1964, −1899, −1798, and −1653 meters, whereas Qin’s
contours are −2000, −1980, −1831, −1555, −1195, and
−805 meters. To adjust the resolution of the elevation data
along the contour, the number of discrete points along a
contour depends on the sampling rate, which is chosen to be
every 5, 2.5, and 1.25 degrees.

To delineate the SWPs over the inverted ellipsoid, this work
determines the positions of the SWPs with the contour-based
algorithm [1]. The obtained SWP positions will be used to
estimate SCA in the next step. We locate three observed
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FIGURE 19. SCA errors over Zhou’s inverted ellipsoid: The SCA errors at a
sampling rate of every 5, 2.5 and 1.25 degrees along a contour line are
plotted by the red square, green cross and blue star points,
respectively.

points along the 10-meter contour and trace the SWPs in
the reverse direction, starting from the observed point to the
upper contour. Fig. 18a presents the three extracted SWPs
over Zhou’s surface in different azimuth angles, namely
60, 135, and 270 degrees, where the extracted SWPs are
labeled by ‘‘Line-1’’, ‘‘Line-2’’, and ‘‘Line-3’’, respectively.
Similarly, Fig. 18b presents the extracted SWPs over Qin’s
surface. The red lines in both figures present the theoretical
SWPs. The differences between the obtained SWPs and
the theoretical SWPs are not discernible for both Zhou’s
and Qin’s surfaces. Therefore, the algorithm of [1] can be
effectively applied to inverted ellipsoid surfaces with various
hillslopes.

FIGURE 20. SCA errors over Qin’s inverted ellipsoid: The SCA errors at a
sampling rate of every 5, 2.5 and 1.25 degrees along a contour line are
plotted by the red square, green cross and blue star points,
respectively.

To estimate the SCAs, this work uses the positions of the
extracted SWPs to calculate the SCAs with Algorithm 1.
Then, we measure the error percentage of the estimated SCA
with the formula of (36).

In Zhou’s surface, Fig.19 presents the SCA error E(%)
versus the distance from the upper contour to the observed
points. The SCA errors E(%) at the points along the SWP
Line-1 are obtained from (36) and plotted in Fig. 19a.
Similarly, the SCA errors at the points along the SWP Line-2
and Line-3 are plotted in Fig. 19b and 19c, respectively.
Next, Fig. 20 presents the SCA errors E(%) over Qin’surface.
The SCA errors of Zhou’s and Qin’s surfaces are hardly
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FIGURE 21. SCA errors over Zhou’s inverted ellipsoid: The observed
points are along the contour with a radius of 10-meter. The SCA errors at
a sampling rate of every 5, 2.5 and 1.25 degrees along a contour line are
plotted by the red square, green cross and blue star points, respectively.

different. Only at a sampling rate of every 5 degrees (red
square markers), the average error is less than 13% for
both surfaces. At a higher sampling rate, namely every
2.5 and 1.25 degrees, the SCA errors significantly decrease.
For example, in Fig. 19, at a radius of 100 meters, E(%)
along the SWP Line-1 decreases from 12.9749 to 2.6582.
The same trend can be observed from Qin’s surfaces in
Fig. 20.

The proposed algorithm performs well not only at various
distances but also at various directions. Fig. 21 presents the
SCA error E(%) over Zhou’s surface versus the azimuth
angle. The SCA error E(%) over Qin’s surface are plotted
in Fig. 22. The SCA errors of Zhou’s and Qin’s surfaces are
hardly different. Only at a sampling rate of every 5 degrees
(red square markers), the average error is less than 13%
for both surfaces. At a higher sampling rate, namely every
2.5 and 1.25 degrees, the SCA errors significantly decrease.
The same trend can be observed from the Qin’s surface in
Fig. 22.

D. ESTIMATED SCA OVER INCLINED PLANE
This section demonstrates that the proposed algorithm can
estimate the SCAs over an inclined plane more accurately
than the existing algorithms. Similar to Section III-B, the
demonstration comprised four main steps: i) the creation of
elevation data, ii) the generation of the contour lines, iii) the
delineation of the extracted SWPs, and iv) the estimation of
the SCAs.

To create the elevation data, this work uses the inclined
plane formulas of (32) to calculate the elevation data of
Zhou’s surface. Note that there is no inclined plane in case of
Qin’s surface. For a fair comparison, we refer to the constant
values in Table 1 of [10] to substitute these constants into the
formula of (32), where the constants a, b, c and A equal 2,
1.5, 3250 and 900, respectively. Then, we plot the elevation
data in Fig.23.

FIGURE 22. SCA errors over Qin’s inverted ellipsoid: The observed points
are along the contour with a radius of 10-meter. The SCA errors at a
sampling rate of every 5, 2.5 and 1.25 degrees along a contour line are
plotted by the red square, green cross and blue star points, respectively.

FIGURE 23. Incline plane by Zhou [23].

To generate the contour lines, this work uses the square
shape of a contour line over Zhou’s surface and plots it
in Fig. 24. Along the contour, the four corner points have
different elevation levels, namely 100, 2800, 3700, and
6400 meters, respectively.

To delineate the SWPs over the inclined plane, this
work determines the positions of the SWPs with the
contour-based algorithm [1]. The obtained SWP positions
will be used to estimate SCA in the next step. We locate
three observed points at the coordinates of (−900,200),
(−250,−900), and (−850,−900) and trace the SWPs in the
reverse direction, starting from the observed point to upper
contour. Fig. 24 presents the three extracted SWPs, namely
the SWP ‘‘Line-1’’, ‘‘Line-2’’, and ‘‘Line-3’’. The red lines
presented the theoretical SWPs. The differences between the
obtained SWPs and the theoretical SWPs are not discernible.
Therefore, the algorithm of [1] can be effectively applied to
inclined plane.

To estimate the SCAs, this work uses the positions of the
extracted SWPs to calculate the SCAs with Algorithm 1.
Then, we measure the error percentage of the estimated SCA
with the formula of (36).

Fig. 25 presents the SCA error E(%) versus the distance
from the upper contour to the observed points. The SCA
errors E(%) at the points along the SWP Line-1 are obtained
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FIGURE 24. Positions of sampled points along contour lines and positions
of the extracted SWPs including Line-1, Line-2 and Line-3. The sampled
points are plotted by the black points. The theoretical and extracted SWPs
are plotted by the red lines and the blue triangular points, respectively.

TABLE 1. Ellipsoid: Comparison of average SCA error (%).

from (36) and are plotted in Fig. 25. The same trend can be
observed from the SWP Line-2 and Line-3.

E. COMPARISON TO OTHER ALGORITHMS
This section shows that when the DEM resolution is higher,
the proposed physically-based algorithm can increase the
accuracy of the catchment estimation while the existing
algorithms cannot. The averaged SCA errors from the
previous subsection are compared with the averaged SCA
errors from [10]. The referred errors are the SCA errors of the
popular grid-based algorithms, namely D8, Rho-8, D8-LTD,
FDFM, FMD-MD, and D∞.

Table 1 shows the averaged SCA errors in the case of
an ellipsoid surface. The proposed algorithm calculates the
average SCA errors from three different resolutions of the
elevation data. The previous subsection shows the results with

FIGURE 25. SCA errors over inclined plane.

the low resolution in detail, and this subsection illustrates
the trend of the results when increasing the resolutions. The
proposed algorithm can improve the accuracy of the average
SCA by increasing the sampling rates of the elevation data
along a contour with a radius of 900 meters. In a contour-
based algorithm, increasing resolution makes the interval
between sampled points along the contour line shorter. In
Section III-B, when we sampled the contour-based data at
every 5, 2.5, and 1.25 degrees along a circle, we obtained
the number of contour intervals NPoints of 72, 144, and 288,
respectively. The interval length along a contour depends on
the radius of the sampled contour line, and interval length
equals 2πR

NPoints
. For example, when estimating the catchment

and locating the observed point along a 900-meter contour,
the interval length is 78.5, 39.25, and 19.625 meters. For a
fair comparison, we set the length of each interval according
to the grid-based DEM resolutions, which are used to assess
the errors of the existing algorithms in [10]. The grid-based
resolutions are determined by the image cell sizes: 90.0, 15.0,
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TABLE 2. Inverted Ellipsoid: Comparison of average SCA error (%).

TABLE 3. Inclined plane: Comparison of average SCA error (%).

and 7.5 meters. At low resolution, the proposed algorithm
gives the average SCA error equal to 14.19%, whereas
the FDFM algorithm is 26.8%, which is the best. When
increasing the resolution, the proposed algorithm reduces the
average SCA error to 6.16 and 2.32, respectively, but the other
algorithms show no improvement at all.

Table 2 shows the averaged SCA errors in the case of
an inverted ellipsoid surface. Similar to the ellipsoid case,
the proposed algorithm improves the average SCA errors by
increasing the elevation resolution. At low resolution, the
proposed algorithm gives an average SCA error of 12.97%,
whereas all other algorithms’ average errors are greater or
equal to 49.3%.When increasing the resolution, the proposed
algorithm reduces the average SCA error to 5.85 and 2.65,
respectively, while all other algorithms’ average errors are
greater than or equal to 45.1%.

FIGURE 26. Ellipsoid: SCA error versus NQ at the observed contour. The
radius of the observed contour line has a length of R = 900 meters.

FIGURE 27. Ellipsoid: SCA error versus NQ at the observed contour. The
radius of the observed contour line has a length of R = 600 meters.

Table 3 shows the averaged SCA errors in the case of
an inclined plane. Even at the lowest resolution of elevation
data, the proposed algorithm gives an average SCA error of
0.184%. Regardless of the resolution, only four elevation data
are enough to represent the entire inclined plane. In contrast,
all other algorithms’ average errors are greater or equal to
17.0%.

F. IMPROVED ACCURACY WITH HIGHER RESOLUTION
DEM
In the future, high-resolution DEMs will be available.
Unfortunately, higher resolutions do not lower the average
SCA errors of existing algorithms [10], which inspired us to
develop the proposed algorithm. From the previous section,
it is obvious that the accuracy of the proposed algorithm is
higher than that of existing algorithms, especially when the
resolution becomes higher. In this section, we keep increasing
the resolution to observe the accuracy improvement trend of
the proposed algorithm.

Fig.26 to Fig.28 and Fig.29 to Fig.31 present the average
SCA errors as a function of resolution on the ellipsoid and
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FIGURE 28. Ellipsoid: SCA error versus NQ at the observed contour. The
radius of the observed contour line has a length of R = 300 meters.

FIGURE 29. Inverted ellipsoid: SCA error versus NQ at the observed
contour. The radius of the observed contour line has a length of
R = 100 meters.

FIGURE 30. Inverted ellipsoid: SCA error versus NQ at the observed
contour. The radius of the observed contour line has a length of
R = 300 meters.

inverted ellipsoid surfaces, respectively. The average SCA
errors are the obtained results from the same assessment
process in the previous section. Note that the resolutions are

FIGURE 31. Inverted ellipsoid: SCA error versus NQ at the observed
contour. The radius of the observed contour line has a length of
R = 600 meters.

contour-based. The contour-based resolution is the interval of
the sampled points along the contour line. Here, the number
of the sampled points along the contour line equals 2n where
n = 5, 6, . . . , 10. The interval length along a contour depends
on the radius of the sampled contour line, and interval length
equals 2πR

NPoints
. For example, when estimating the catchment

and locating the observed point along a 900-meter contour,
the interval length is between 176.78 and 5.523 meters.

In ellipsoid, Fig.26 plots the values of the estimated
SCAs at any observed point along the contour with a
radius of 900 meters with the blue circle points. The same
figure plots the average SCA errors with green rectangular
points. By keep increasing the resolution, the estimated SCA
approaches a theoretical value of 450 meters. In other words,
the average SCA error approaches zero. For example, when
increasing the sampled points along a contour from n = 5 to
n = 10, the length of the contour interval decreases from
176.78 to 5.523 meters, and the average SCA error decreases
from 70.0 to 0.819%. Similar to Fig.26, Fig.27 presents the
average SCA error at any observed point along the contour
with a radius of 600 meters with the blue circle points.
The average SCA error decreases from 70.0 to 0.827%,
increasing from n = 5 to n = 10 or decreasing the contour
interval length from 117.86 to 3.68 meters. Also, at any
observed point along the contour with a radius of 300 meters,
in Fig.28, the average SCA error decreases from 70.0 to
0.877%,when increasing n = 5 and n = 10, or decreasing the
contour interval length from 58.93 to 1.84 meters. Therefore,
the proposed algorithm can give the average SCA error
less than 5% if the number of sampled points is more
than 200.

In an inverted ellipsoid, Fig.29 plots the values of the
estimated SCAs at any observed points along the contour with
a radius of 100 meters with the blue circle points. The same
figure plots the average SCA errors with green rectangular
points. By keep increasing the resolution, the estimated SCA
approaches a theoretical value of 4000meters. In other words,
the average SCA error approaches zero. For example, when
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increasing the sampled points along a contour form n = 5 to
n = 10, the length of the contour interval decrease from
19.64 to 0.61 meters, and the average SCA error decreases
from 80 to 0.746%. Similar to Fig.29, Fig.30 presents the
average SCA error at any observed point along the contour
with a radius of 300 meters with the blue circle points. The
average SCA error decreases from 90 to 0.739%, increasing
from n = 5 to n = 10 or decreasing the contour interval
length from 58.93 to 1.84 meters. Also, at any observed point
along the contour with a radius of 600 meters, in Fig.31,
the average SCA error decreases from 95 to 0.746%, when
increasing from n = 5 to n = 10 or decreasing the contour
interval length from 117.86 to 3.68 meters. Therefore, the
proposed algorithm can give the average SCA error less than
5% if the number of sampled points is more than 200.

G. DISCUSSION
This section discusses twomain issues related to the proposed
algorithm for catchment estimation from digital elevation
models (DEM) based on contour lines. The first issue is the
catchment estimation and sub-watershed partition delineation
using a physically-based algorithm and synthetic surface
validation. The second issue is the implementation of the
proposed algorithm for analyzing catchments over natural
terrains.

1) VALIDATION THROUGH SYNTHETIC SURFACES
The experiments conclude that the proposed algorithm
can increase the catchment estimation accuracy with the
DEM-based data having a future resolution, where the
existing grid-based algorithms cannot. The key feature of
the proposed algorithm is the physically-based concept and
converting the semi-analytical solution of the differential
equation into the numerical solution with the BEM. Further-
more, the experiments point out that the BEM-based solution
gives more accurate numerical results, namely the slope and
its gradients when increasing the precision of the information
along the contour lines. Then, the proposed algorithm can
control the error of the estimated catchment and the mistake
of the delineated SWPs.

This work gains the advantages of a physically-based
algorithm to significantly enhance the catchment estimation
and the SWP delineation from the DEM images. In esti-
mating the catchment, the proposed algorithm uses two
main physically-based values. First, the algorithm uses the
positions of the extracted SWPs from [1]’s algorithm, which
delineates the SWPs with the numerical solution of Laplace’s
equation. Second, the algorithm uses the values of the
hillslope from the same numerical solution for calculating
the size of the catchment area element along the positions
of the extracted SWPs. Moreover, the algorithm uses the
principal features of the numerical solution based on BEM,
which can discretize the problem domain along the contour
lines instead of the areas surrounding the contour lines. Thus,
the problem domain is in one variable instead of two, and the
computation resources are less demanding. Accordingly, the

physically-based algorithm of [1] can improve the accuracy
of the extracted SWP positions from DEM image, and the
proposed algorithm, which is the physically-based algorithm,
can significantly reduce the SCA estimation error with higher
resolution DEM.

This work uses the method in [10] to measure the
SCA error, compared with the theoretical SCA to validate
the proposed algorithm. The validation uses the standard
synthetic surfaces, derived from [23], namely ellipsoid,
inverted ellipsoid, and inclined plane, where theoretical SCAs
exist. We also use the synthetic surfaces in [39], where the
hillslopes are steeper and more realistic than those in [23].
The results show that even at low resolution the average SCA
error E(%) of the proposed algorithm is less than those of all
grid-based algorithms at any resolution.

When a super-resolution DEM image is available, the pro-
posed algorithm can exploit the higher resolution to improve
the catchment estimation accuracy, whereas the existing
algorithms cannot. In the experiment, the higher resolution
is introduced by decreasing the interval of the sampled points
along the contour line from 12.5 to 0.88 meters. As a result,
the average SCA errors are reduced from 15% to 0.8%. Very
low SCA estimation error will help hydrologists to forecast
floods more precisely.

2) IMPLEMENTATION FOR A NATURAL TERRAIN
When analyzing the catchment over a natural landscape com-
prising various surfaces: hilltops, catchments, and flat planes,
we must confront more complicated shapes of the contour-
based data, namely high irregularity, and very long lines.
But, we can treat the irregularity with a higher resolution
of the DEM image. Fortunately, we will obtain the high
DEM resolution because the researchers have achieved the
remote-sensing and earth observation techniques. Therefore,
the future contour-based DEM, which represents the primary
terrain features more than the grid-based DEM, becomes
more beneficial for estimating catchment. Moreover, it is an
opportunity for this work because the proposed algorithm can
support the higher resolution of DEM images that include
various terrain features such as hilltops, sinks, and flat areas.

In the case of a large area, the contour-based data comprise
the long series of the elevation at the lowland or flat region.
The algorithm of [1] can remove this constraint with the
physically-based concept for delineating the surface water
flowing and the BEM-based solutions for Laplace’s differ-
ential equation. Then, the proposed algorithm, including the
algorithm of [1], can support a very long contour line when
considering a large catchment area. Furthermore, enhancing
the proposed algorithm for analyzing the hybrid zone, which
comprises the natural and urban areas, is possible.

Although this work implies that the proposed algorithm
performs the case of irregular contour lines by using higher
DEM resolution, it does not mean that the proposed algorithm
operates all types of irregularity, especially the significant
error of the DEM image. The leading causes are the
users who digitize the contours with inappropriate methods
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for topographic complexity, such as interpolation, data
processing and filtering, and surveying. For example, when
the users generate the contours representing the elevation
over a flat area in the suburban, the obtained contours
often comprise poor segments, such as 8-shape and v-shape.
The proposed algorithm can detect these poor contours and
gives a warning. Currently, the users must correct them
manually. Therefore, in case that the manual correction
is not properly done, the contours with low elevations
incur ambiguity that limits the performance of the proposed
algorithm. To remove this problem, we need the criterion
for classifying the poor contour lines and utilizing it to
implement the proposed algorithm for the real DEM. The next
step derives the criterion from information representing the
robustness of the proposed algorithm. Also, it includes pre-
processing to prepare efficient input data. The main feature
of pre-processing is that it can separate the abnormal contour
lines from the input data. In future work, we will implement
the proposed algorithm with the criterion for a real DEM,
representing the elevation over the popular case of mixing
natural and residential areas.

IV. CONCLUSION
This paper proposes a new physically based algorithm
for estimating the catchment from a contour-based DEM
elevation. Unlike existing methods, this algorithm utilizes a
physically-based approach that calculates line integrals over
the Surface Water Paths (SWPs). In the error assessment, the
accuracy of the proposed algorithm is higher than those of
the existing grid-based algorithms and requires less resolution
of the elevation data. Furthermore, the proposed algorithm,
based on the semi-analytical solution of Laplace’s partial
differential equation with BEM, is the only algorithm that can
effectively utilize the super DEM resolutions, which will be
commonly available in the future.

APPENDIX A
CALCULATING THE GRADIENT OF INTERPOLATED
ELEVATION GRADIENT
In [1], gradient of the elevation gradients ∇2h(P) is the
differentiation of (21), which can be expressed as

2π∇2h(P) =
∫
C
A⃗′′(P,Q)

(
∇H (Q) · n̂(Q)

)
dc

−

∫
C
B⃗′′(P,Q)H (Q)dc, (37)

where Q represents the position of element dc along the
contour, and the vector functions A⃗′′(P,Q) and B⃗′′(P,Q) are
the shape functions of points P and Q, and can be expressed
as

A⃗′′(P,Q) = ∇P

( −→
PQ∥∥−→PQ∥∥2

)

B⃗′′(P,Q) = ∇P

(
n̂(Q⃗)∥∥−→PQ∥∥2

)

−∇P

(
2
−→
PQ · n̂(Q⃗)∥∥−→PQ∥∥4 −→PQ

)
. (38)

The solution (37) is continuous, but the input DEM is
discrete. Accordingly, the numerical solution was formulated
in Section IV-B in [1] with boundary element method. This
numerical solution can interpolate the ∇2h(P) by using
the elevation data along the discrete contour lines. This
paper rewrites the numerical solution to conform with the
computer algorithm in Section II-D. For convenience, this
paper describes the numerical solution in line integral form
to obtain the ∇2h(P), which will be used to determine the
next point Pj,k+1 in Section II-D. The contour lines that are
the domain for line integrals are the same as the contour lines
in calculating the gradient of the interpolated elevation∇h(P)
in Section II-C. For example, a contour representing discrete
elevation data of NQ is the domain for line integral, as shown
in Fig. 9. The contour contains discrete elevation data of Ne,
and each segment starts from Qe to Qe+1. As a result, the
solution of ∇2h(P) can be determined with Ne line integrals
as follows.

2π∇2h(P) =
Ne∑
e=1

∫ Qe+1

Qe
A⃗′′(P,Q)

(
∇H (Q) · n̂(Q)

)
dc

−

Ne∑
e=1

∫ Qe+1

Qe
B⃗′′(P,Q)H (Q)dc, (39)

where the boundary value functionsH (Q) and ∇H (Q) can be
solved from DEM as shown in Section III in [1].

APPENDIX B
STEEPEST ASCENT DETERMINATION
To find the θmax, we differentiate the trace on the circle of the
approximated surface, that is

dh
dθ

(r0, θ) = r0
[
−hx sin θ + hy cos θ

]
+ r20

[
−hxx sin 2θ + hxy cos 2θ

]
. (40)

Then, we equate the derivative to zero, that is

hx sin θ + r0hxx sin 2θ = hy cos θ + r0hxy cos 2θ. (41)

To solve this equation, trigonometric identities are applied
to convert the equation into a fourth-order (quartic) equation
with either cos θ term or sin θ term. First, substituting
sin 2θ = 2 sin θ cos θ and cos 2θ = 2 cos2 θ − 1 into (41)
as well as replacing cos θ by ν and sin θ by ω, we obtain

(hx + 2 hxxr0ν) ω = hyν + hxyr0
(
2ν2 − 1

)
. (42)

Next, since ν2 + ω2
= 1, ω is replaced by

√
1− ν2, that is,

(hx + 2 hxxr0ν)
√
1− ν2

= hyν + hxyr0
(
2ν2 − 1

)
. (43)

Last, taking square to both sides of the equation to get rid of
the square root, we obtain

c4ν4 + c3ν3 + c2ν2 + c1ν + c0 = 0, (44)
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where the coefficients c0 . . . c4 equal

c4 = 4 r20
(
h2xy + h

2
xx

)
(45)

c3 = 4 r0
(
hxhxx + hyhxy

)
(46)

c2 = h2x + h
2
y − 4 r20

(
h2xx + h

2
xy

)
(47)

c1 = −2r0
(
hyhxy + 2 hxhxx

)
(48)

c0 = h2xyr
2
0 − h

2
x . (49)

The standard techniques can be used to solve the roots ν1,
ν2, ν3, ν4 of the quartic equation in (44). Some roots can
be complex numbers. Next, substituting these roots into (42)
gives four corresponding values: ω1, ω2, ω3, ω4. Finally,
θmax can be calculated using ν, ω pairs and the arc-tangent
function. Note that θmax are real number when the ν, ω pairs
are real numbers with magnitudes ≤ 1. Pairs, which are
complex numbers or have magnitudes greater than 1, should
be discarded.
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