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ABSTRACT Coronary artery segmentation from CT scans is a helpful tool for coronary artery diseases
diagnosis, which is frequently characterised by a vessel narrowing (stenosis). This is a highly demanded
and high time-consuming process, thus automated procedures are becoming increasingly necessary. In this
work, we propose an extremely light computationally 2D UNet that uses transfer learning for the first time
in CT images. We compare the results, using different architectures and backbones, of a 2D UNet and a 3D
UNet trained from scratch (i.e. weights are randomly initialised) and a 2D EfficientUNet. Both the amount
of input data, with a total of 88 patients, and the extension of the structure to be recognised, the aorta and
the coronary arteries (A+C .A), as well as the coronary arteries only (C .A) are analysed. Network outputs in
clinically identified stenotic lesion areas are also assessed. The results show the advantage of using transfer
learning when data is scarce, improving the F1 score by up to 0.6 points for the 2D UNet. On the other hand,
when data is sufficient, F1 score values are close to 0.9 for all the networks. Besides, the results reveal that
the 2D UNet distinguishes the thinnest and most distal vessels, although in the presence of a lesion, there is
a clear tendency to overestimate it. The network with the best accuracy is the 3D UNet, with values above
95% and 75% in A+ C .A and C .A, respectively. Moreover, the proposed methods show dependence on the
amount of training data and dataset structure (A+ C .A or C .A).

INDEX TERMS Artery, convolutional neural network, coronary, CT, segmentation, UNet.

I. INTRODUCTION
Coronary artery disease (CAD) is one of the leading causes
of death worldwide [1], [2]. Invasive tests, such as coronary
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angiography, with high spatial resolution and the possibility
of intervening in the same procedure, can be used to diagnose
this disease. However, due to the associated risks, non-
invasive techniques such as computed tomography (CT)
are increasingly being employed [3]. Coronary computed
tomography angiography (CCTA) allows the extraction of
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images of the heart in slices. If a contrast agent (dye) is
used, these images show whether the arteries are narrowed or
not. Additionally, each scan can be integrated to create a 3D
visualization that greatly aids diagnosis. After the images are
taken, lesions are visually assessed by an expert. Nonetheless,
this is a tedious, error-prone, subjective and time-consuming
process.

One of the solutions to speed up the process and obtain
an accurate diagnosis is to obtain a precise 3D geometry
of the region of interest (aorta and coronary arteries). This
enables not only the visualisation of the structure but also the
calculation of other clinically-relevant diagnostic parameters
such as Fractional Flow Reserve (FFR), using compu-
tational fluid dynamics or machine learning techniques
[4], [5], [6], [7].

Semi-automatic and automatic segmentation (pixel-by-
pixel identification of structures) techniques are used to
obtain these geometries. Although semi-automated tech-
niques involve many tools, such as threshold structure
filtering on Hounsfield units, centerline extraction, or 3D
editing, they still require time and expertise. In auto-
matic segmentation techniques, artificial intelligence (AI)
is increasingly being applied, for example Convolutional
Neural Networks (CNN) [8], [9]. Themain advantage of these
methods is that they are not user-dependent and can therefore
be used by both expert personnel and personnel from areas
outside the field of medical imaging. This is helpful for
research and reproducibility of results, as well as saving a lot
of time.

Within the architectures described by CNN, UNet has
played a relevant role in biological image segmentation [10].
This type of network consists of two parts: an encoder that
reduces the spatial dimension of each layer and increases
the number of channels, and a decoder that performs the
reverse process. Some modifications of this architecture can
be found in the literature in the field of coronary structure
segmentation, such as 3D versions of UNet itself (3D UNet),
VNet or UNet++ [11], [12], [13], [14], [15], [16].

Cheung et al. [12] propose a modified and computationally
cheap 2D UNet that obtains a dice similarity coefficient
(DSC) [17] of 91.20% and 88.8% when trained with the
entire coronary tree (aorta and coronary arteries) and with
the coronary arteries, respectively. Their dataset consists
of 71 CT scans. Other works such as [13], propose a
computationally intensive model based on 3D UNet with
a dataset of 474 CT scans. In this case, the DSC in the
coronary arteries increased to 96.91%. Huang et al. [14]
use a 3D UNet with two settings, depending on whether
the data include vessel centerlines (18 CCTA) or not (34
CCTA). Duan et al. [18] suggests a 3D UNet with prior
spatial knowledge of coronary geometries, which allows to
reduce the complexity of the model.

The DSC received here is 71.46%. On the other hand,
Gu and Cai [15] combine the advantages of 2D UNet (wide
field of view) and 3D (its ability to favor structural continuity)
in a 2D-3D UNet network. This implementation achieves a

DSC of 97.54% in aorta and 86.62% in coronary arteries. This
method achieves a DSC of 79.5% in the coronary arteries.

An additional benefit of CNNs is their simplicity to
transfer learning. This is particularly intriguing when the
quantity of labeled data, time and assets are restricted [19].
It is not business as usual, consequently, that transfer
learning procedure has been applied to clinical imaging
and, specifically, to coronary artery and atherosclerotic
plaque segmentation [20]. For example, [21] utilizes a pre-
trained (VGG16, ResNet50, and Inception-v3) CNN for
stenosis region location in coronary angiography through
transfer learning and fine tuning of a synthetic dataset of
10, 000 pictures tested with various setups. With the best
design, they got a F1 score of 0.98. Candemir et al. [22]
additionally features the benefits of utilising transfer learning
in architectures, for example, VGG-16 [23], particularly
when the dataset is small, as their weights have been
optimised through more than one million pictures from
ImageNet [24]. In any case, they additionally bring up the
absence of pre-trained 3D networks.

All the articles mentioned above, including this one, face
some problems with respect to coronary artery segmentation.
1) Data scarcity. The results obtained by neural networks
depend, to a large extent, on the input data. In the case of
coronary artery segmentation, images are difficult to obtain
(as they are clinical data) and require a previous manual
segmentation. 2) The datasets obtained are class imbalanced,
as the coronary vessels constitute a very small region within
each slice. 3) Some approaches such as 3D networks are
computationally very intensive, either in terms of memory or
in computation time.

The main contributions of the present study are:
1) Study of the dependence of the number of patients for

obtaining an accurate coronary tree with UNet neural
networks.

2) Comparison of 2D (with different backbones) and 3D
networks. As a novelty to previous studies, transfer
learning in 2D is included.

3) Training with a very detailed and accurate dataset.
This article is structured as follows. Section II describes the

methods, including image acquisition, dataset processing and
technical specifications of the algorithms. Section III details
the performance of the algorithms and shows examples of the
volumes obtained. Finally, section IV contains the discussion
and conclusions.

II. METHODS
A. CLINICAL DATA AND PRE-PROCESSING
The dataset used for this study contains CT images from
88 patients that have been obtained at the University Hospital
in Santiago de Compostela (Spain). CCTA is obtained for
each patient consisting of 256 images with a 512x512 pixel
resolution. Patients were chosen based on a clear image
criterion and the lack of calcium-related lesions. If a patient
develops some calcification (less than 5% of the patients),
the calcium is washed out of the vessel, while maintaining
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the blood flow region. CCTA images were obtained using
a Revolution CT [25], with a one-beat 16cm wide coverage
and 0.23mm spatial resolution. Acquisition parameters and
patient premedication were chosen following the Society of
Cardiovascular Computed Tomography recommendations.

The images were cropped to a size of 400x400 pixels
in order to reduce their size and non-essential information.
The amount of the images per patient was also decreased
from 256 to 200. Note that the quality of the images was
never decreased and neither the aorta nor any other coronary
structures of importance were eliminated. The Hounsfield
Units used to measure the pixel intensity have been rescaled
to yield values between 0 and 255.

B. ETHICS STATEMENT
The development of the project was carried out respecting
the Declaration of Helsinki of theWorldMedical Association
1964 and ratifications of the following assemblies (Tokyo 75,
Venice 83, Hong Kong 89, Somerset West 96, Scotland 00,
Seoul 08 and Fortaleza 13) on ethical principles for medical
research on human beings, RD 1090/2015, of December 24,
on clinical trials, specifically the provisions of article 38 on
good clinical practices, and the Convention on human rights
and biomedicine), made in Oviedo on April 4, 1997 and
successive updates. The researchers participating in this study
agree that all clinical data collected from the study subjects
will be separated from personal identification data ensuring
the anonymity of the patient; respecting the Personal Data
Protection Law (Organic Law 15/1999, of December 13),
RD 1720/2007 of December 21, which approves the Reg-
ulations for the development of Organic Law 15/1999,
Law 41/2002, of November 14 (basic regulation of patient
autonomy and rights and obligations in terms of informa-
tion and clinical documentation), as well as Law 3/2001,
of May 28, (regulator of informed consent and the clinical
history of patients), Law 3/2005, of March 7, modifying
Law 3/2001 and Decree 29/2009 of February 5, which
regulates access to history electronic clinic. The clinical data
of the patients will be collected by the investigator in the
Case Report Form (CRF) specific to the study. Each CRF
will be encrypted, protecting the identity of the patient.
Only the research team and the health authorities, who
have a duty to maintain confidentiality, will have access to
all the data collected for the study. Only information that
cannot be identified may be transmitted to third parties.
Once the study is finished, the data will be destroyed. The
treatment, communication and transfer of data will be done in
accordancewith the provisions of theGeneral Data Protection
Regulation (Regulation (EU) 2016/679 of the European
Parliament and of the Council, of April 27, 2016). The data
collected will only be used for the purposes of the research
study described in the protocol and kept for the time necessary
to achieve the objectives of the study and in accordance
with applicable legislation. As this is a retrospective study of
medical records and archived samples that does not deviate
from routine clinical practice, the Ethics Committee consider

FIGURE 1. Example of patient segmentation. A) Slices of the CT image
with the segmentation line of the aorta and the coronary arteries in red.
B) 3D geometry of the coronary tree obtained from the slices.

that patient informed consent and fully anonymization of the
data before being access are sufficient requirements to carry
out the study.

C. GROUND TRUTH SEGMENTATION
The process to obtain ground truth labels was carried
out semi-automatically with 3D Slicer software (version
4.11.20210226) [26], [27]. The task was designed in three
steps: 1) thresholding, 2) cleaning and 3) refinement.

1) Thresholding: A threshold is established to extract
coronary structures with good contrast. During this
process not only the aorta and coronary arteries are
segmented, but also other parts of the muscle or
ventricles.

2) Cleaning: From the previous step, structures other than
the aorta or coronary arteries are removed.

3) Refinement: Narrow and distal vessels are segmented
by thresholds lower than in step 1).

The refinement step distinguishes our study from previous
works as it performs a thorough segmentation of the entire
coronary tree (see Fig. 1). Once the aorta and coronary
arteries have been segmented, the aorta is removed, leaving
only the coronary arteries to generate the two study datasets.
One with the complete structure and the other set with only
the coronary arteries.

Finally, the volume is downsized to 200x400x400 and a
binary mask is applied to obtain the ground truth labels (GT).

D. METHOD
1) MODEL
The UNet architecture underlies the models we compare.
The first model is a 2D UNet. The peculiarity of this
network is that it has an encoder that has already been
trained through more than one million pictures from
ImageNet [24] and whose weights cannot be changed,
as well as a decoder that can be trained. The encoder is
based on MobileNetV2 [28] and is already implemented
in tensorflow.keras.applications [29] (see model2Dpre.json
file in Supplementary Material). This network was chosen
because of its low computational cost and high performance.
It is 32 times smaller and 27 times less computationally
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FIGURE 2. Segmentation ground truth (GT) of the 10 test patients.

intensive than VGG16 while maintaining competitive
accuracy [28].

Furthermore, by using a pre-trained encoder and keeping
these weights constant, the number of variable parameters
can be significantly reduced. In this case, the total number of
parameters is 6, 502, 786, of which 4, 658, 882 are trainable
and 1, 843, 904 are non-trainable. Because the input size in
the first implementation of this network is fixed at 512x512,
the 400x400 images of our dataset are filled with a black
frame until the required size is obtained. This allows us to
use the same dataset for both 2D and 3D algorithms.

A 3D UNet is the second model. The input and output
of this network are volumes made up of 16 images (CCTA
slides). Following the implementation of [13], each 16-image
patch contains information from the previous and next patch.
This network has a total of 22, 575, 329 trainable parameters.
The complete architecture of both models is in the

Supplementary Material in Fig. S1 and Fig. S2. In addition,
a diagram of the 3D UNet is shown in Fig. S3.

2) COMPARISON WITH OTHER NETWORKS
To strengthen the study, the results of the pre-trained 2D
UNet and the 3D UNet are compared with a 2D UNet, whose
weights are randomly initialised (in what follows we will
refer to it as ‘‘from scratch’’), and a pre-trained 2D UNet but
with a different backbone, in this case an EfficientUNet [30].
Like the 2D pre-trained UNet, this network has also been
pre-trained with the ImageNet dataset [24] and only the
decoder is trained.

The random initialised 2D network consists of 7, 760, 322
parameters and details of its architecture can be found in
Supplementary Material, Fig. S4.

Furthermore, the architecture and implementation of the
EfficientUNet is based on a efficientnetb5 whose original
code and information about its implementation can be found
in [31].

The training datasets are exactly the same as for the 2D
pre-trained UNet and 3D UNet, so an ‘‘apple to apple’’
comparison can be made.

3) TRAINING
One goal of this work is to determine the relationship
between the amount of data (in this case, patients) and the
segmentation results. Patients were divided into training,
validation, and test sets to achieve this goal, following
train-test split strategy. The test set consists of 10 patients
whose segmentation (ground truth (GT )) can be seen in
Fig. 2. The number of training patients, N , increases in steps
of 10 in the range [15, 65], and the number of patients in the
validation set corresponds to 20% of N . That is, if N = 55,
there are 55 ∗ 0.2 = 11 patients in the validation set. The
same is truth for both A + C .A and C .A. Such studies are
not commonly found in the literature, however, they allow
to gain intuition about the number of data needed to obtain
quality coronary geometries. This is especially important
when dealing with hard-to-obtain data, such as clinical data.

In the case of 2D UNet from scratch and 2D EfficientUNet
N = 15 and N = 65 was considered, since its
implementation is intended only for comparison purposes.

4) IMPLEMENTATION
The implementation of the models is developed in Python
(v 3.7) [32], [33] and Tensorflow Keras API (v 2.6-tf) [29],
[34]. The loss function we used for the study is binary cross
entropy [34], [35], [36].

The problem of class imbalance has been tackled by
giving five times more weight to the vessel class than to the
background class, weighted cross entropy (focal loss). For
the optimisation of the models, the Adam algorithm [34],
[37] has been used. Convolutional kernel size is set to 3.
A MaxPooling layer follows the convolutional layer with a
stride of 2 and its followed by a ReLU activation function for
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FIGURE 3. Example grow-shrink algorithm. A) Result segmentation from UNet. B) Grow step. C) Shrink step.

both 2D and 3D networks. All information about the networks
structure can be found in Section S.I in Supplementary
Material.

Each training consists of 50 epochs. In order to avoid
overfitting, Early Stopping is used with patience = 5 and
monitor = val_loss (loss function evaluated on the validation
set).

E. POST-PROCESSING
Two algorithms were used to generate cleaner and more
connected structures. The first of them is based on the
removal of components not connected to the main structure
(islands) with values less than 50 voxels. This method will
be referred to as I in the following. Grow-shrink algorithm,
on the other hand, is applied with a width of 2mm (see Fig. 3).
Throughout the text, this method will be referred to as G.
These algorithms were applied sequentially in both I )-G) and
G)-I ) orders.

F. EVALUATION METRICS
The fit goodness of the networks considered was evaluated,
and, for that, 10 test patients were chosen (see Fig. 2).
It should be noted that their manual segmentation is
extremely detailed (very thin and distal vessels are included).
Furthermore, due to variations in image contrast and the
shape of the coronary artery tree, this test set is heterogeneous
in terms of geometric complexity.

The parameters chosen for the evaluation are well known
in the field of segmentation. These include true positives
(TP), false positives (FP), true negatives (TN) and false
negatives (FN). The following indicators were defined based
on these [17], [38]:

• Precision: TP/(TP+ FP).
• Recall: TP/(TP+ FN ).
• F1 score or dice similarity coefficient (DSC): is the
harmonic mean of precision and recall (TP/(TP+ 0.5 ∗

(FP + FN ))). It can also be expressed as 2 ∗ (Y ∩

Ŷ )/(|Y | + |Ŷ |). Where Y and Ŷ represent ground truth
and prediction, respectively, and Y , Ŷ ∈ {0, 1}.

• Fa1 score (F1 score attached): since we found false
positives isolated from the coronary structure in the
results, we define thisFa1 score in the sameway asF1 but

only taking into account those FPs that are in contact
with a TP. This quantifies how difficult it is to clean
the final result of the network if we want to obtain a
coronary tree without external structures. Moreover, it is
an indicator of oversizing, which is critical if the purpose
of coronary geometry is to calculate clinical parameters
such as FFR [5].

Another requirement for clinical use of the network-
predicted geometries is that the entire geometry is composed
by only one connected component (CC). As a consequence,
the number of connected components in the coronary regions
of interest is also calculated.

To complete the statistical study and visualise the perfor-
mance of the networks, Bland-Altman plots are included for
the area of the coronary geometry in each axial slice of the
volume (see Fig. S20 to Fig. S23 in SupplementaryMaterial).

G. LESION EVALUATION
This work includes an evaluation of the network prediction in
two stenosis diagnosed as severe by clinicians. This is critical
because the network’s accuracy should improve in the lesion-
affected regions.

This assessment compares the segmentation performed by
an expert (ground truth (GT)) to that predicted by the network
from a geometrical standpoint. Although other papers, such
as [39], assess lesions using the F1 score, a geometric and
visual assessment was preferred in this case because it is more
informative than the F1 score since over/undersized areas can
be seen and measured. The volume at the intersection and the
difference in the lesion region are provided, as well as their
graphical representation.

III. RESULTS
A. GEOMETRY PREDICTION
The network segmentation for test patient T001 is shown in
Fig. 4. It depicts how the outcomes change as the number
of training patients grows. In the instance of the 2D UNet,
it is clear that vessel detection improves while false positives
grow. The 3D UNet, on the other hand, starts with sliced
and basic segmentations and ends up recognising all of
the major vessels while keeping a cleaner segmentation.
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FIGURE 4. Example of predicted segmentations carried out by 2D UNet pre-trained and 3D UNet for test
patient T001 on aorta and coronary arteries (A + C .A) and coronary arteries only (C .A). Datasets were trained
with different number of patients (N). The validation set consisted of 20% of N . The last row shows the
results obtained after post-processing the image using the IG algorithm (first the small islands are removed
and then grow-shrink is applied).
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FIGURE 5. Parameter values of 2D UNet pre-trained and 3D UNet results on aorta and coronary arteries (A + C .A) and
coronary arteries only (C .A) datasets. The X-axis shows the number of patients used for the training set (N). On the
Y-axis, the value of the corresponding parameter. A) F1 score. B) F a

1 score. C) Recall. D) Recall in coronary arteries.
E) Precision. F) False positive to background class number of pixels ratio. G) Number of connected components in
coronary arteries.
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FIGURE 6. Segmentations of the coronary tree of Lesion 1. In red the manual segmentation performed by an expert.
(A) In blue the prediction performed by the 2D pretrained UNet, N = 65. (B) In green the prediction of the 3D UNet,
N = 65. The zoomed-in part shows the region of the lesion.

FIGURE 7. Segmentations of the coronary tree of Lesion 2. In red the manual segmentation performed by an expert.
(A) In blue the prediction performed by the 2D pretrained UNet, N = 65. (B) In green the prediction of the 3D UNet,
N = 65. The zoomed-in part shows the lesion region.

In addition, the segmentation for test patient T003 can be seen
in Supplementary Material (Fig. S5). Furthermore, the last
row shows the effect of post-processing. Structures become
cleaner and more connected while maintaining the quality of
the previously segmented vessels.

Fig. 5 shows the parameter values achieved for each type
of network and training. Errorbars with mean and standard
deviation represent the outcomes of the 10 test patients from
3 trainings with different data (all with the same number
of patients, N ), for a total of 30 values (see csv file in
Supplementary Material).

The first parameter to be addressed is theF1 score, which is
presented in Fig. 5.A. This is an indicator, in the range [0, 1],
of the similarity between two binary masks, where 0 implies
no match between the two masks and 1 a full match. In a
binary case, such as ours, it is equivalent to the DSC [17].

One item that strikes out are the numbers for A + C .A
training that are around 0.9 and fluctuate slightly with N .
This is because the aorta takes up a considerable portion of
the volume and is a structure that both networks recognise.
In particular, we always get numbers in the range [0.89, 0.95].
In the instance of C .A, there is no discernible pattern for the
pre-trained 2DUNet, which gives values around 0.7 for allN .
This is in contrast to the 3D UNet’s behavior, which exhibits
increasing values of the F1 score (from 0.53 to 0.75) as N
increases.

In Fig. 5.B, the F1 score values are shown when only the
FPs that are attached to the vessel are taken into account.
These results do not show a different pattern with respect to
Fig. 5.A, but they do show an increase of up to 0.2.
The Recall and Precision metrics are given to provide a

more precise picture of the network’s performance. Recall
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FIGURE 8. Segmentation prediction for test patient T002 with networks trained with aorta and coronary arteries (A + C .A).

FIGURE 9. Segmentation prediction for test patient T002 with networks trained with coronary arteries only (C .A).

tells us how much of the cardiac tree has been recognised
by the network. Fig. 5.C displays the outcomes. The same
pattern is found for both networks, an increased trend with
N in general and a superior outcome with 2D pretrained
UNet. We also notice the ‘‘aorta effect’’ (this refers to the fact
that the aorta is a large structure easily recognisable by the
network), having recall values greater than 0.8 when training
A+ C .A.
To avoid the ‘‘aorta effect’’ Fig. 5.D displays the Recall

values in the coronary arteries regardless of whether the
trained structure is A+C .A or C .A. The positive dependence

on N can be demonstrated for all eventualities in this case.
Mean values for the pre-trained 2D UNet with A+ C .A start
at 0.57 when N = 15 and rise sharply when N > 35,
reaching 0.93 when N = 65. When N ≤ 35, this identical
network trained for C .A exhibits values that are roughly 10%
higher than for A+C .A; for bigger values of N , it follows an
upward trend, reaching a mean value of 0.82 when N = 65.
Furthermore, whenN > 35, trainingA+C .A produces higher
outcomes than C .A.

The 3D UNet pattern is similar, albeit the Recall value is
lower than in the pre-trained 2D pattern. When training with
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the entire structure (A + C .A), there is a certain amount of
stalling around 0.5 when N ∈ [25, 45]. When N = 55,
however, this value is exceeded until it reaches 0.62. We can
see a growing trend for C .A until N = 55, when values
stabilise.

Furthermore, the network’s Precision is displayed in 5.E.
In the case of pre-trained 2D UNet with A + C .A,
a diminishing trend with rising N is observed (though it
always remains greater than 0.8). This is due to the rise in
FP (Fig. 5.F). When training C .A, the same thing happens,
but the mean values remain in the range [0.66, 0.8].
This contrasts with the stable mean values around

[0.96, 0.98] of the 3D UNet A + C .A. In the case of the
C .A, an ascending pattern of accuracy is observed up to N =

45 with a value of 0.84.
The number of connected components in the coronary

arteries was also counted. Figure 5.G displays the number
of connected components decreasing as N increases. When
N > 35, the pre-trained 2D UNet for A+ C .A undergoes an
abrupt change, as we go from CC > 80 to CC < 40. Indeed,
this is the first occasion that fewer connected components are
obtained than with C .A. The value of C .A falls but remains
within the range [50, 70]. The 3D network, on the other hand,
displays values below 50 with N < 45 and only surpasses
CC = 50 with N = 55. With N = 65, the 3D network with
C .Amaintaining steady values aroundCC = 30 and climbing
to CC = 46.

For this particular parameter, the result with post-
processing IG (post-processing GI shows a similar result
in this case) for N = 65 is also included. Note that,
the number of connected components is largely reduced,
bringing us below 15. For the rest of the parameters, the
results with the post-processing are not shown as they do
not suffer a significant variation with respect to the original
ones. However, they can be seen in Fig. S6 and Fig. S7 in
Supplementary Material.

B. COMPARISON WITH OTHER NETWORKS
Fig. 8 and Fig. 9 illustrate the prediction of the 4 networks
(2D UNet from scratch, 2D pre-trained UNet, 2D pre-trained
EfficientUNet and 3D UNet) for test patient T002, for
A + CA and C .A only, respectively. Similar figures for test
patients T005, T006 y T007 are in Fig. S8 to Fig. S13 in
Supplementary Material.

The bar charts and concrete value of the parameters can
be found in Fig. S14 and Fig. S15 and the parameters table
Supplementary Material, respectively.

When the number of data available is limited (N = 15), the
recognition of A+C .A geometry for 2D without pre-training
becomes particularly difficult. It manages to recognise part
of the aorta and coronary arteries but does not distinguish
them from other bright structures such as ribs or myocardium.
However, the pre-trained networks (2D pre-trained UNet
and pre-trained EfficientUNet) show complete and clean
geometries (absence of false positives), rising its F1 score

TABLE 1. Comparison of results between the segmentation predicted by
the corresponding network and the manual segmentation for lesion1. The
first row shows the difference between the network volume and the
manual segmentation volume, the second row shows the percentage of
volume at the intersection over the manual segmentation volume, the
third, fourth and fifth rows show DSC, precision and recall parameters,
respectively, between the network volume and the manual segmentation
volume. Yellow shows the manual segmentation (ground truth) and blue
shows the AI result. The corresponding networks are 2D UNet pre-trained
and 3D UNet, trained with N = 65, for aorta and coronary arteries
(A + C .A) and coronary arteries alone (C .A).

to 0.9. In particular, the EfficientUNet has all major vessels
complete.

The 3D UNet shows a similar behaviour to that of the 2D
UNet, with partial structure recognition. Nevertheless, it has
an accuracy value around 0.9, as opposed to < 0.2 for the 2D
UNet. This implies that the structures it recognises are indeed
the ones of interest.

On the other hand, when the number of patients is
high (N = 65), the 4 networks show similar results.
Even the 2D from scratch is competitive with the pre-
trained ones, improving by 5% the results of the 2D
pre-trained UNet, in terms of precision and recall. It also
shows more connected vessels. On the other hand, the 3D
UNet stands out for its low number of false positives and
precision.

The training for C .A shows a different behaviour, even
with N = 15, all networks are able to recognise the main
vessels (F1 > 0.6). Increasing the number of patients to
N=65 reduces the number of false positives and recognises
vessels with higher accuracy and connectivity.

C. STENOSIS PREDICTION
Expert cardiologists determined the accuracy of stenosis
segmentation for two calcium-free lesions. Fig. 6 and Fig. 7
show the lesion location and prediction of the neural networks
(2D pre-trained UNet and 3D UNet) for N = 65. The most
severe lesion is lesion1 (Fig. 6).
Table 1 shows a comparison of the manual segmentation

of the first lesion. As shown, all training types successfully
identify the lesion, with the exception of 3D UNet C .A,
that cuts the vessel at its narrowest point. The lesion is
overestimated by the pre-trained 2D UNet.
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TABLE 2. Comparison of results between the segmentation predicted by
the corresponding network and the manual segmentation for lesion2. The
first row shows the difference between the network volume and the
manual segmentation volume, the second row shows the percentage of
volume at the intersection over the manual segmentation volume, the
third, fourth and fifth rows show DSC, precision and recall parameters,
respectively, between the network volume and the manual segmentation
volume. Yellow shows the manual segmentation (ground truth) and blue
shows the AI result. The corresponding networks are 2D UNet pre-trained
and 3D UNet, trained with N = 65, for aorta and coronary arteries
(A + C .A) and coronary arteries alone (C .A).

In the case of lesion2, the findings are shown in Table 2.
The pre-trained 2D UNet overestimates the lesion region
significantly, which lowers the DSC below 0.8.

D. LOSS FUNCTION
In the field of medical image segmentation, loss functions are
usually based on cross entropy or the dice coefficient [36],
[40], [41]. In this study, a test was performed to see the
behaviour of the 2D pre-trained UNet with the loss function
dice coefficient (N = 65 and A+C .A). This implementation
did not generate significantly better results in the geometry of
interest. However, it does show a reduction in the number of
false positives in agreement with [40] and [41]. (See Fig. S28
and Table S1 for details).

IV. DISCUSSION AND CONCLUSION
The way in which this article addresses the challenges
exposed in the Introduction (Section I) can be summarised
as follows:

1) The lack of data, inherent to these type of studies,
is considered and its effect analysed by studying the
variation of the network performance as the number of
data considered is increased.

2) Class imbalance is mitigated by focal loss. That is,
more importance is given to the error in the vessel class
than in the background class.

3) A comparison is made between the performance of
a network with a very low computational cost, a 2D
UNet with a pre-trained encoder in ImageNet [24],
and a network with a high computational cost, a 3D
UNet. In addition, in the comparative study, a 2D
UNet without pre-training and an EfficientUNet are
included to demonstrate the power of this architecture
for the segmentation of coronary structures. Note
that this manuscript is not intended to be a full

comparison with all the architectures available but,
rather, a demonstration that coronary tree segmentation
is accessible with these architectures and the suitability
of each one.

2D and 3D UNet exhibit outstanding and competitive
outcomes in comparison to those published to date. Our
technique yields F1 score (DSC) values of more than 93%
for both 2D and 3D Unet in A + C .A. and 75% in C .A
(versus 91.20% and 88.80% [12]). It should be emphasised
that very detailed segmentations are used for both training
and testing in the current study, which may result in lower
F1 score values in C .A. due to the difficulty in segmenting
thin and distal vessels. Nevertheless, the results produced
very detailed coronary structures with high applicability in
the cardiology field.

The 2D UNet with a pre-trained encoder and millions of
images exhibits less volatility in the parameter values as the
number of patients increases. In reality, it is already possible
to reproduce a coronary tree with a small set of data (N = 15).
This contrasts with the 2D UNet from scratch, which with a
low number of patients fails to reproduce the basic structures
(A + C .A). Despite its cheap computational cost, it is thus
an architecture with considerable potential. The influence
of different backbones has also been highlighted. In our
case, with the same configuration, the 2D EfficientUNet
shows less overestimated andmore connected vessels than the
2D pre-trained UNet.

The 3D UNet, on the other hand, is more dependent on
the number of training data and exhibits cleaner and more
connected components structures despite not recognising as
many distal vessels.

Furthermore, we show the effect of increasing the size
of the training data set. In terms of structure recognition,
we observe a positive dependence in the 2D UNet case.
However, the number of false positives rises. This is not a
major issue because the majority of them are not attached to
the vessels and can be easily removed in the postprocessing.
It is also noticed that after training using C .A., the number
of false positives is lower, which is consistent with [12]. It is
probable that reducing the focal loss impact as N increases
aids in noise removal. Reduction in the number of false
positives can also be achieved bymodifying the cost function.
This has been tested with the dice coefficient and a reduction
of up to an order of magnitude in FP has been observed.
However, it also leads to a decrease in prediction accuracy
in vessels.

In addition, an evaluation of the algorithms for the
detection of lesions (stenosis) is also made. Although both
approaches recognise the presence of lesions, it has been
observed that 2D UNet overestimates more. In the case of the
3D UNet, training using A+C .A. results in higher accuracy.
As a consequence, the computationally intensive strategy is
the more accurate in terms of lesions.

The limitations of this study include the time-consuming
effort of collecting and segmenting patients, as well as
the subjectivity introduced by the expert performing the
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segmentation. Furthermore, the lack of a database and code
makes comparison with other studies challenging.

In summary, it has been demonstrated that artificial
intelligence can be a very useful tool for clinical care and
diagnosis. This provides the possibility of using a user-
independent, fast and accurate method. Furthermore, the use
of transfer learning for CCTA is a novelty and allows faster
training with less data, while maintaining a certain quality in
the segmentation. This is of great importance when working
with medical imaging, and especially CT, as images are
difficult to segment manually. Future work could incorporate
transfer learning in the case of a 3D UNet, which is difficult
to perform due to data scarcity, as well as calcified lesions.
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