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ABSTRACT A new compact multifunctional pattern reconfigurable 2 x 2 antenna array at 3.65 GHz
with high gain and 16 (Multiple Input Multiple Output) MIMO modes is proposed. The single-element
antenna includes 4 U-slots etched on the ground plane, with orthogonal slot orientations for polarization un-
correlation, and fed using a reconfigurable feeding network with 4 PIN diodes. Hence, the single-element
antenna is a pattern reconfigurable U-slot antenna with four pattern configurations. The average efficiency
of 80%, the peak gain of 9.4 dB, and an overlapped —10 dB impedance-bandwidth of 200 MHz at a resonant
frequency of 3.65 GHz in the n78 5G band are achieved. The single-element size is 55.5 x 54 mm?,
0.66A0x0.65A9. The horizontal and vertical distances between the U-slots in a single-element are 30 mm
(0.3610), and 27 mm (0.321¢), respectively. The 2 x 2 antenna array of such an element with a 58.5 mm
(0.710) between the elements occupies a volume of 140 x 140 x 21 mm>. The 2 x 2 elements provide
16 reconfigurable U-slots with two modes of operation, Array Mode and Multiple-Input-Multiple-Output
(MIMO) Mode. For the MIMO Mode, the antenna has a maximum Envelope Correlation Coefficient (ECC)
of 0.1194 between the radiation patterns and a minimum isolation of 20 dB between the four ports. For the
array Mode, a 4 x 4 antenna array has a peak gain of 17 dBi, and a beam-steering range of —50° < 6 < 50°
in the two principle planes. The antenna is suitable for small cell base-station applications.

INDEX TERMS Reconfigurable antennas, small cell, pattern reconfigurable antenna, slot antennas, FR1,
Sub-6 GHz.

I. INTRODUCTION

The mobile traffic using 5G technology will increase sharply,
with an estimated 5G traffic percentage of 10.6% in 2023 [1].
The typical user data rate will increase by 10 — 100 times
in the 5G technology [2]. Higher data rates are required
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to serve the huge numbers of incoming connections and
applications to the network. The 5G technology can provide
much higher data rates and the required connections for
incoming devices and applications. One of the important
technologies in 5G is the Multiple-Input Multiple-Output
(MIMO) antenna to enhance the channel capacity without
increasing the power consumption. Hence, the user data rates
can increase. Furthermore, the use of antennas with high gain
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and beam steering capabilities using antenna arrays enhances
the received Signal-to-Noise Ratios (SNR) and the channel
capacity.

Slot radiators provide a compact antenna design and large
antenna arrays for more gains and steering capabilities. The
pattern reconfigurability enhances the coverage efficiency
of the antenna arrays. Furthermore, pattern reconfigurability
allows the antenna to be used for multifunctions (as an array
or a MIMO). Pattern reconfigurable slot-based antennas have
been proposed in the literature using different approaches [3],
[4]1, [5], [6], [7], and [8]. In [3], an electronically pattern
reconfigurable antenna was presented. The antenna was com-
posed of a rectangular patch and a square-ring. It exhibited a
radiation efficiency of 70% and a gain of 6.8 dBi. However,
the antenna was a single polarization with two low gain
patterns and a small bandwidth of 50 MHz around 2 GHz.
While in [4], a pattern reconfigurable antenna at 2.4 GHz with
a 30 MHz bandwidth was proposed using a patch antenna and
four complementary split-ring resonators (CSRRs) to provide
180° or 0° phase shift to achieve different radiation patterns.
The antenna size was large, and for a single port, the antenna
provided 9 patterns with gains of 5.7 dBi, and 73% radiation
efficiency using 8 PIN diodes. In [5], a pattern reconfigurable
antenna at 2.4 GHz with 4 L-shaped slots was presented.
The antenna exhibited 10 patterns using 4 PIN diodes, with
a single port and a compact size. However, the antenna only
had a bandwidth of 100 MHz, small gains of 2 dBi, a single
linear polarization, Envelop Correlation Coefficient (ECC)
values that reached 0.4 in some cases, and a wide Half Power
Beam Widths (HPBWs) in the elevation plane. The work
in [6] proposed a wide-band pattern reconfigurable tapered-
slot antenna at 2 GHz, obtained using 4 PIN diodes, enabling
4 patterns with a gain of 6.4 dBi and a radiation efficiency
of 70%. The PIN diodes were installed across the slot-lines,
thus degrading the radiation performance of the antenna.
In [7], alinearly polarized bulky pattern reconfigurable patch-
slot-ring antenna at 2.4 GHz was presented. The diodes
across the slot were used to redirect the current paths on
the patch and the rectangular ring. The antenna achieved
a bandwidth of 2 GHz, with a gain of 3 dBi. However,
four radiation patterns were achieved using 6 PIN diodes.
In [8], a pattern reconfigurable cross-shape slot antenna at
5 GHz was obtained with two parasitic slots as a director or
areflector using two PIN diodes to reconfigure their lengths.
The antenna had three broadside radiation patterns due to a
magnetic conductor located a quarter wavelength below the
slot. The antenna bandwidth was 1.7 GHz and a gain of 6 dBi.
However, the antenna size was large, although the resonant
frequency was relatively high.

The literature has many MIMO designs, those in [9],
(101, [11], [12], [13], [14], [15], [16], [17], [18], [19],
and [20]. The design in [9] was a MIMO antenna for
the WLAN 2.4/5.2/5.8 GHz bands, using three dual-loop
antennas, which achieved a bandwidth of 200 MHz and a
radiation gain of 6.5 dBi. However, it was only a MIMO
antenna with an isolation of 15 dB. The design in [10]
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was a six-port MIMO antenna for WLAN 5 GHz band
small-cell base-stations, which achieved high isolation of
44 dB between the six ports with dual linear polarization
capability. However, the structure was bulky, although the
resonant frequency was relatively high. The ECCs in [9]
and [10] were calculated using the S-parameter equation.
The operation bandwidth in [10] was 1.16 GHz, which is
wide considering its high resonant frequency, but the 6.5 dBi
gain was low considering the large size of the antenna. The
design in [11] was a triple-band MIMO antenna for small-
cell base-stations with large size, achieving radiation gain
of around 8 dBi with a maximum bandwidth of 800 MHz
in the 5.2 GHz band, and the maximum ECCs were around
0.1. In [12], [13], [14], [15], [16], [17], [18], [19], and [20],
pattern reconfigurable MIMO antennas were presented,
which can be compared with the proposed 2 x 2 antenna
array in this article. In [12], a WiFi pattern reconfigurable
MIMO antenna with three pattern states at 2.45 GHz based
on the excitation of 3 different characteristic modes was
presented. It has achieved a bandwidth of 200 MHz, a high
ECC of 0.5, low radiation efficiency of 60%, and only
3 MIMO states. The work in [13] demonstrated a pattern
and polarization reconfigurable Multi-User MIMO antenna
using a parasitic tuning technique to obtain four patterns and
three polarizations. However, the design was very complex,
using lots of PIN diodes to achieve reconfigurability. The
proposed work in [14] presented a pattern and frequency
reconfigurable MIMO array of four elements at 3.6 and
5.5 GHz, with four pattern states achieved by orthogonal
orientations of the elements, and frequency reconfigurability
was achieved by filling a cavity with water or with air. The
design achieved bandwidths of 200 and 775 MHz at 3.6 and
5.5 GHz, respectively, a maximum ECC of 0.016, a low
gain of 4.6 dBi, and a radiation efficiency of 80%. It can
also be observed that the design was very complex as it was
required to fill a cavity with water to reconfigure the resonant
frequency. Another design was presented in [15], showing
a pattern reconfigurable cavity-backed metasurface 2 x 2
MIMO antenna at 5.9 GHz, with a pattern reconfigurability
that was achieved by electrically tuning the unit cells above
the cavity antennas. The design size was large and very
complex, using around 100 PIN diodes. The work in [16]
showed a pattern reconfigurable dual-antenna array using
a monopole and a Planar Inverted F (PIFA) antennas at
2.65 GHz with two pattern states. The design achieved a
narrow bandwidth of 96 MHz, a maximum ECC of 0.05,
a low gain of 3 dBi, a low port isolation of 15 dB, and a
medium complexity. The demonstrated design in [17] was a
pattern reconfigurable MIMO antenna at 2.45 GHz with three
pattern states using a monopole and two sets of parasitic strips
that can be electrically reconfigured to work as a director
or a reflector. The design achieved a low gain of 4.7 dBi,
low isolation of 16.5 dB, and a low number of 9 MIMO
states. A pattern reconfigurable MIMO antenna with two
elements was proposed in [18] at 2.45 GHz using a Coplanar
Waveguide feed line and two C-shaped metallic radiators that
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can be reconfigured electrically. The work in [19] presented
a pattern reconfigurable planar array antenna based on digital
coding characterization. However, the antenna size was very
large, with a very narrow bandwidth of 50 MHz, and highly
complex using 64 PIN diodes.

This work proposes a new compact sub-6 GHz
dual-polarized pattern reconfigurable slot-based 2 x 2 antenna
array. The antenna resonant frequency is 3.65 GHz in the
n78 5G band. The 2 x 2 antenna has two functional modes:
the MIMO Mode and the Array Mode. The novelty is
considered due to the single-element compactness of a size
of 54 x 55.5 mm? and high performance. In addition, the
single-element antenna enables 4 different radiation patterns
with high directivities and very low ECC using only 4 PIN
diodes and one feeding port (the maximum ECC between the
patterns of a single-element is 0.18 within the bandwidth).
Furthermore, the antenna exhibits a bandwidth of 200 MHz,
a minimum peak gain of 9 dBi, and minimum radiation
efficiency of 80%. Also, the single-element antenna achieves
two reconfigurable linear polarizations. In addition, the
antenna array has multifunctional operation as 2 x 2 elements
MIMO with 16 different MIMO states to enhance the channel
capacity with very low ECCs (lower than 0.1194), and as
an array to enhance the antenna gain and beam steering
capability within a wide view range. The rest of the paper
consists of four sections. Section II presents the antenna
geometry and theory. Section III presents the numerical
and experimental results of the single-element antenna.
Section IV shows the numerical and experimental results
of the 2 x 2 and 4 x 4 antenna array. Section V discusses
the obtained results, compares them with previous proposed
small-cell base-station antennas and pattern reconfigurable
MIMO antennas, and concludes the paper.

Il. ANTENNA GEOMETRY AND THEORY

A. SINGLE-ELEMENT ANTENNA GEOMETRY

Fig. 1 shows the proposed single-element pattern reconfig-
urable antenna. A reflector is placed below the single-element
antenna at a distance of quarter-wavelength at 3.65 GHz.
It can be seen from Fig. 1 that the single-element antenna
is composed of a single FR-4 substrate with a dielectric
constant of €, = 4.4, a loss tangent of rané = 0.02, and
a thickness of h = 0.8 mm. FR-4 material is chosen so
that a low-cost antenna is achieved. The bottom face of the
antenna includes the ground plane etched by 4 U-shaped
slots. The ground plane is brown in Fig. 1, the FR-4 substrate
exposed surface is light-blue, and the feeding network is
printed on the top face presented in black color. The FR-4
material above the U-shaped slots is removed to enhance
the antenna radiation efficiency. The 4 U-shaped slots are
rotated by 90° to achieve two orthogonal linear polarizations
and to un-correlate between the four radiation patterns.
The U-slots are half-wavelength slots, and the horizontal
and vertical separation between the U-slots is 0.36 Ao and
0.32 Ao, respectively. The top face of the antenna includes the
reconfigurable feeding network and the biasing circuits. The

69058

FIGURE 1. Geometry of a single-element antenna. The black feeding
microstrip line network is on top, the ground plane at the bottom is
brown, light blue is the exposed dielectric substrate, and white is air
(removed dielectric).

3.9kQ
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—\\A—
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FIGURE 2. Diode’s equivalent circuit models used in the full-wave
simulation. (a) PIN diode is “ON’ and (b) PIN diode is ‘OFF.

single-element antenna is fed by a single coaxial port at its
center. The inner conductor of the coaxial cable is connected
to the center feeding pad, as shown in Fig. 1. Four PIN
diodes are used to switch between the four transmission lines
feeding (exciting) the U-shaped slots. The single-element
antenna achieves four uncorrelated unidirectional radiation
patterns at 3.65 GHz that are reconfigured electrically using
the four PIN diodes (Infineon BAR64-02 V PIN diodes,
10 mA flows through the PIN diode when it is ON, with a
power consumption of 10 mW). The PIN diodes are shown
in green in Fig. 1. The equivalent circuit models for the
‘ON’ and ‘OFF’ PIN diodes are shown in Fig. 2. The size
of this single-element antenna is 55.5 x 54 mm?, i.e., 0.66 x
0.65 A(z) at 3.65 GHz. The biasing circuit for a PIN diode
includes R.F. chokes of 30 nH (LO — L4 in blue in Fig. 1) and
220 2 resistors (RO — R4 in red in Fig. 1), allowing a current
of 10 mA to flow through the ‘ON’ diode. The dimensions of
the parameters shown in Fig. 1 are given in Table 1.

The microstrip line’s stub length and slot crossing position
are used to optimize the antenna input impedance. The slot
length is used to change the antenna resonant frequency,
while the slot width is optimized to tune the resonant
frequency and improve the matching bandwidth. The 4 U-slot
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TABLE 1. Dimensions of a Single-Element Antenna.

Parameter Length (mm) Parameter Length (mm)
L 55.5 w 54
Slot Width 2 Lsi 16.5
Lso 13 Ls3 11.3
Sl 5.06 S1y 11
S2, 20.06 52y 5.46
S3, 5 S3y 9
Sy 3.5 S4, 5
Reflector h 20.3 T.L Width 1.3
Substrate h 0.8 U-Slot Length 37

positions are chosen to reduce the mutual coupling between
the slots. The feeding network is reconfigurable with four
PIN diodes and four transmission lines. The feeding network
is designed to enable four different pattern configurations.
First, the rectangular pad dimensions are optimized for input
impedance matching; the four PIN diodes are installed,
and then the four 502 microstrip transmission lines are
printed to feed the U-slots. The PIN diodes’ positions are
chosen, as shown in Fig. 1, to achieve good input impedance
matching. On the other hand, the FR-4 material above the
U-slots are removed to improve the radiation efficiency of
the slot radiators. The FR-4 material is lossy, and as a result,
it reduces the radiation efficiency of the radiating U-slot.
Therefore, the radiation efficiency increases sharply when the
FR-4 material is removed above the U-slot, where the electric
field is high. However, the resonant electrical length of the
slot is increased because the effective permittivity is reduced
by removing the FR-4 dielectric. The antenna is fabricated
using the commercially available process without extra cost.

B. ANTENNA DESIGN THEORY

The U-Slot shape is chosen to enhance the operating
bandwidth, reduce slot area, and achieve pattern reconfig-
urability for the single-element antenna. The slot length is
half-wavelength and fed by a microstrip line. The microstrip
line position and stub length are optimized to enhance the
matching bandwidth. The orthogonal orientations of the
U-slots with respect to each other lower ECCs and provide
better pattern reconfigurability. A sketch of the magnetic
current distribution when Slot 1 is excited (only D1 is ON),
is shown in Fig. 3. The joint distribution of the magnetic
currents M1, M2 and M3 is a cosine function, because the
electric field maximum is at the middle of M2’s slot, then
the electric field decreases gradually until field nulls are
achieved at the bottom ends of M1’s and M3’s slots. The
electric field in M 1’s slot is in the opposite vector direction
and approximately close in magnitude to the electric field
in M3’s slot. Therefore, it is reasonable to assume that the
currents M 1 and M3 partially cancel each other. Thus, they
approximately do not contribute to broadside radiation. Thus,
M?2 is approximately the only current providing broadside
radiation. This assumption is reasonable allowing us to
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reach an approximate theoretical explanation for the antenna
radiation, which is very close to the lengthy exact approach.
The radiation pattern, as a result, is bidirectional above and
below the ground plane. Thus, a reflector is added below
the antenna making the radiation pattern uni-directional.
In addition, the magnetic current M4 along Slot 4 works
as a director. Thus, the radiation pattern is tilted toward the
—y direction. The same current distributions with different
orientations take place when Slot 2, Slot 3, or Slot 4 is
excited. Therefore, the four U-slots produce four uncorrelated
radiation patterns.

When Slot 1 is excited, assuming that the electric field
on the slot aperture is uniform and directed to y-direction
along the part of the slot where M2 resides. The slot aperture
electric field can be written as [21].

E, = E,a, )

So, the equivalent magnetic current M2, can be written
as [21].

M, = —27i x E, )

Therefore, the far-fields of Slot 1 could be written as [21].

E.=H, =0 3)
E Csi ¢sinX sinY @
= Csin —_—
o X Y
sinX sinY
E4 = Ccosf _— 5
» cosOcosp X 7 (@)
Ey
- ©)
n
Hy =2 %
¢ n
where X, Y and C are [21].
ka
X = 7sm900s¢) (8)
ka .
Y = ?smésm(]) 9
_abkE, e~k
C=j—r (10)
2r

where a and b are the length and width of the M2 slot, and
k is the propagation constant in free space. The far fields in
E-plane (¢ = 90°) can be written as

E.=E;=0 (11
. kb .
sin(= sind)
Eg=C—FF—— 12)
0 %sin@ (

and the H-plane (¢ = 0) far fields are

E. =Ey=0 (13)
sin(%sin@)
Ey = Ccost 5 (14)
7sm9

Slot 1 is y-polarized, but the cross-polarization is high
because the magnetic currents M1 and M3 contributions do
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FIGURE 3. Magnetic current distribution sketch on a single-element
antenna when D1 is ON, and D2—-D4 are OFF.

not cancel each other completely since the lengths of the two
side slots are not equal. The radiation pattern is bidirectional.
Hence, a reflector is added below the single-element antenna
by quarter-wavelength and image theory is used to predict
the radiation pattern of Slot 1 as a linear array of two in-phase
magnetic current elements along the Z-axis separated by half-
wavelength. The normalized array factor of the linear array is
written in Eq. (15).

(A.F.), = cos [%(kdcos@ + ,3)i| (15)

where k = 2w /X, d = A/2 and § = 0, and Eq. (15) can be
simplified to Eq. (16).

(A.F.), = cos [%(n’cos@):l (16)

Hence, two nulls are generated at & = 0° and 6 = 180°,
and the main lobe peak occurs at 6 = 90°. Therefore,
the array factor supports the tilt of the radiation pattern of
Slot 1 when the magnetic current M4 of Slot 4 acts as a
director to Slot 1. Furthermore, it can be seen from Fig. 4,
showing the simulated surface electric currents for each
slot configuration, that the proposed single-element antenna
follows the Yagi-Uda radiation concept. It can be seen from
Fig. 4 that when Slot 1 Configuration is excited, the current
at the reflector side is longer than the dominant radiating
electric current around the top part of Slot 1, making it work
as another reflector, while the electric current at the director
side is shorter than the dominant radiating current, making it
work as a director.

The same theoretical approach is used to explain the
radiation patterns generated from Slot 2, Slot 3, and Slot
4. Hence, the proposed single-element antenna achieves
four uncorrelated radiation patterns and two orthogonal
polarizations.

C. RECONFIGURATION MECHANISM
The four radiation patterns of the proposed single-element
antenna are reconfigured using four PIN diodes (D1—D4),
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FIGURE 4. Simulated electric surface current for the four configurations
of the single-element antenna.
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FIGURE 5. Simulated 3D radiation patterns for the pattern configurations
of the single-element antenna.

TABLE 2. Pattern Configurations of a Single-Element Antenna.

Config. | Tilt Di- | Polarization | ’ON’ Diode | 'OFF’ Diodes
rection

Slot 1 -y along y D1 D2, D3, D4

Slot 2 —X along x D2 D1,D3,D4

Slot 3 +y along y D3 D1, D2, D4

Slot 4 +x along x D4 D1,D2,D3

as shown in Fig. 1. When one diode is ON, the radiation
pattern is unidirectional to broadside and tilted to & x or %+ y.
The pattern configurations have linear polarizations along
the x— or y—direction. The pattern configurations of the
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FIGURE 6. 2 x 2 antenna array geometry backed by a reflector at 21 mm
from the array bottom.

proposed single-element antenna are summarized in Table 2
and Fig. 5. The four radiation patterns are uncorrelated and
suitable for MIMO antenna applications. It can also be seen
from Fig. 5 that when two diodes are ON simultaneously,
then four more different radiation patterns can be achieved.
The simulated and measured results are discussed in the next
section.

D. 2 x 2 ANTENNA ARRAY LAYOUT

The single-element antenna is optimized for a 2 x 2 array and
MIMO antenna applications, as shown in Fig. 6. Each antenna
element in Fig. 6 is fed by a single feeding port. Therefore,
2 x 2 elements have 4 feeding ports and a common ground
plane that connects all elements at four positions, as shown
in Fig. 6. The locations of ground plane connection points
are optimized to maximize the isolation between the four
feeding ports. The elements are at 58.5 mm (0.7 1) from each
other, making a 3 mm gap on the ground plane. The reflector
backing the 2 x 2 elements is 140 x 140 mm?.

The 2 x 2 elements have two functional modes. Mode I
is the Array Mode, where the corresponding diodes on each
element have the same activation state simultaneously. So,
if the mutual coupling is ignored, each element has the
same radiation pattern with enhanced antenna gain. Also,
it would be possible to have steering capabilities by varying
the elements’ phase distributions. It can be observed that
when D1 is ON on the four elements, the beam steers to the
—y direction. The radiation performance is also improved to
=+ x or +y when the corresponding diodes are ON. Mode II
is the MIMO Mode, and a different pattern is obtained for
each element, i.e., different diodes (D1—D4) are activated at
the same time for each element of the array. In this case,
the MIMO antenna is achieved because the four radiation
patterns from the four elements are uncorrelated with ECCs
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below 0.1194 and significant isolation between the elements.
The simulated and measured results of the two functional
modes are discussed in the following sections.

Ill. NUMERICAL AND EXPERIMENTAL RESULTS OF
SINGLE-ELEMENT ANTENNA

The antenna is fabricated, and Fig. 7 shows the photos of the
fabricated antennas. The antenna is simulated using Ansys
High Frequency Simulation Software (HFSS) version 2020.
The S-parameters are measured using the network analyzer
PNA - N5227A. The far-field radiation patterns are measured
in the Anechoic Chamber. The simulated and measured |S11|
of a single-element are in good agreement, as shown in Fig. 8.
The results show that the resonant frequencies are around
3.65 GHz and —10 dB impedance bandwidths are 200, 170,
200, and 200 MHz for Slot 1, Slot 2, Slot 3, and Slot 4,
respectively. The —10 dB common bandwidth can be taken
as 170 MHz. The slight discrepancy between measured and
simulated |Sy;| is due to the presence of the coaxial cable,
and the inaccurate values of the inductors, resistors, and
PIN diodes. The simulated peak gains of the four pattern
configurations are 8.4, 10, 10, and 9 dBi for Slot 1, Slot
2, Slot 3 and Slot 4, respectively, as shown in Fig. 9. The
corresponding radiation efficiencies are shown in Fig. 9.
The simulated efficiencies are 80.5%, 78.3%, 82.5%, and
78.2%, respectively. On the other hand, the corresponding
measured peak gains are 6.5, 8.5, 8, and 7 dBi, as shown in
Fig. 10. The 2 or 1.5 dB difference between the measured
and simulated gains is due to the coaxial connectors and
the coaxial cable (2 to 3 connectors are used because the
dimensions of the antenna port connector are different from
the dimensions of the coaxial cable connector). It is also
important to use the in-between connectors such that it is
easier to connect the coaxial cable to the antenna feeding
port.

Fig. 10 shows the simulated and measured 2D radiation
patterns for four pattern configuration states. The measured
and simulated results are in good agreement. Figs. 10((a)
and (e)) show that the pattern reconfigurability occurs along
the Y-Z plane for Slot 1 and Slot 3 with a y-polarization.
Figs. 10((d) and (h)) show that the pattern reconfigurability
occurs along the X-Z plane for Slot 2 and Slot 4 with
an x—polarization. The radiation patterns are unidirectional,
with a minimum simulated Front-to-Back Ratio (FTBR)
of 19 dB. Regarding Figs. 10((a), (d), (e) and (h)), the
simulated and measured results of the radiation patterns of
the single-element antenna are summarized in Table 3. The
pattern reconfigurability is achieved along the X-Z and Y-Z
planes. The measured peak direction is precisely the same
as from the simulation. The measured Side-Lobe Levels
(SLLs) are lower than the simulated SLLs, indicating that
the coupling between the slots is lower than the simulated
ones.

Generally, the measured and simulated results of the pat-
tern reconfigurable single-element are in reasonable agree-
ment. The discrepancy between measured and simulated
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Antenna Array

FIGURE 7. Photos of the proposed antenna. (a) Pattern reconfigurable single-element. (b) 2 x 2 antenna array, and
(c) 2 x 2 antenna array under test.
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FIGURE 8. Simulated and measured |S;; | for the pattern reconfigurable single-element antenna. (a) Slot 1 Configuration and Slot 3 Configuration,

and (b) Slot 2 Configuration and Slot 4 Configuration.

radiation patterns is due to the inevitable cable radiations,
misalignment of the reflector, and tolerances of the used
PIN diodes, inductors and resistors. In addition, when
the coaxial cable is connected to the antenna, it could
mis-orient it vertically or horizontally from its simulated
position during the measurements. Finally, the other sources
of errors are cable radiations and D.C wires radiations.
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The measurements were done to reduce these errors as
much as possible. It is also worth mentioning that the
measured radiation patterns are only on the antenna’s front
side due to the mounting structure, which can only rotate
from —90° to 4+90° in the azimuthal plane. In addition,
as the antenna is active, it needs D.C biasing during the
measurements, and it is difficult to flip the antenna manually
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FIGURE 9. Simulated peak gains and radiation efficiencies of the pattern
reconfigurable single-element antenna.

TABLE 3. Simulated and Measured Radiation Patterns of a
Single-Element Antenna Along the Reconfigurability Plane.

Config. Sim. Opmaz Meas. Oynae | Sim. HPBW | Meas. HPBW
Slot 1 —30° (Y-Z) —30° 45° 47°
Slot 2 —30° (X-2) —30° 45° 40°
Slot 3 30° (Y-Z) 30° 40° 42°
Slot 4 30° (X-Z) 30° 45° 45°

and connect it to the rotating arm during the radiation pattern
measurements.

IV. NUMERICAL AND EXPERIMENTAL RESULTS OF THE

2 x 2 ANTENNA ARRAY

The 2 x 2 antenna has 16 slots and 16 PIN diodes, as shown
in Fig. 6 and the photos of the fabricated array are shown in
Fig. 7. The radiation pattern for each slot in the 2 x 2 antenna
is shown in Fig. 11. Table 4 summarizes the results of the
radiation patterns, when a single slot in the array radiates,
which are shown in Fig. 11. It can be seen from Table 4 and
Fig. 11 that the simulated and the measured results are in
a reasonable agreement. The sources of errors stated before
are the same, although some absorbers are used to cover the
cable during the measurements. The slots’ peak gain in the
single-element is different from that in the 2 x 2 antenna due to
ground plane deformation because of the gaps at the contact
points between the ground planes.

In general, it can be seen from Fig. 11 that the measured
radiation patterns show higher directivity and lower SLLs.
The SLL of the measured pattern is higher than the simulated
pattern in one case shown in Fig. 11(a2) when Slot 1 in
Element 2 is activated, showing that the current distribution
of the slots is slightly different from the simulated one.
In addition, the measured radiation nulls could differ from
the simulated nulls due to the inevitable misalignment of the
element antenna above the reflector.

A. ARRAY MIODE RESULTS

In the Array Mode, the same diodes (D1—D4) are ON on the
four elements, e.g., D1 is ON on all elements, and D2—D4 are
OFF on all elements. Therefore, the gain increases, thanks to
the array factor of the 2 x 2 array. The achieved gains for
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TABLE 4. Simulated and Measured Results of Radiation Patterns of Each
Slot in a 2 x 2 array Along the Reconfigurability Plane, with Reference to
Fig. 11.

Configuration Sim. Omax Meas. Onae | Meas. Gain (dB) | HPBW
Elementl, Slot 1 —25° (Y-Z2) —25° 5.5 40°
Elementl, Slot2 | —20° (X-Z) —30° 7 48°
Elementl, Slot 3 40° (Y-2) 40° 6.5 30°
Elementl, Slot 4 25° (X-Z) 30° 7 30°
Element2, Slot 1 —23°(Y-2) —22° 7 30°
Element2, Slot 2 | —20° (X-Z) —23° 6.7 40°
Element2, Slot 3 30° (Y-Z) 27° 6.7 40°
Element2, Slot 4 30° (X-Z) 20° 6.5 62°
Element3, Slot 1 | —30° (Y-Z) —15° 7 54°
Element3, Slot 2 | —22° (X-Z) —23° 7 38°
Element3, Slot 3 30° (Y-Z) 45° 7 40°
Element3, Slot 4 34° (X-Z) 30° 6.5 52°
Element4, Slot 1 | —35° (Y-Z) —23° 7 54°
Element4, Slot 2 | —35° (X-Z) —17° 6.5 33°
Element4, Slot 3 30° (Y-2) 33° 6.5 79°
Element4, Slot 4 30° (X-2) 25° 6.4 51°

the four pattern configurations for the 2 x 2 antenna array
are around 12.5 dBi. The antenna array has four elements,
so the array gain should be about 6 dB higher than the
single-element gain. However, the achieved gain is less than
expected due to the mutual coupling and the losses of the
feeding network.

The radiation pattern of the single slot is known as
discussed in Section II. Now, the array factor of the proposed
2 x 2 planar array can be written as shown in Eq. (17),
as presented in [21].

1 sin(%®) | | 1 sin(5oy)

A.F.,0,¢) = 17
’ M sin(%) sin(%)
where
O, = kdysinfcos¢p + By (18)
@y, = kdysinfsing + By (19)

where d, = 58.5 mm = 0.74,, and d, = 57 mm = 0.682,.
Taking M = 2 and N = 2, we can simplify the array factor
in the E- and H-plane as shown in Eq. (20), and Eq. (21),
respectively.

AF (0,6 =90°) = lsz:n(l.36ns1:n9 + By)
2 sin(0.68m sinf + By)
1 sin(1.4msinf + By)
A.F 0,0 =0° = =
0.9 ) 2 sin(0.77 sinf + By)

where it can be seen that the radiation pattern due to the
planar array is controlled by B, in the E-plane and by B,
in the H-plane, consequently, and the final radiation pattern
from the planar array follows the total electric field shown in
Eq. (22).

(20)

21

Eiora1 = E(single slot(M»)) x A.F .(imaged current)
X A.F .(planar array) (22)

where E (single slot(M3)) is the electric field due to the single
slot, A.F.(imaged current) is the array factor due to the
magnetic current M, and its image resulted because of the
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FIGURE 10. Simulated and measured radiation patterns of 4 pattern configurations of a single-element antenna.

use of an electric reflector, and A.F .(planar array) is the array
factor due to the planar array.

After that, a 4 x 4 antenna array is analyzed, as shown
in Fig. 12. The radiation patterns for the four configurations
are shown in Figs. 13 and 14. The radiation patterns shown
in Fig. 13 present the gain on the Y-Z plane for Slot 1 and
Slot 3, when the progressive phase in the y-direction is 8y =
110° and B, = —110°, respectively. The radiation patterns
shown in Fig. 14 present the gain on the X-Z plane for Slot
2 and Slot 4, when the progressive phase in the x-direction
is By = 110° and B, = —140°, respectively. It can be seen
that Slot 1 configuration achieves a peak gain of 17.4 dBi at
6 = —30° on the Y-Z plane, HPBW of 20, and a Side Lobe
Level of —10 dB. Slot 2 configuration obtains a peak gain of
16.2 dBi at & = —30° on the X-Z plane, HPBW of 20, and
a Side Lobe Level of —6.2 dB. Slot 3 configuration obtains a
peak gain of 17 dBi at & = 30° on the Y-Z plane, HPBW of
20°, and a Side Lobe Level of —8 dB. Slot 4 configuration
achieves a peak gain of 13.2 dBi at 6 = 30° on the X-Z
plane, HPBW of 207, and a Side Lobe Level of —5 dB. The
radiation beam can be steered in the range —50° < 6 < 50°
in the planes at ¢ = 0° and ¢ = 90°, without a high
gain loss. It is worth mentioning that the best performance is
obtained from the reconfigurable antenna array if the suitable
slot configuration is chosen for a specific radiation direction
in space. For example, if beam steering is required in the
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+y direction, D3 diodes should be ON for the sixteen array
elements. It can also be seen from Fig. 13 and Fig. 14 that
the side-lobe levels are relatively high. This is because the
spacings between the array elements are larger than half a
wavelength. The cross-polarization level is about —12 dB.

In addition, the Cumulative Distribution Function (CDF)
for the coverage efficiencies of the simulated radiation
patterns for the 2 x 2 array is obtained using 500 different
simulation data sets. The simulated CDF of the coverage
efficiencies is shown in Fig. 15. The coverage efficiency when
Slot 1 is activated on the four array elements and phase shifts
are applied between the four elements to steer the beam is
shown in Fig. 15. The coverage efficiencies are also shown
for Slot 2, Slot 3, and Slot 4 configurations. The coverage
efficiency for the pattern reconfigurable 2 x 2 antenna array,
where the array can be operated using Slot 1, Slot 2, Slot
3, or Slot 4 on the four array elements, is also shown in
Fig. 15. The pattern reconfigurable antenna array can be
operated using Slot 1, Slot 2, Slot 3, or Slot 4 configuration
because of the installed 16 PIN diodes. The coverage
efficiency increases by 2.65 dB at the 50% threshold,
thanks to the pattern reconfigurability of the antenna array.
It can be seen from Fig. 15 that 50% of the spherical
coverage of the array antenna will have a pattern gain of
—1 dB when the pattern reconfigurable antenna array is
used.
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FIGURE 11. Simulated and measured far-field co-polarized radiation patterns for each element in the proposed

2 x 2 antenna array.
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FIGURE 12. The geometry of the proposed pattern reconfigurable
4 x 4 antenna array for the Array Mode operation.
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FIGURE 13. Simulated radiation patterns of the Array Mode for Slot 1 and
Slot 3 configurations along the Y-Z plane.
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FIGURE 14. Simulated radiation patterns of the Array Mode for Slot 2 and
Slot 4 configurations along the X-Z plane.

B. MIMO MODE RESULTS
In the MIMO Mode, different diodes (D1—D4) are ON in
the 4 MIMO elements; e.g., D1 is ON for element 1, D2 is
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FIGURE 15. Simulated coverage efficiency of the pattern reconfigurable
2 x 2 antenna array.

TABLE 5. Simulated Radiation Efficiencies of the Radiating Slots in the
2 x 2 MIMO Antenna.

Radiating Slot Efficiency
Element 1, Slot 1 83%
Element 1, Slot 2 61%
Element 1, Slot 3 7%
Element 1, Slot 4 65%
Element 2, Slot 1 78%
Element 2, Slot 2 70%
Element 2, Slot 3 81%
Element 2, Slot 4 73.5%

Radiating Slot Efficiency
Element 3, Slot 1 7%
Element 3, Slot 2 73%
Element 3, Slot 3 81%
Element 3, Slot 4 72%
Element 4, Slot 1 76%
Element 4, Slot 2 80%
Element 4, Slot 3 82%
Element 4, Slot 4 1%

ij

[S;;] (dB)

-35F

-40 : : :
3.4 3.5 3.6 3.7 3.8 3.9 4

Frequency (GHz)

FIGURE 16. Simulated IS between different ports of the MIMO antenna.

ON for element 2, D3 is ON for element 3, and D4 is
ON for element 4. Therefore, 16 different combinations can
be achieved for the MIMO mode by changing the diode
status in the MIMO elements. The Envelope Correlation
Coefficients (ECCs) between the proposed MIMO antenna
radiation patterns are small because they are oriented in
different directions and achieve different linear polarizations.
The ECCs between the radiation patterns of the 2 x 2 MIMO
antenna are calculated using the field equation [5], [23],

i L[0.9) x e 0. p)dQ P
I 1eTi0.9) P dQx [[1e70.9) 1 dQ

(23)
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TABLE 6. Simulated ECCs Between the Radiation Patterns of the Proposed 2 x 2 MIMO Antenna at 3.65 GHz.

Conf. | Slot1 | Slot2 | Slot3 | Slot4 | Slot2 | Slot3 | Slot4 | Slot1 | Slot3 | Slot4 | Slot1 | Slot2 | Slot4 | Slot1 | Slot2 | Slot3
(ED) (E2) (E3) (E4) (E1) (E2) (E3) (E4) (E1) (E2) (E3) (E4) (E1) (E2) (E3) (E4)
Slot1 | 1 0.0048 | 0.001 | 0.0113| 0.1623| 0.1194| 0.01 0.0337 | 0.0095| 0.0369 | 0.0005| 0.0017 | 0.0472| 0.0017| 0.0033 | 0.0187
(ED)
Slot2 | 0.0048| 1 0.0027 | 0.0032| 0.0259| 0.1321| 0.0215| 0.0128 | 0.0014 | 0.0392| 0.0387 | 0.185 | 0.0428 | 0.3646| 0.0074 | 0.00129
(E2)
Slot3 | 0.001 | 0.0027| 1 0.0099 | 0.0229| 0.1092| 0.4039| 0.1188 | 0.0028 | 0.0582 | 0.128 | 0.0602| 0.00129 0.0241| 0.0154 | 0.0155
(E3)
Slot4 | 0.0113| 0.0032| 0.0099 | 1 0.0408 | 0.0288 | 0.0472| 0.1028 | 0.1 0.009 | 0.0074 | 0.0593 | 0.0237| 0.0063 | 0.0478 | 0.3703
(E4)
Slot2 | 0.1623| 0.0259 | 0.0229 | 0.0408 | 1 0.0117 | 0.0224 | 0.0017 | 0.0345| 0.0288 | 0.0011 | 0.0068 | 0.1432| 0.0442| 0.0029 | 0.0093
(E1)
Slot3 | 0.1194| 0.1321| 0.1092| 0.0288| 0.0117| 1 0.0363 | 0.0474| 0.0591 | 0.1531| 0.0912| 0.0483 | 0.0704 | 0.0455| 0.0228 | 0.0526
(E2)
Slot4 | 0.01 0.0215 | 0.4039 | 0.0472| 0.0224| 0.0363| 1 0.0528 | 0.0001 | 0.072 | 0.2017 | 0.0941 | 0.0053| 0.0077 | 0.0073 | 0.0696
(E3)
Slot1 | 0.0337| 0.0128 | 0.1188 | 0.1028 | 0.0017 | 0.0474| 0.0528 | 1 0.0577 | 0.0345| 0.0075| 0.1282| 0.0218 | 0.026 | 0.0127| 0.0583
(E4)
Slot3 | 0.0095| 0.0014| 0.0028 | 0.1 0.0345 | 0.0591 | 0.0001 | 0.0577| 1 0.0008 | 0.0051 | 0.0019 | 0.1278 | 0.0041 | 0.015 | 0.166
(ED)
Slot4 | 0.0369 | 0.0392| 0.0582| 0.009 | 0.0288| 0.1531| 0.072 | 0.0345| 0.0008 | 1 0.0086 | 0.0003 | 0.0331| 0.0221| 0.0022| 0.0123
(E2)
Slot 1 | 0.0005| 0.0387| 0.128 | 0.0074| 0.0011| 0.0912| 0.2017 | 0.0075| 0.0051 | 0.0086 | 1 0.0294 | 0.0182| 0.0832| 0.1379 | 0.0015
(E3)
Slot2 | 0.0017| 0.185 | 0.0602| 0.0593| 0.0068 | 0.0483| 0.0941 | 0.1282| 0.0019 | 0.0003 | 0.0294 | 1 0.0033 | 0.0076 | 0.0346| 0.012
(E4)
Slot4 | 0.0472| 0.0428 | 0.00129 0.0237| 0.1432| 0.0704| 0.0053 | 0.0218 | 0.1278 | 0.0331 | 0.0182| 0.0033| 1 0.0014 | 0.0068 | 0.0129
(ED)
Slot 1 | 0.0017 | 0.3646| 0.0241 | 0.0063 | 0.0442| 0.0455| 0.0077 | 0.026 | 0.0041| 0.0221 | 0.0832| 0.0076 | 0.0014 | 1 0.0016 | 0.0001
(E2)
Slot2 | 0.0033| 0.0074 | 0.0154 | 0.0478 | 0.0029 | 0.0228 | 0.0073| 0.0127 | 0.015 | 0.0022| 0.1379 | 0.0346 | 0.0068 | 0.0016| 1 0.00129
(E3)
Slot3 | 0.0187| 0.00129 0.0155| 0.3703 | 0.0093 | 0.0526| 0.0696 | 0.0583| 0.166 | 0.0123 | 0.0015| 0.012 | 0.0129| 0.0001 | 0.00129 1
(E4)
TABLE 7. Comparison Table Between the Proposed Antenna with Some Base-Station Antennas in the Literature.
Ref. f, (GHz) | B.W. Max. Size (mm) Gain Modes Isolation | Eff. # Design Complexity | # FOM
(MHz) | ECC Ports | Method MIMO
states
[12] 2.45 200 0.5 120 x 60 - MIMO 20 dB 60% | 2 Characteristic| low 4|3 1.47
modes diodes)
[14] 3.6,5.5 200, 0.016 82.4x 824 | 4.6dBi | MIMO 19.6dB | 80% | 4 Orthogonal High (Fill- | 8 0.342
775 Orientation ing Water
to Cavity)
[15] 5.9 - - 153 x 25.4 - MIMO - - 2 tuning High (100 | - -
metamate- diodes)
rial
[16] 2.65 96 0.05 50 x 70 3 dBi MIMO 15dB 80% | 2 Different ra- | Medium 4 0.1156
diators (6 diodes)
[17] 2.45 260 0.011 102 x 80 4.7dBi | MIMO 16.5dB | 82.5% 2 Yagi Uda Low @]9 2.33
(S- diodes)
equation)
[19] 3.5 50 - 400 x 270 6.86 MIMO 15dB 70% | 1 Array high (64 | 40 0.65
dBi Factor diodes)
This 3.65 200 0.1194 140 x 140 9 dBi | MIMO 20 dB 80% | 4 Yagi Uda Medium 16 5.57
work & 125 | & (sim- (16
dBi Array u- diodes)
(simu- lated)
lated)
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FIGURE 17. Measured 1S between ports of the MIMO antenna for different MIMO combinations.
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FIGURE 18. Electric field and vector current distribution on the antenna
array when Port 2 is excited, and Slot 1 on Element 2 is activated.

where d2 = sinfdod¢, e_i(G, ¢) is the radiated far-field
electric field for the ith configuration, and the asterisk indi-
cates the complex conjugate. The simulated ECCs between
the radiation patterns of the 16 pattern configurations of the
2 x2 MIMO antenna at 3.65 GHz are shown in Table 6, where
it can be seen that the maximum ECC in the bandwidth of
operation is 0.1194 when the activated slots are in different
antenna elements. The ECCs are below 0.18 within the
bandwidth of interest, even between the radiation patterns
of the slots on the same element. The measured ECCs are
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expected to be in reasonable agreement with the simulated
ECCs since the measured and simulated radiation patterns are
in a good agreement. It is worth mentioning that the ECCs
are calculated with the assumption that the environment is
isotropic, and the incoming signals are sinusoidal. In addition,
it can be seen from Table 6 that if the MIMO antenna is
designed with 16 ports feeding each slot, then the channel
capacity is going to increase by a factor of 16 as shown in
Eq. (24) assuming a full-rank MIMO channel [22].

SNR
C =N xlog 1+—N )

where C is the channel capacity, N is the number of elements
on the transmitting and receiving MIMO antennas, and SNR
is the Signal-to-Noise ratio.

The simulated |S;;| between the 4 MIMO ports is shown
in Fig. 16. The measured |S;;| between the four ports of the
MIMO antenna for four different combinations is shown in
Fig. 17. It can be seen in Fig. 17 that the isolation in the
bandwidth of operation between the 4 MIMO ports is always
more than 20 dB. The high isolation between the MIMO ports
is achieved because of the defective ground structure (the
rectangular slots in the ground plane). In addition, the U-slots
are oriented orthogonal to each other to provide orthogonal
linear polarization, and to enhance the isolation. The isolation
between ports 2 and 3, when Slot 1 is ON in element 2, and
Slot 2 is ON in element 3, as shown in Fig. 17(d), is less
than 20 dB. This is because the dominant current on Slot
1 of Element 2 is +y-directed towards the ground of Element

(24)
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3, which increases the current coupling between ports of the
two elements, as shown in Fig. 18. In addition, the ground
of Element 3 is positioned on the direction of the radiation
pattern of Slot 1 on Element 2; as a result, the electric field is
more coupled to the ground of Element 3. On the other hand,
the simulated radiation efficiencies for each radiating slot in
the 2 x 2 MIMO antenna are shown in Table 5, where it can
be seen that the efficiencies of the slots in the MIMO array
are different from the efficiencies of the corresponding slots
in the single-element antenna due to higher mutual couplings
between slots and ports in the MIMO array. However, the
difference between the radiation efficiencies of the slots in the
MIMO array and the single-element antenna is reasonable,
showing a good isolation between the radiating slots and low
mutual coupling effects in the MIMO antenna.

V. DISCUSSIONS AND CONCLUSION

The 2 x 2 antenna array is a good candidate for small-
cell base-stations. Thanks to its pattern and polarization
reconfigurability, two functional modes are achieved. In the
Array Mode, higher gain and broader steering capabilities
are achieved. In the MIMO Mode, many combinations and
enhanced channel capacity are realized.

The proposed pattern reconfigurable 2 x 2 antenna array is
compared in Table 7 with the previous pattern reconfigurable
MIMO antennas shown in [12], [13], [14], [15], [16], [17],
[18], and [19]. The proposed pattern reconfigurable slot-
based 2 x 2 antenna in this article allows two functional
modes, Array and MIMO modes. The peak gain for a
single radiating slot is 9 dBi, with a radiation efficiency of
80%, exceeding the achieved gains in [9], [10], and [11].
The Array Mode can further enhance the peak gain to
17.4 dBi for more wireless coverage. The MIMO mode
enables multiple combinations with minimum isolation of
20 dB and a maximum ECC of 0.1194 in the bandwidth
of interest, showing a better performance than previous
antenna designs. The proposed antenna array is relatively
compact. The achieved operation bandwidth for the proposed
design competes with the previously published designs. The
following Figure of Merit (FOM) equation shown in Eq. (25)
compares the proposed antenna array with the proposed
antennas in table 7.

Gain x #States x Efficiency x BW x #Modes

FOM = : . (25
Complexity

where Gain is the antenna gain in linear scale, #States is the
number of pattern MIMO states, Efficiency is the percentage
efficiency of the antenna, BW is the percentage bandwidth,
#Modes is the number of functional modes of the antenna, and
the Complexity is the complexity of the pattern reconfigurable
MIMO antenna design, with a scale from 1 to 3, where 1 is
for Low complexity, 2 is for Medium complexity, and 3 is for
High complexity. It can be seen from Table 7 that the antenna
of this work achieves the best FOM.

In conclusion, the paper has presented a new pattern
reconfigurable 2 x 2 elements. The antenna has a MIMO
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Mode and Array Mode with good performance. The used
single-element antenna was a pattern reconfigurable U-slot
with four uncorrelated pattern configurations, with an
average efficiency of 80%, a peak gain of 9.35 dBi, and
an overlapped measured —10 dB impedance bandwidth
of 200 MHz around 3.65 GHz resonant frequency. The
MIMO Mode exhibits good performance at 3.65 GHz with
a maximum ECC of 0.1194 between the 16 configurations
and a minimum isolation of 20 dB. The Array Mode of the
antenna shows good performance at 3.65 GHz with a peak
gain reaching 17.4 dBi, —12 dB cross-polarization, and a
50% coverage efficiency with a gain of —1 dB. The antenna
is with compact size and suitable for small-cell base-station
applications.
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