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ABSTRACT Nowadays, with the current technological forces that have been shaping our bright future,
one of these is Computer Vision. This statement is true across various matters, including laparoscopic
gynecology, where computer-aided procedures for object recognition could offer surgeons the opportunity
to ease up on on-going surgeries and/or to practice their surgical skills with offline surgeries. However, most
of the previous work has been retrospective and focused on methodology from a computational viewpoint
with minimal datasets showing how Computer Vision can be utilized for laparoscopic surgery. The main
purpose of this paper is not just to evaluate state-of-the-art object detection models for uterus detection,
but also to emphasize clinical application via the collaboration between surgeons and peopleware which is
important in the further development and adoption of this technology, leading to improved clinical outcomes
in Laparoscopic Gynecology. Two experiment phases have been conducted. Phase#1 applied 8 different
Deep Learning models for uterus detection and were tested on the dataset, obtained from 42 public YouTube
videos in Laparoscopic Gynecologic Surgery. In order to prove this new technology before performing on
patients, and also due to the ethics of human experimentation, extensive testing on soft-tissue cadavers has
been used, because theoretically, a soft-tissue cadaver is considered the closest to human in terms of shape and
structure. Therefore Phase#2 has been performed on the best models from the first experiment phase serving
a real-time streaming feed during 4 soft-tissue cadaver laparoscopic surgeries. Four models, pre-trained on
the COCO 2017 Dataset on TensorFlow Model Zoo: CenterNet; EfficientDet; SSD; and Faster R-CNN;
plus YOLOv4 on Darknet Framework, along with YOLOv4, YOLOv5 and YOLOv7 on Pytorch have been
scrutinized here. The inference time (in FPS: Frame Per Second), F1-score and AP (Average Precision)
have been used as evaluation metrics. The results exhibited that all 3 YOLOs on PyTorch outperformed all
effectiveness metrics, including with great inference speed which is suitable for real-time surgeries. Lastly,
a by-product but also useful contribution of this work, is the annotated dataset on uterus detection from both
public videos and live feed on cadaver surgeries.

INDEX TERMS Object detection, uterus detection, laparoscopic surgery, deep learning, soft-tissue cadaveric
surgery.

I. INTRODUCTION
In laparoscopic surgery, a type ofMinimally Invasive Surgery
(MIS), the surgeon uses a digital camera, known as a laparo-
scope, which sends images of the inside of the abdomen or

The associate editor coordinating the review of this manuscript and
approving it for publication was Gina Tourassi.

pelvis to a monitor [1]. In doing so, such a camera affords sur-
geons the opportunity to gain assistance from image guided
surgery systems. Image interpretation is essential for these
systems, namely a computer is required to be capable of
understanding what is being seen by the laparoscope.

The performance of RAS (Robot Assisted Surgery) has
been greatly improved by the use of Computer Vision and
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Artificial Intelligence (AI) tools, mainly in the efficiency of
medical instruments and healthcare safety. Recently, consid-
eration was given to a Deep Learning (DL) approach for the
detecting of organs required for a gynecologic laparoscopic
surgery, however most substantial studies for surgical instru-
ments and anatomy detection in computational publication
have concentrated on algorithms with little clinically relevant
information. The review [2] reported current technology has
shown mostly above 85% for the accuracy in comprehensive
classification of surgical instruments, organs, and surgical
procedures. Despite live surgery, performing surgical proce-
dures on cadavers is essential for safe and effective medical
practice. Thanks to all human cadaveric donors, the benefits
of the soft-tissue cadaver are obvious, including soft and
pliable visceral organs, bright and realistic color tone and a
‘lifelike’ feel.

This paper firstly focuses on applying and comparing
various DLmodels for uterus detection from captured laparo-
scopic images from public gynecologic surgery videos.

The major contribution of this paper is on extensively
conducting the selected object detection models from the first
experiment phase on soft-tissue cadavers, to verify whether
those models work properly and efficiently for both accuracy
and speed aspects on the live-streaming feed in the laparo-
scopic surgery.

The remainder of this paper has been organized as fol-
lows. Section II reviews related work. Details of research
methodology and its implementation along with a series of
comparative simulations are described in Section III. Then
Section IV presents experimental results and outcome discus-
sion. Finally, the conclusions are in Section V.

II. LITERATURE REVIEW
This section gives a brief information on various relatedwork,
followed by state-of-the-art of object detection models. Then
evaluation metrics are presented.

A. PREVIOUS WORK
In 2017, Convolutional Neural Network (CNN) was used as a
method for differentiating uterine arteries from ureters [3] and
segmenting the liver from other anatomy [4]. Later, in 2018,
CNN was also applied for recognizing the most frequent
surgical actions in laparoscopic gynecology including dis-
section, coagulation, cutting, injection, suction and irrigation,
and suturing [5]. In the same year, a dataset, LapGyn4 [6],
was introduced for 4 use cases: surgical actions, anatomical
structures, actions on anatomy, and instrument count. This
paper also presented a quantitative base line on evaluations
for image classification using each dataset in LapGyn4 with
GoogLeNet architecture. Since then, this dataset has been
used widely, including in this work. Recently, anatomical
landmarks have been detected using YOLOv3 as the ‘critical
view of safety’ in order to avoid Bile Duct Injury (BDI)
during laparoscopic cholecystectomy. In the same year, 2020,
object segmentation on uterus, ovaries and surgical instru-
ments were undertaken via Mask R-CNN with the accuracy

FIGURE 1. Two main approaches in object detection.

of 97%, 24% and 86%, respectively. This work was evaluated
on their SurgAI dataset [7], which has been intended to be
made public upon the paper’s acceptance; however, as of
this year (2023), it has not been publicized. Last but by no
means least in this section, a list of proofs [2] showing how
DL has been used in laparoscopic surgery for a variety of
purposes between the years 2012-2020 has been reviewed.
Around half of the work has been reported on surgical instru-
ment detection with 15% on anatomy detection. The common
tested procedures were cholecystectomy (51%) with 26% on
gynecology — mainly hysterectomy and myomectomy.

As for object detection, CNN has always been the fun-
damental DL model, which later has been improved within
many new architectures. The following section explains the
chosen models that have been explored in this paper.

B. STATE OF THE ART
The current state-of-the-art (SoA) on Computer Vision
proposes and explores different strategies for object classi-
fication and detection based on 2D images. Generally, there
are two main approaches in object detection based on DL,
namely two-stage and single-stage detections [8]. Figure 1
lists all 7 models that have been explored in this work, where
5 models have been chosen from the survey of modern DL
based object detection models [9], with Faster R-CNN [10]
as a representative of two-stage detector while Single-Shot
MultiBox Detector (SSD) [11], CenterNet [12], Efficient-
Det [13], and ‘You Only Look Once’ (YOLOv4) [14] are
one-stage detectors. The other 2 models are YOLOv5 [15]
and YOLOv7 [16] which have recently been released.

C. EVALUATION METRICS
Firstly, two primary terminologies in accuracy evaluation are
Ground Truth (green box) and Bounding Box [17] (red
box), as illustrated in Figure 2, which are used in object
detection, with the outcomes of the detection process being
examined for their accuracy against what is in the present.

The next term is Confusion Matrix [18] which interprets
each Bounding Box against Ground Truth. Figure 3 depicts
4 cases of Confusion Matrix. Predicted by a detection model,
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FIGURE 2. Ground truth vs prediction bounding boxes.

FIGURE 3. Confusion matrix.

a positive or negative group can be categorized within these
prediction results as being true or false, respectively. With
a TP - True Positive (Figure 3(a)), a uterus is correctly
predicted; while with a TN - True Negative (Figure 3(b)),
there is a correct prediction that there is not a uterus; on the
other hand with a FP - False Positive (Figure 3(c)), the model
predicts there is a uterus, but this is actually not correct; and
lastly, with a FN - False Negative (Figure 3(d)), there is an
incorrect prediction of there being no uterus.

Another terminology, the IoU - Intersection over Union
ratio [17] illustrates howmuch there is an overlap between the
Bounding Box surrounding a predicted uterus and the Bound-
ing Box surrounding the Ground Truth. Figure 4 provides
some examples of the results of the same image with IoU of
0.2, 0.5 and 0.8, respectively. This IoU indicates how much
the prediction overlaps with theGround Truth, to determine
if a predicted result is either a TP or a FP. Considering
Figure 4(b), if the IoU threshold is predefined as 0.5 and
below, this would be a TP. While if the threshold is above
0.5, this would yield to an FP.
Two more performance indicators of object detection, Pre-

cision andRecall, can be explained as follows.Precision [17]
(as can be calculated as in Equation (1)) gives the ratio of
the number of TPs in respect to the total number of positive
predictions. Recall (as in Equation (2)) gives the ratio of the
number of TPs in respect of the total number of actual (and
relevant) objects.

FIGURE 4. IoU.

Two types of metrics used to evaluate object detection
models in this work are in relation to accuracy and speed.
While F1-score and AP (Average Precision) are used to
evaluate the accuracy-wise performance, Inference Time is
used to evaluate the speed-wise performance.

F1-score [19] (as in Equation (3)) constitutes a weighted
average of both the Precision and Recall values. By mea-
suring the balance between Precision and Recall, ranging
from 0 to 1, a resulting value of 1 represents the highest
degree of accuracy. When the value of F1-score is high,
this means both the Precision and Recall are high. A lower
F1-score score means a greater imbalance between Precision
and Recall. The mathematical definitions of these are as
follow:

Precision =
TP

TP+ FP
=

TP
All Detections

(1)

Recall =
TP

TP+ FN
=

TP
All Ground Truths

(2)

F1 = 2 ×
Precision× Recall
Precision+ Recall

(3)

AP [18] is another well-known metric in measuring the
accuracy of object detection, which can be computed from
the Area Under the Curve (AUC) [19] of the Precision -
Recall relationship (as in Equation (4)), providing theAP per
class for a set of predictions. The average of this value, taken
over all classes, is termed as mean Average Precision (mAP).
The model with the highest AUC is the best performing
model. While F1-score is usually used for a single-class
object detection, mAP is more popular when it comes to
evaluating multi-class detection models.

AP =

k=n−1∑
k=0

[Recalls(k) − Recalls(k + 1)] × Precisions(k)

(4)

Lastly, Inference Time can be measured in FPS - Frame
Per Second, to define how long each image can be processed
to generate the desired output during the testing process by a
detection model.

III. METHODOLOGY
Figure 5 depicts an overview of the uterus detection pipeline
used in this work. It comprises four processes; a training pro-
cess to reach the DL model, a validation process to optimize
the test model, a testing process to obtain the raw results,
and an evaluating process to translate the experimental result
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FIGURE 5. Overview of the uterus detection process.

TABLE 1. Dataset used in this work.

into meaningful information. This architecture is explained in
detail in the following subsections.

A. DATA ACQUISITION
The dataset used in the experiment obtained from 2 data
sources is as listed in Table 1.

1) 42 PUBLIC VIDEOS
Forty two public videos in Laparoscopic Gynecologic
Surgery from Mario Nutis: Public YouTube Channel [20],
varying from hysterectomy, myomectomy, removal of ovary
and ovarian cyst, etc. with mixed resolutions of 1080p
(2 clips), 720p (34 clips) and 540p (6 clips), were used.
Retrieved images were selected only when the uterus was not
attacked and remained in one piece. Stratified Sampling for
splitting a dataset was used to alleviate the problem of Ran-
dom Sampling in datasets with an imbalanced distribution
in each of the training, validation, and test datasets. In total,
2,050 imageswere used in this workwith the ratio of 80:10:10
as training, validating and test data.

2) 4 LIVE-STREAMING VIDEOS
Four live-streaming videos, which later were recorded to
obtain 100 captured images as further test datasets, with
the resolution of 720p, performing on soft-tissue cadavers at
Srinagarind Hospital, Khon Kaen University, Thailand, were
used for ultimate blind testing only.

TABLE 2. Dataset augmentation.

B. DATASET GENERATION
In accordance to the conclusion of a number of studies [21],
to increase the size and variety of the dataset, data transfor-
mations have been applied on the original images for data
augmentation. In total, 2,050 images from public YouTube
videos have been augmented andmanually annotated. Table 2
lists the characteristics of different types of transformations
used in this work.

For the training purpose, we divided the dataset into two
sets: a training set of 1,640 images (80%) and a validation
set of 205 images (10%). Regardless of TNs, the training set
contained 64,158 augmented images while the validation set
contained 8,076 augmented images. For the testing purpose
of the trained models, on top of 8,100 augmented images
(205 original test images which are 10%) from the same
dataset public YouTube source, an extra set of 4,000 anno-
tated images (100 captured images) were acquired in the
same condition from 4 recorded live-streaming videos per-
forming on soft-tissue cadavers. This dataset might have
been a by-product from the main research objectives, how-
ever sometimes even collecting training images could be
difficult. Moreover, there are many legal restrictions for
working with healthcare data, and obtaining it requires a
lot of effort. Hence this research with its annotated dataset
of uterus images could be a contribution for others who
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would like to exploit it further. The generated dataset can
be found at ‘‘https://www.kaggle.com/datasets/apiwatboon/
laparoscopic-uterus-detection’’.

C. DESIGN EXPERIMENTS
Two phases of the experiments have been conducted in this
work.

1) WITH PUBLIC SURGERY CLIPS
In order to investigate applying DL algorithms on uterus
detection, 8 modern object detection algorithms listed
in the survey [9] which were also listed in Model
Zoo [22], a collection of detection models pre-trained on
the COCO 2017 Dataset [23] - Faster R-CNN, SSD, Center-
Net, EfficientDet, YOLOv4 (both on DarkNet and PyTorch),
YOLOv5 and YOLOv7 algorithms - were chosen in this
study with ResNet50 V1 as a common backbone, and similar
input size of 512×512 and 640×640. As for the frame-
works used for each of the models, the first 4 architectures,
namely Faster R-CNN, SSD, CenterNet and EfficientDet
were pre-trained on Tensorflow Framework [24], while
YOLOv5s and YOLOv7 were pre-trained on Pytorch frame-
work, where there are 2 versions of YOLOv4, pre-trained on
DarkNet [25] and Pytorch [26] frameworks.

These 3 frameworks (Tensorflow, Darknet and Pytorch)
are very powerful and mature DL libraries with strong
visualization capabilities and several options to use for
high-level model development. The whole of the train-
ing and testing procedures were experimented on Google
Colab(oratory) [27] with 16 GB memory. For fine-tuning
the pre-trained models, the default values of the pre-training
pipeline, adjusting the batch size for the capacity of the avail-
able GPU have been considered. The evaluation metrics used
are the inference time (in FPS: Frame Per Second), F1-score
and AP (Average Precision). All training sessions ran for
3,000 epochs as the experiments with all of the 8 models
proved that they did not need more than 3,000 epochs to con-
verge to the best solution in the solution space. Table 3 lists all
object detection models with their training information used
in this study.

2) WITH SOFT-TISSUE CADAVERS
In order to test how effectively DL models can perform in
a real-time surgery, the best detection models, considering
both accuracy and speed, from Phase#1 were chosen to run
on live-streaming laparoscopic experiments on 4 soft-tissue
cadavers.

IV. RESULTS AND DISCUSSION
This section presents the evaluation result of 8 object detec-
tion models to detect the uterus in laparoscopic gynecology.
As mentioned in Section I-III, the trained models were eval-
uated using the following evaluation metrics:- Confusion
Matrix (TP, TN, FP, and FN), Precision, Recall, F1-score,
Precision×Recall curve, AUC, AP and FPS. From the

TABLE 3. Training information for each model.

Process in Figure 5, the experimental results have been listed
in four sets (labeled with colored stars) as follow:

A. OBTAINING CALIBRATED CONFIDENCE THRESHOLD
Figure 6 shows the evolution of TP(6(a)), FP(6(b)), and
FN(6(c)) with the variation of the Confidence Threshold.
Prior to proceeding on the evaluation of the performance of
object detection models, at the cross validate stage labeled
with the red star in Figure 5, defining for the most optimal
Confidence Threshold for each model is required, in order
to maximize the F1-score for the best balance between the
Precision and Recall, optimizing the number of TPs while
avoiding the FPs and FNs. The first fact that can be observed
here is the number ofTPs andFNs are added up to the number
of Ground Truths for each Confidence. As for the results on
TPs (Figure 6(a) with the higher value, the better) and FNs
(Figure 6(c)) with the lower value, the better), the most obvi-
ous ones to be the winners for the most accurate indications
of the presence of the object correctly (TPs) and incorrectly
(FNs), are YOLOv4-P, YOLOv5 and YOLOv7, with the
remained models being in the order of; Faster R-CNN, SSD,
YOLOv4-D, EfficientDet, and with CenterNet coming last,
for both TPs and FNs.

Furthermore, special attention should be given to SSD and
Faster R-CNN, for the highest (worst) FPs especially during
Confidence rates <20%. This particularity leads to mis-
leading fault detecting, indicating the absence of the object
incorrectly, and this could incur more serious consequences
than completely miss, certainly affecting various evaluation
metrics, yielding to low Precision, low F1-score and perhaps
low AUC, hence AP.

The evolution of the F1-score across the increasing Confi-
dence Threshold for cross-validation is illustrated in Figure 7.

Table 4 listed the highest F1-score of each DL object
detection model on validation datasets with its corresponding
Confidence Threshold.

B. PERFORMANCE EVALUATION
Considering the previously performed process as a
pre-filtering process on the validation dataset, later, these
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FIGURE 6. Evolution of the number of TPs, FPs, and FNs with the increase
of the confidence threshold.

computed Confidence values were used for fully character-
izing the models for object detection purposes (labeled with
the green star in Figure 5).

FIGURE 7. Evolution of the F1-score with the variation of the confidence
threshold for all DL models on the validation dataset.

TABLE 4. Confidence threshold for each DL model that optimizes the
F1-score metric.

Two Precision × Recall curves were built on the test
dataset for uterus detection in images of laparoscopic gyne-
cology. These curves established the compromise between
the Precision andRecall rates, considering all the predictions
(Confidence Threshold at 0%) (shown in Figure 8) and with
calibrated Confidence Thresholds from Table 4 (shown in
Figure 9). The difference between these two graphs was the
fact that the results in Figure 9 had masked out those with
a Confidence rate lower than the chosen calibrated thresh-
old, therefore the final performance evaluation results might
not be completely the same with models providing better
results continuing to perform better. Whereas YOLO series
on Pytorch performed well throughout the wide spectrum,
other models’ results had dropped dramatically towards the
end, resulting in much smaller AUCs. As for F1-scores,
it was obvious and sensible that those of the best Confidence
rates provided better results than those of 0% for all cases.

Next, Figures 10-11 depict the results on Precisions and
Recalls, respectively, across all experimented detection mod-
els. The test results, corresponding to labeled models, have
been organized into sets of 2 bars: on validation datasets
vs on blind test datasets. To thoroughly evaluate the per-
formance of a detection model, both Precision and Recall
should be examined. Unfortunately, Precision and Recall
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FIGURE 8. Precision × recall curve in the test dataset considering all the
predictions.

FIGURE 9. Precision × recall curve in the test dataset using the calibrated
confidence threshold.

are often in tension. That is, improving Precision typically
brings Recall down and vice versa. Also the case with low
Recall but high Precision implies that all predicted boxes
are correct, but most Ground Truths have been missed (high
FNs), hence a low F1-score. Furthermore, with the evolution
of the Confidence Threshold, increasing Confidence rates is
likely to increase the Precision but decrease the Recall in
their predictions.

Next, the focus was on the results tested with the best
Confidence rates on the blind test dataset, which were very
close to those on the validation dataset for all conducted
experiments here.

Figures 12 and 13 illustrate the results on F1-scores
and APs, respectively, again in the same format across all
experimented detection models. It can be seen that those from
blind test datasets are quite similar to those from validation
datasets.

Table 5 is the experimental results comparison of accuracy
(calculated in F1-score andAP) vs speed tradeoff (indicating
via FPS) for each model and its corresponding Confidence

FIGURE 10. Precision.

FIGURE 11. Recall.

FIGURE 12. F1-score.

FIGURE 13. AP.

Threshold. Three groups have been categorized, according
to each model’s best F1-score and AP, where the perfor-
mance of CenterNet and EfficientDet were in the poor group
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TABLE 5. The F1-score, AP and FPS for each DL model with calibrated
confidence threshold.

(with F1-score <70% and AP <60%) due to very high FNs
(Figure 6(c)), which means these two models had so little
confidence and failed to agree on detecting objects when
there should have been one. While, the performance of Faster
R-CNN, SSD and YOLOv4 (DarkNet) fell down in the
average group (with F1-score <90% and AP <85%), the
excellent group (with F1-score >90% and AP >85%) con-
sists of the YOLO series on PyTorch with a great contribution
on Albumentation [28], a fast and flexible image augmenta-
tion library.

C. SPEED EVALUATION
From the process, labeled with the blue star in Figure 5, speed
is essential for real-time operation. Considering most human
eyes can perceive between 30 to 60 FPS [29], this means the
human brain would process the video streaming as one steady
stream, rather than a series of constant flickering lights. As a
consequence, three models (in magenta in Table 5), namely
EfficientDet, Faster R-CNN and SSD, would not serve the
objective of real-time application here, regardless of quite
high F1-scores for Faster R-CNN and SSD. Whereas the
remaining models would be fine as for their adequate FPSs.
As for those two models resulting in low F1-score, Center-
Net and EfficientDet, with low Recall but high Precision it
implies that all predicted boxes are correct, but most Ground
Truths have been missed (high FNs), hence low F1-score.

Figure 14 presents examples of the results from four cases
performed on all 8 tested models, where the column 14(a)
is with Confidence Threshold >0%, column 14(b) is of the
same image but with the calibrated Confidence Thresholds
providing the best F1-score (as listed in Table 5) for each
model, while columns 14(c) and 14(d) are also with the same
calibrated Confidence rates but of different images. Generally
speaking, with the best Confidence rate for each model, the
detection became more accurate, yielding better FPs and as a
result better F1-score.

It can be seen in column 14(a) that a number of models
seemed to be over detected on the same target, hence after
getting one correct (=1 TP) the rest resulted in high FPs.

FIGURE 14. Examples of test results using filtered images (calibrated
confidence threshold).

Not only in the pictures shown here, but for a larger number
of cases, showing that SSD and Faster R-CNN (also, but not
so obvious, CenterNet and EfficientDet) seemed to jump to
the conclusion of the detection too easily, therefore very high
FPs (Figure 6(b)) especially at the beginning of the growth
of Confidence Thresholds. Lastly, columns 14(c) and 14(d)
show the detection failure (framed in red) with each model.

D. PERFORMING ON SOFT-TISSUE CADAVERS
After performing and analyzing the experimental results on
the test dataset as presented earlier, these detection models
were conducted with these four live feeds from the laparo-
scope on soft-tissue cadavers (labeled with the orange star
in Figure 5). Figure 15 shows the set up and the environ-
ment in the operation room. Ethical approval #HE641206 for
this study was waived by the Center for Ethics in Human
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FIGURE 15. Laparoscopic surgery experiments on soft-tissue cadavers.

FIGURE 16. F1-score and AP.

Research, Khon Kaen University (KKU), on May 13th,
2021, because this work has been conducted on cadavers
donated for educational research to Srinagarind Hospital,
KKU, Thailand.

As for the speed, it can be clearly seen that EfficientDet,
Faster R-CNN and SSD struggled with this 25 FPS live-
streaming, while the rest could keep up rather well. This
observation was consistent with the previous result in Table 5.
Later, images from these laparoscopic experiments were

captured then augmented, annotated, and put into the test with
those trained models to evaluate further.

The comparisons between Confidence of 0% (Phase#1) vs
the best Confidence Threshold (Phase#2) from the previous
test for both F1-scores and APs with these blind captured
images are illustrated in Figure 16. Though all of the results
from this experiment phase might have been quite low com-
pared to those of the first phase, that was because the used
models in this phase were the trainedmodels with Confidence
Threshold from the training with public images which was in
a completely different environment to the experiments in the
phase.

Thus, it can be concluded that YOLO series running on
Pytorch have performed excellently for all evaluation met-
rics: F1-score, AP and also the speed (in FPS), meeting the
requirement of real-time application. The rest failed com-
pletely for the speed and/or offered rather low performance.

V. CONCLUSION
This paper has presented the evaluation results on various
Deep Learning models covering state-of-the-art object detec-
tion models, from two-stage detectors to one-stage detectors.
Those models were run on 3 different frameworks: Tensor-
Flow, pre-trained on the COCO 2017 Dataset (Faster R-CNN,
CenterNet, EfficientDet, SSD); DarkNet (YOLOv4-D) and
Pytorch (YOLOv4-P, YOLOv5 and YOLOv7). The target
object in this study was the uterus in laparoscopic gynecol-
ogy. It is injudicious to compare results shoulder-to-shoulder
from different papers, as those experiments are undertaken
in different settings or have different targets which are not
purposed for direct comparisons.

To begin with this study, an annotated dataset of the uterus
must be generated. The first contribution of this paper on the
uterus dataset is not just in respect of the captured images
from 42 existing public YouTube videos with the ratio of
80:10:10 for training: validating and testing, but also from
4 live-streamings, operated on soft-tissue cadavers, which is
considered the closest environment to the real human body.

The second contribution must be the comparison results
among 8 different cutting-edge object detection models for
real-time live feeds. Themost important question is not which
detector is the best in accuracy performance, and which may
also not be possible to answer. The real question is which
detector and what configurations provide the best balance
of speed and accuracy that designated real-time application
needs. All of the results pointed out that the YOLO models
running on Pytorch performed excellently for both accuracy
and speed aspects, whereas EfficientDet, Faster R-CNN and
SSD offered rather too low inference time, which cannot meet
the needs of real-time detection.

Last by no means least, as for the third contribution, this
paper not only applied Deep Learning for uterus detection
and tested on the dataset captured from public videos, but
also, in order to prove how effective these detection models
can perform in real surgery, all 8 models have been con-
ducted with real-time streaming feeds during laparoscopic
surgeries on 4 different soft-tissue cadavers. With a complete
difference in the setup and experimental environment, it is
quite understandable that the results from the completely
blind experiments on soft-tissue cadavers have deteriorated.
Although the results from this experiment Phase#2 demon-
strated lower performance for all models, the ultimate results
remained the same for YOLO model series on the Pytorch
framework for being the most efficient models for both
speed and accuracy performances, with the obvious flickering
streaming for EfficientDet, Faster R-CNN and SSD, which
suggests that these three models might not be implemented
in applications that require real time. The observation from
real-time operations has also been confirmed by the final
experiment on captured images from those 4 live feeds as
another test dataset.

The limitation of this entire research was in detecting
the regular uterus and even irregular uterus with different
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colors/textures and sizes from both public surgeries clips
and cadaver surgeries but as a whole piece. The evaluation
results showed a number of DL models worked excellently
and effectively for real-time operations. However, DL not
only is capable of performing object detection, but also
could be exploited to detect features of target objects as
well, i.e. detecting separate parts or poses of the object even
in occluded condition. Therefore, this issue still remains a
notable challenge to investigate.
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