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ABSTRACT In recent years, the public AC electric vehicle (EV) charging network in the United Kingdom
(UK) has experienced significant growth, more than doubling in size. However, there remains a significant
lack of information regarding usage patterns, which hampers decision-making for future infrastructure
planning. This study addresses this gap by presenting a statistical analysis based on data from nearly twelve
thousand EV charging sessions. The data was collected from 595AC charging sockets, with 85% operating at
7 kW and the remaining 15% at 22 kW, throughout the UK between April 2022 and July 2022. The analysis
focuses on key factors that define the primary characteristics of the current public EV charging ecosystem,
including utilisation rates, arrival-departure times, sojourn durations, energy transfer, and overstay durations.
Several important observations are made, such as the variability in utilisation rates, factors influencing
overstay periods, and peak demand periods. With two case studies, the potential role of smart charging
in leveraging EV flexibility is shown by lowering and shifting the peak EV loads. The findings of this study
have significant implications for the planning and efficient allocation of investments to expand the charging
infrastructure. By gaining a better understanding of the current charging ecosystem, informed decisions can
be made to optimise the usage and expansion of EV charging facilities.

INDEX TERMS Electric vehicles, AC charging, statistical analysis, smart charging, overstay.

I. INTRODUCTION
There has been an emphasis on the move towards electric
vehicles (EVs) as a means of decarbonising the road transport
sector. This sector generates nearly one-fourth of the global
greenhouse gas emissions [1]. In parallel, regional EV mar-
kets are expanding at a faster pace driven by subsidies and
policies that will see a ban on the sale of new petrol and diesel
cars within a decade (e.g., UK, France, and Germany [2]).
The EV market is also driven by falling lithium-ion battery
costs and improvements in battery technology that supports
longer all electric range [3]. EV sales are passing key tipping
points in various major economies. In the US, EV sales have
surpassed 5% of new vehicle sales [4]. In the UK, EV sales
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represented nearly 17% of all sales in 2022, exceeding the
sales of new diesel cars for the first time [5]. According
to Statista Research [6], EV sales (both battery and plug-in
hybrid) are expected to reach 16 million per year by 2027 and
the resulting market volume is projected to reach 858 billion
USD by the same year. In Table 1, global EV market and
annual sales are presented.

Despite achieving multiple milestones in both of these
areas, a number of studies have shown a perceived lack
of public infrastructure and gaps in end-user education in
different parts of society [7]. Previous research indicates that
domestic (off-street) charging is highly relevant for early
adopters; however, it is not attainable for driver groups living
in buildings with multiple occupancy (e.g., flats or tene-
ments) who rely on public infrastructure [8], [9]. Therefore,
with no immediate change in the incumbent building stock
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TABLE 1. Global electric vehicle and charging station market analysis (2016-27) [6].

anticipated, the need for accessing public charging stations
will be more important over the next decade. In Table 1,
global charging station installation statistics are provided for
all charger types. It is noted that the pace of EV sales is
significantly higher than the installation rates of charging
stations. This results from charger deployments requiring a
number of steps to be completed prior to installation (i.e.,
grid connection application, siting permissions), leading to
significantly longer times. This issue is reported in California,
where a sizeable portion of EV owners switch back to petrol
vehicles as the pace of charging infrastructure expansion
cannot keep up with the EV adoption rates and provide the
coverage and capacity needed [10].

Nowadays, most public chargers are operated by private
businesses. Therefore, the economics of charging stations,
which are determined by utilisation rates, usage character-
istics, and potential queuing times, need to be carefully
investigated. The economics of charging stations further
depend on charging types: AC (7 kW (single phase) and
22 kW (three-phase), DC (50 kW and above), and associated
infrastructure investments. For instance, the required invest-
ments increase exponentially for deploying fast DC chargers
due to the high upfront cost associated with complex power
electronics components and associated protection equipment,
along with civil works required to bring a 3-phase elec-
tricity connection to the site [11]. Hence, fast DC chargers
require higher utilisation rates to be profitable [4], [12].
According to [4], fast DC charging is expected to be prof-
itable after 2025 due to low utilisation rates. For Level
2 or 7 kW AC chargers, amortizing the investments is
more achievable as the capital investments are significantly
lower than DC chargers, and grid reinforcements are less
urgent.

Over the next decade, significant investments will be
made to deploy charging infrastructures at scale. The suc-
cess of such investments requires data-driven analysis of the
current charging network. To this end, it is critical to statis-
tically model and characterize EV charger usage patterns to
understand current usage patterns, utilisation rates, and peak
consumption hours, and in doing so, inform decision-making.
The contributions of this paper can be listed as follows:

• We conduct a statistical analysis of nearly twelve thou-
sand charging sessions from 595 public AC chargers
(7 kW and 22 kW) in the UK, specifically between April
and July 2022.

• By utilizingmachine learning-based clusteringmethods,
we characterize EV charging behavior based on the
times of arrival and departure, allowing us to identify
distinct behavioral clusters.

• We systematically analyze key charging behaviors, such
as utilisation rates, arrival times, sojourn durations, and
overstay durations (instances when the vehicle remains
plugged in but not actively charging). We conduct these
analyses separately for weekends, weekdays, and differ-
ent charger types.

• To understand the factors influencing overstay periods,
we develop a metamodel based on response surface
methodology, taking into account factors such as charg-
ing cost and arrival time.

• We present two case studies to show how smart charging
can be used to exploit EV flexibility (due to overstay
periods) to reduce and shift EV charging demand.

To the best of the authors’ knowledge, this is the first study
conducted for the UK and will fill a critical research gap
by presenting a statistical analysis of public AC chargers in
the UK market. UK and will fill a critical research gap by
presenting statistical analysis of public AC chargers in the
UK market.

The rest of this paper is organized as follows: In the
next chapter, a detailed literature analysis is presented.
In Section III, the dataset and its attributes are described.
In Section IV, statistical analysis for charger utilisation,
session clustering, arrival-departure analysis, sojourn dura-
tions, and energy transfer is presented. In Section V, analysis
for overstay is investigated, which involves a metamodel
and a case study with smart charging. The last section
provides conclusions, discussions, and limitations of this
study.

II. LITERATURE REVIEW
There has been a growing body of literature on data
analysis and statistical modeling of EV charging sessions
for different countries/regions. In [13] and [14], 390k
charging session data collected from public chargers in
the Netherlands between 2011-15 are analyzed. Using the
DBSCAN algorithm, first, the data is clustered into three
distinct clusters (park to charge (62.8%), charger near home
(27.8%), and charge near work (9.4%)) based on arrival and
departure hours. In the dataset considered in this paper, a sim-
ilar clustering analysis is carried out. In this case, however, the
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data is dominated by a single cluster (daytime charging 82%)
as the dataset does not contain records from work and home
charging chargers. When the determined empirical proba-
bility density functions are compared with violin plots of
‘‘charge near home’’ and ‘‘charger near work’’ datasets, both
analyses show two peak charging periods (morning and after-
noon). Similar to our study, authors also analyzed sojourn
and idle times to quantify the smart charging potential. In the
literature, various terms (idle, overstay, charge idling) are
being used to show the amount of time an EV is plugged and
not charging. In this paper, these events are referred to using
the term overstay, which is a growing concern at the moment
for charge point operators.

Overstay analysis is presented in a number of studies [4],
[15], [16]. In [4], the overstay durations are presented as a
percentage of sojourn durations for different locations. It is
reported that for Level 2 (6.6 kW chargers), the overstay
percentages are 49%, 30%, 61%, 50%, 76%, 37%, 44%, and
51% for office, retail, municipal, medical, parking lot, leisure,
transit, and hotel venues, respectively.WhenDC fast charging
is compared, these values are all less than 11% for the same
venues. In [15], the EV charging station capacity problem
with overstaying customers is studied. In the proposedmodel,
the station is assumed to operate under heavy traffic, and
overstaying EVs are interchanged with waiting customers
to increase EV charger utilisation. The model is applied to
real-world data collected from parking lots in San Diego, CA.
It is reported that while the mean charging duration is 2 hours,
90% of the drivers tend to overstay for 75% of their sojourn
duration. In [16], overstay durations are aimed to be shaved
by pricing schemes to induce human behavior and reduce
station congestion. In operational fast charging applications,
the overstay issue is tackled through myopic prices such that
a fee is charged after a short grace period. For example, the
pricing tariff for Tesla Superchargers is 1 USD/min when the
station is fully occupied [17].

Additionally, a study conducted in Canada [18] analyzed
approximately 7,000 charging events. The results revealed
that the median number of charges per 7 kW AC charger
was 0.4, and the median energy transferred during each
charging event was 6.6 kWh. Another study conducted in
Western Australia [19] examined the usage of both AC and
DC chargers. The analysis demonstrated that the number of
charges per day for both AC and DC chargers was lower
than 0.4. Additionally, the study found that similar to our
findings, a significant portion of charging sessions were
extended beyond the required duration. These extended peri-
ods accounted for nearly half of the overall charging duration.
In a separate analysis presented in [20], data from fast DC
chargers in the UK and USA were analyzed. Another study
conducted on a major US university campus during the early
years of EV adoption (2011-13) [21] focused on statistical
analysis of EV charging events. The study revealed that
the extended periods of charging sessions were considerably
higher during that time period, indicating a similar trend to

our findings. This was attributed to the availability of free
parking provided to EVs at that time.

In [22], the statistical charging analysis of 19,617 charging
sessions of 17 EVs at 19 chargers (level 1, 2, and 3) at the
University of California Los Angeles campus is analyzed.
The findings obtained from EV charging events indicate that
90% of these events involved a transfer of less than 12 kWh.
In terms of the duration of EV plug-in time, it was observed
that 67% of the time, EVs were connected for less than
4 hours, while 87% of the time, EV users plugged in their
vehicles for less than 7 hours. In [23], domestic EV charg-
ing and the application of smart charging were examined.
This study further investigates how EV charging impacts
the power systems by examining peak demand. The paper
encompasses six different use cases, each involving different
optimization signals and incentives for drivers. The results
of the study indicate that these optimization techniques are
successful in redistributing the charging load from periods
of high grid costs and congestion, particularly during the
early evening, to times of lower grid costs, such as the early
morning and midday. The study reveals that approximately
15-20% of charging was shifted away from specific hours,
while 20-30% of charging was shifted into specific hours,
showcasing the effectiveness of the most impactful use cases.
In [24], a predictive methodology, based on demographic
data, is developed to understand the utilisation of chargers
(domestic, work, public). It is concluded that most drivers
would prefer to charge at home,while only 1.7%of the drivers
would prefer to use a public AC charger.

Over the last decade, there has been a well-established
literature on the impacts of electric vehicle charging on power
grids, which is documented in several review papers [25],
[26], [27]. The impact studies can be grouped into two cat-
egories. The first group focuses on power quality and asset
impacts, such as harmonics, voltage levels, phase unbalances,
and transformer aging, resulting from EV charging at the
distribution level. For additional perspectives, the studies
discussed in [28] and [29] specifically investigate instances
of thermal limit violations and voltage dips that occur when
multiple EVs are charging. On the other hand, reference [30]
demonstrates that with a 50% EV penetration rate (half of the
households owning EVs), substantial infrastructure upgrades
would be necessary to accommodate the increased demand
for EV charging. Furthermore, reference [31] examines the
impact of EV charging on a distribution transformer serving
six households. The results of high-resolution simulations
indicate that if households begin to adopt multiple EVs,
the local transformer may become overloaded. To address
negative impacts, smart charging frameworks and/or storage-
based solutions are considered [32].

The second group of studies focuses on the impacts of
EV charging on peak electricity generation for a specific
region or country. Probabilistic methods, such asMonte Carlo
simulations and agent-based modeling, are often employed
to account for various parameters, including charging times,
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charger types, EV demand, and vehicle types [33], [34]. The
aforementioned studies often assume a high penetration of
EVs and drivers following certain statistical behaviors based
on time-of-use surveys. Consequently, the results of this study
can be used to provide more realistic assumptions regarding
public EV charging behaviors, such as charging demand,
arrival, and departure times.

Statistical analysis of public chargers plays a crucial role
in modeling and forecasting the increase in EV adoption rates
resulting from investments in EV infrastructure. [35] demon-
strates that establishing a charging infrastructure can lead to
a 200% increase in EV ownership rate in rural Norway over
a five-year period. Similarly, [36] shows that greater access
to home charging reduces the reliance on public charging.
This aligns with our own findings presented in later sections,
where we highlight low utilisation rates (less than 5%) due to
a high percentage of customers utilizing home charging.

III. DATASET
This paper utilizes data obtained from a prominent charge
point operator’s network in the United Kingdom, consisting
of both 7 kW and 22 kW chargers. The dataset encompasses
approximately twelve thousand charging sessions conducted
between April 1, 2022, and July 31, 2022, throughout the
UK. It is important to note that the majority of chargers are
situated outdoors, except for a small percentage located in
multi-storey car parks. Furthermore, no significant weather
events occurred during this period. Specifically, the mini-
mum temperatures recorded in the UK during April, May,
June, and July were 3.5, 7.8, 9.3, and 11.8 degrees Celsius,
respectively. Similarly, the maximum temperatures recorded
during these months were 12.6, 15.9, 18.6, and 21.3 degrees
Celsius [37]. Therefore, weather conditions did not affect
customer demand. The charge point network consists of
370 unique charge points, each comprising one or more
charging sockets. Among these, there are 505 7 kW charging
sockets and 90 22 kW rapid charger sockets. These chargers
are deployed across various locations in the UK, with a total
of 156 different addresses, including major cities such as
London, Glasgow, York, and Birmingham. The overall geo-
graphical distribution of the chargers is illustrated in Figure 1.

A. DATASET ATTRIBUTES
For each charging session the dataset includes the following
parameters:

• A unique Session ID is assigned for each session.
• Charging Power is either 7 or 22 kW as described above.
• Session Start Date and Time shows when the vehicle is
plugged-in.

• Session Stop Date and Time shows when the vehicle
leaves the charger.

• Duration attribute shows the total duration the vehicle
spends as plugged in.

• The amount of energy data is reflected via Total Energy
attribute (in kWh).

FIGURE 1. Location of chargers in the UK.

It is noted that the data for Duration are less than or equal
to the total charging duration, as the vast majority of vehicles
overstay after completion of charging.

IV. EV CHARGING DEMAND ANALYSIS
This section presents the probabilistic analysis of EV charg-
ing demand across the charging network. As a start, the
number of daily charging events from April 1, 2022 until July
31, 2022 is presented. It is highlighted that not all chargers
were active since the beginning of the study, hence active
charger numbers are also presented in Figure 2. It can be seen
that the charging network has almost doubled in three months
and daily charge events have significantly increased in line
with this.

A. CHARGER UTILISATION
To better analyse EV charging habits, the charger utilisation
rates are analysed. A utilisation rate ui of an arbitrary charger
i, takes values between 0% and 100%, is defined as

ui =

∑
jDj
Ti

, (1)

where Dj is the duration of EV j connected to charge i and Ti
is the total duration of when charger i is operational. All Dj
and Ti values are obtained from the data set and are converted
into hours. The utilisation rates for 7 kW and 22 kW chargers
are further differentiated because rapid chargers have shorter
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FIGURE 2. Number of daily chargings across the charging network.

TABLE 2. Twelve-month utilisation rates (%) of AC chargers (7 and
22 kW) across Europe (source: [38]) and 2.5 years data for the USA
(source: [4]). UK data is four months.

charging sessions. Box plots for utilisation rates are pre-
sented in Figure 3. From this figure, the following results are
obtained. The mean and median utilisation rates are 4.78%
and 2.2% for 7 kW chargers, respectively. While these are
4.38% and 4.15% for 22 kW chargers. Note that in industry
practice, the first 90 days of a charger are often considered as
the ‘‘get to know’’ period and chargers which are operational
for less than 90 days are not taken into account. Next, the
chargers which are operational for less than 90 days are
removed and the utilisation rates are calculated as follows.
The mean and median utilisation rates increase to 5% and
4.85%, respectively for 7 kW chargers and to 4.45% and
2.56%, respectively for 22 kW chargers. In Table 2, utilisation
rates of AC (<22 kW) chargers are presented. The data
for five countries are collected from 12 thousand charging
stations for 12 months (see [38]). Comparing our results
with other countries given in Table 2 with high EV sales
is critical to understand driver charging behavior in public
charging places based on different demographics and regions.
For instance, in Finland, access to a dedicated charger rate
is lower than the UK [39] and this is reflected as higher
usage of AC chargers. Similarly, the public DC charging is
highly utilised when compared to AC charging in the US [4].
Such findings could provide useful insights for the UK case
when people in different demographics purchase EVs (e.g.
no dedicated charging). At themoment, it can be seen that UK
utilisation rates, based on four months data, are slightly lower
than European counterparts and higher than the US average.

The results for number of charging sessions per charger
per day are presented in Figure 4. The median values are
0.12 and 1.39 for 7 kW and 22 kW, respectively. In [4],

FIGURE 3. Utilisation rates for chargers. The bottom and top of each box
are the first (25th percentile) and third quartiles (75th percentile) of
charger utilisation. The distance between the bottom and top of each box
is the interquartile range. The red line in the middle of each box is the
median (second quartile or 50th percentile), while the dotted redline
shows the mean value.

FIGURE 4. Number of chargings per charger per day.

a similar analysis is presented for a charging network in the
US, and it is reported that the number of charging per charger
per day is 0.42 for Level 2 chargers (equivalent to 7 kW
chargers) and 0.69 for fast DC chargers (50 kW). One of
the primary reasons for low utilisation rates is the fact that
most of the early adopters in the UK have access to private
garage or driveway (urban (72%), town/fringe (72%), and
rural areas (93%)) as reported from a recent survey [40].
Detailed analysis of charging habits of EV drivers in the UK
are presented in Table 3 (based on 1002 respondents). It can
be seen that only 8% of the EV owners use public charger
once or more than once a day. As a direct consequence, public
chargers are underutilised.

B. SESSION CLUSTERING
In this section, we analyse the charging sessions to study
driver behaviour in terms of arrival and departure times. Note
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TABLE 3. Frequency of EV owners charging away from home in the
UK [40].

that a charging session has three parameters:

Sojourn session ≜ δsojourn = tdeparture − tarrival (2)

Charging session ≜ δcharging = tcharging−end − tarrival (3)

Overstay ≜ δoverstay = δsojourn − δcharging (4)

Sojourn times given in (2) are directly calculated from
our dataset using Session Start (tarrival) and Stop times
((tdeparture). Duration of charging sessions, given in (3), are
estimated by assuming that an EV starts charging as soon
as it is connected to a charger. Then, charging duration is
calculated by dividing the Total Energy attribute by the rated
power of the charger (7 or 22 kW). An overstay period, given
in (4), is calculated by subtracting the corresponding charging
session from the corresponding sojourn duration. Note that
this approach has limitations because, due to efficiency losses
and additional limitations of on-board chargers, the actual
charging rate could be lower than the rated power. Therefore,
actual charging sessions could be slightly longer than our
calculations. Nevertheless, the proposed methodology could
easily be adjusted if instantaneous power data is accessed and
more accurate results can be calculated.

In order to examine the temporal characteristics of sojourn
durations, we cluster sojourn sessions by arrival and departure
times. In the field of Machine Learning, there are variety of
clustering algorithms which are differentiated based on the
approach to process the data (partitioning, hierarchy, density,
and distribution, see entire list [41]). In related literature [13],
[14], DBSCAN (density-based clustering algorithm) is used
to cluster EV arrival-departure times. DBSCAN can iden-
tify arbitrary shape and size clusters without specifying the
number of clusters as opposed to k-means orG-means cluster-
ing algorithms. Moreover, DBSCAN is well suited to tackle
irregularly shaped clusters and outliers which are caused by
long parking durations. Therefore, DBSCAN is employed to
cluster arrival-departure patterns.

The DBSCAN algorithm assigns an arrival-departure pair
to a cluster (e.g. day-time charging) if it is in proximity to
many other points in that cluster. The algorithm takes two
input parameters: ϵ (eps), which specifies the radius of the
region, and minPts, which indicates the minimum number of
points needed to create a dense area. The DBSCAN algorithm

FIGURE 5. Session clustering of EV charging sessions. Three clusters have
been identified: short overnight (0.9%), daytime charging (82%), and long
overnight charging (17.1%).

works as follows: Initially, D random points are chosen from
the dataset. All the points within the ϵ radius of the selected
points are considered core points. The number of core points
grows as more points are added until a border condition is
met. Border points are those with at least one core point
within their ϵ radius, but do not have the minimum number
of minPts to extend the cluster. These border points serve as
the boundaries of the cluster. Any points that are not core
or border points are classified as noise. The disadvantage
of DBSCAN is its high sensitivity to the input parame-
ters (ϵ, minPts). Therefore, input parameters are empirically
obtained from the dataset (ϵ = 1.4, minPts=60;).
In Figure 5, the result of the DBSCAN algorithm is

presented. Three different clusters are identified: 0.9% of
sessions are short overnight charging, 82% of sessions are
daytime charging, and 17.1% of sessions have long overnight
charging. This is mainly because most charge points do not
allow long parking as they are located in public locations.
Moreover, compared to study presented in [13], the dataset
considered in this paper contains less ‘‘park to charge’’ or
‘‘charge at work’’ sessions both of which takes 10+ hours.
Since sessions clusters are dominated by daytime charging,
the rest of our analysis is applied to all dataset rather than
specific clusters.

C. ARRIVAL-DEPARTURE ANALYSIS
Statistical analysis of EVs’ arrival and departure processes
to a charger is critical to understand overall EV demand
profiling and designing larger-scale charging systems. The
arrival process is often probabilistic in nature and refers to
key parameters such as time distribution of EV arrivals and
statistical behaviour of inter-arrival times. Departure process
is related to the duration of time a vehicle is connected to a
charger, hence refers to statistical distribution of a ‘‘server’’
becoming available. It is noteworthy that EVs are not always
charged during the time they are connected, and overstay
analysis will be discussed in the next section.
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FIGURE 6. Arrival and departure analysis for weekday and 7 kW chargers.

Arrival and departure times are examined based on charger
type (7 kW and 22 kW) and weekday/weekend due to differ-
ences in their respective charging behaviours. For all cases,
the analyses are presented in a raincloud plots which combine
probability density functions (PDF), jittered raw data, and
box plot [42]. In Figure 6, analysis for weekday and 7kW
charging network are presented. It can be seen that there are
two peak periods during the day around 8 am and 5:15 pm,
potentially representing commute to and fromwork or school.
The arrival density between the two peaks is fairly uniform,
and half of the arrivals occur between 8:15 pm and 5 pm.
Departure behaviour is different from the arrival as most of
the plugged-in vehicles leave in the afternoon with a peak
departure time of 15:45 pm. There is also a visible departure
peak in the morning around 6:30 am, representing overnight
chargings.

In Figure 7, the analysis discussed above is extended for
weekends (7 kW chargers). It can be seen that the charger
usage characteristics change. There is a single peak hour
around 10 am, while half of the arrivals occur between 9:15
am and 4:45 pm. Departures, on the other hand, have the
highest density between 10 am and 2:45 pm. The number of
departures between 12 am and 4 am is significantly lower
when compared to weekday, indicating tendency for long
overnight charging.

Our analysis is extended for 22 kW chargers and results are
presented in Figures 8 and 9. It can be seen that the daytime
charger access characteristics is similar to 7 kW charger
case. However, box plots show that the amount of overnight
charging (11 pm to 6 am) is very low when compared to 7 kW
chargers as the charging session is shorter.

In literature ([43], [44]), charging stations with multiple
sockets are often modelled as a queuing system. In such
cases, the distribution of inter arrival times and service dura-
tions determine the type of queue (e.g. Markovian queues)
and associated performance metrics (e.g. waiting times etc.).
For instance, the literature predominantly assumes that inter
arrival times of EVs follow an exponential distribution. This
is mainly because the exponential distribution has mathemat-

FIGURE 7. Arrival and departure analysis for weekend and 7 kW chargers.

FIGURE 8. Arrival and departure analysis for weekday and 22 kW
chargers.

FIGURE 9. Arrival and departure analysis for weekend and 22 kW
chargers.

ically tractable properties which enables us to obtain closed
form expressions for station parameters. On the other hand,
to model a charging station with a queue model, the inter
arrival times should be relatively short. Otherwise, the station
operator would not experience issues related to congestion
and queuing. Therefore, inter arrival times data longer than
60 minutes are filtered and distribution fitting is applied.
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FIGURE 10. Distribution fitting of inter arrival times (0-45 minutes).

In Figure 10, the results are presented for maximum inter
arrival durations of 45minutes. It can be seen that exponential
inter arrival times assumption is reasonable acceptable given
high accuracy in fitting. A goodness of fit is carried out using
Chi-Squared test which provides a measure of how far the
observations are from the expected data. This is calculated
by

χ2
=

∑
(
Observed − Expected

Expected
), (5)

where the sum is over all possible values. The Chi-square
(χ2) statistic value is 14.4 and p-value is 0.27. Moreover,
the λ parameter is 5.7 meaning that average inter arrival
time is 1/λ = 18 minutes. Note that λ denotes the mean of
Exponential distribution.

In Table 4, a more detailed analysis is presented for three
different inter arrival intervals. It can be seen that for up to
30 and 60 minutes intervals, the best distributions areWeibull
and General Gamma. In this table, the best distribution and
the exponential distribution cases are presented and com-
pared.

D. SOJOURN DURATIONS
This section presents the analysis for sojourn duration which
is defined in (2). The raincloud plots for 7 kW and 22 kW
chargers are presented in Figures 11 and 12. For 7 kW charg-
ers, the results show that EVs stay connected to a charger
longer in weekdays than weekends. The primary reason is the
fact that weekday driving distances are higher than weekends,
thereby the energy needs change accordingly [46]. Figure 11
also shows that there are more overnight charging events on
weekdays than weekends. This can also be observed from the
quartiles. On weekdays, the first, the second, and the third
quartiles are 2.05, 3.95, and 8.82 hours, respectively, while
25% of the sojourn durations are higher than 8.82 hours.
On weekends, these quartiles are 1.4, 2.8, and 7.4 hours,
indicating a noticeable reduction.

FIGURE 11. Sojourn durations for 7 kW chargers.

FIGURE 12. Sojourn durations for 22 kW chargers.

The sojourn times for 22 kW chargers are significantly
shorter than 7 kW chargers due to higher power rating. For
weekdays, the first three quartiles are 1.3, 1.9, and 3.1 hours,
while weekend sojourn times are, in parallel to 7 kW charger
case, shorter, and the first three quartile values are 0.89,
1.8, and 3.1 hours, respectively. These values are critical in
designing charging stations and quantifying their impacts on
the power grid.

E. ENERGY TRANSFER
The statistical analysis of energy transfer (in kWh) per charg-
ing session is a critical to understand potential impacts of
EVs on grid and predicting local peaks. Our analysis is car-
ried for weekend and weekdays and for both charger types.
The results for 7 kW chargers are presented in Figure 13.
It can be seen that for weekdays, first, second, and third
quartiles are 7.04 kWh, 12.44 kWh, and 26.1 kWh, respec-
tively. The results for weekend analysis is similar and first,
second, and third quartiles are 6.96 kWh, 11.68 kWh, and
24 kWh, respectively. Due to privacy policy, we do not have
access to vehicle types, initial and final state of charge levels.
Nevertheless, with the increasing capacity of electric vehicle
(EV) batteries (30+ kWh), a significant portion of charging
sessions (approximately 75% of all sessions) corresponds to
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TABLE 4. Fitted distribution for various inter arrival times. λ is the mean of Exponential distribution. α and β denote statistical distribution parameters
for Weibull and Gamma distributions [45].

FIGURE 13. Energy transfer analysis for 7 kW chargers.

FIGURE 14. Energy transfer analysis for 22 kW chargers.

an energy demand that is adequate for charging only a portion
of the battery, rather than reaching a full 100% state of charge.
This is also because our dataset does not include domestic or
workplace charging. Hence, energy transfer is limited by the
parking duration.

In Figure 14, energy transfer analysis is presented for
22 kW chargers. It can be seen that for weekdays, first,
second, and third quartiles are 7.42 kWh, 12.26 kWh,
and 21.1 kWh, respectively. The results for weekend anal-
ysis is similar and first, second, and third quartiles are
7.08 kWh, 12.06 kWh, and 19.7 kWh, respectively. It can

FIGURE 15. Overstay (hr) analysis for 7 kW and 22 kW chargers.

be seen that energy transfer characteristics is consistent
for both charger types and weekday/weekend charging ses-
sions. From Figure 14, the following observations can be
made. The energy demand of 22 kW chargers show a
similar usage pattern as 7 kW chargers. This is mainly
because the charging rates are limited for some customers
and EVs are charged with lower than 22 kW. More-
over, 22 kW chargers are primarily used to complement
domestic charging. Therefore, parking fees and restrictions
shape the charing demand. This can be observed from
Figures 11 and 12 which show the sojourn durations. While
7 kW chargers allow for long sojourn durations (multi-storey
car parks, etc.), 22 kW chargers are limited by the parking
restrictions.

V. OVERSTAY AND FLEXIBILITY ANALYSIS
As discussed in Section IV-B, almost all EV sessions include
an overstay (percentage of time plugged in and not charg-
ing). Over the next decades, when EVs gain mainstream
acceptance, overstay will be a major issue as other vehi-
cles will not be able to use the chargers. However, under
today’s relatively low electrification rates, overstay peri-
ods promise opportunities for demand flexibility through
smart charging. Therefore, this section presents the analysis
of overstay and peak load reduction potential. The math-
ematical parameters used in this section are explained in
Table 5.
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TABLE 5. Summary of mathematical parameters used in statistical
analysis and optimization.

A. STATISTICAL ANALYSIS
The individual overstay periods for each session are calcu-
lated using Equation (4). In Figure 15, raincloud plots for
overstay periods (7 kW and 22 kW chargers) are presented.
It can be seen that the overstay lengths for 7 kW chargers
are significantly higher than those for 22 kW chargers and
exhibit higher variability. The first three quartiles for the
7 kW charger are 0.16, 1.03, and 4.35 hours, respectively.
This shows that more than half of the charging events have
an overstay period that is longer than 1.03 hours, while 25%
of the charging events have an overstay that is longer than
4.35 hours.

In the 22 kW charging case, the overstay lengths are com-
parable to the 7 kW case, as the first quartile and the median
values are 0.7 and 1.2, respectively. On the other hand, the
third quartile is nearly half of the 7 kW case and is 2.2 hours.
This is in parallel with the findings made in Section IV-
D, as overnight chargings are limited in the 22 kW case.
Moreover, as explained earlier, the number of 22 kW chargers
is significantly less than 7 kW ones, and most 22 kW chargers
are located in areas with parking restrictions during the day.
Therefore, overstay periods (shown in Figure 15) beyond
the third quartile are significantly lower than in the 7 kW
charger case. The results show that overstay periods present a
significant opportunity for smart charging. On the other hand,
it is further critical to understand the factors affecting overstay
periods. Hence, a metamodel is presented in the next section
to analyze this.

B. METAMODELING OF OVERSTAY
The previous section shows that there is high variability in
overstay lengths due to various reasons, such as the cost
of EV charging, parking duration, and start of the charging
session. To estimate the weight of each factor, a metamodel
is developed. Using the Response Surface Methodology
(RSM), an approximate second-order polynomial model for
the functional relationship between overstay length fO and
other critical parameters, namely parking duration PD, unit
cost of EV charging CC , and the start time of the charg-
ing session ST , is calculated. The RSM gives a parametric

functional relationship between fO and the other parameters
(fO = f (PD,CC, ST )) [47], [48]. In the dataset, the sojourn
times (parking durations) are given in the previous sections
and take values between 0.1 and 31 hours. The cost of charg-
ing (per kWh) takes values between 0 and 0.65 GBP, and the
start time takes values between 0 and 24 hours. The resultant
RSM equation is given below is calculated using Matlab for
overstay lengths less than 24 hours,

fO = −0.707 + 0.509 ×PD− 0.023 ×CC + 0.134 ×ST

−0.383×PD×CC−0.001×PD×ST+0.053×CC×ST

+ 0.018 × PD2
− 0.605 × CC2

− 0.004 × ST 2 (6)

For the above regression model, the R-Square statistic is
87%, and the mean square root error is 1.49%. These statistic
imply that the input parameters for the given ranges provide
a meaningful relationship to explain how overstay periods
are shaped by each input parameters. If the polynomial value
has a positive sign, it means there is a positive correlation
between the overstay length (fO) and that parameter (e.g.,
PD). To understand the weight (or sensitivity) of each param-
eter, the second-order derivatives of the quadratic parameters
are calculated:

∂2fO
∂PD2 = 0.018, (7)

∂2fO
∂CC2 = −0.605, (8)

∂2fO
∂ST 2 = −0.004. (9)

From the above differentiations, the following conclusions
can be drawn. The overstay lengths (fO) increase as the overall
parking duration (PD) increases (from equation (7)). Charg-
ing cost (CC) has the highest weight on overstay lengths
(from equation (8)), and overstay durations (fO) decrease
as the cost of charging (CC) increases (from equation (9)).
Finally, there is a weak relationship between overstay lengths
and the time to start charging. Thismeans late-night chargings
are kept slightly shorter, as most charging locations do not
allow overnight charging.

C. SMART CHARGING POTENTIAL
The overstay analysis given above indicates that EVs’ over-
stay periods can be used for smart charging to reduce the
peak charging rate for a given region. Smart charging is the
exploitation of the flexibility within the charging process
that could be used to reduce peaks and to achieve other
optimization objectives, such as avoiding grid congestions,
lowering price spikes, or cultivating excess renewable energy.
Smart charging can be achieved primarily in two ways:
(i) central and (ii) distributed way. In the first method, a cen-
tral entity keeps track of all EV charging events and sends
signals to each charger via two-way communication systems.
In the second method, there is no communication between
different EVs, and each EV solves its own optimization prob-
lem to achieve an objective, such as minimizing the average
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peak rate or charging cost. In this section, a case study is
provided with distributed control where each EV i aims to
minimize the sum of the ratio of the peak charging rate Pis
for each time step s to the requested demandDi in the sojourn
period Si, i.e.,

Minimize −

∑
s

1
s
Pis
Di

. (10)

Note that the minimum objective can be achieved when the
total transferred energy is equal to the energy demand. The
optimization problem is subject to the following constraints:

rDi ≤

∑
s

Pis ×
s
60

≤ Di, ∀i (11)

Pis ∈ {0} ∪ [Cmin,Cmax], ∀s, ∀i (12)

s ∈ Si, ∀i. (13)

Equation (11) is the energy constraint, which shows that
the sum of energy transfer should be at least rDi, where
r a parameter between 0 and 1 and is set to 0.95. This
constraint also shows that the energy transfer is upper limited
by the requested energy demand Di. The second constraint
(12) shows that charge rate can take values between mini-
mum charging rate Cmin which is usually 1.1 kW, and Cmax
which the maximum charger rate, that is 7 kW or 22 kW.
Note that most chargers cannot assign charger rate between
0 and 1.1 kW as this band reserved for communication
purposes [49]. The first constraint (11) relaxes the energy
constraint to account for infeasible charging rates that are
lower than 1.1 kW. The time step is set as one minute,
therefore, to calculate the energy transferred in one minute,
the charging power is multiplied by 1

60 in (11). Moreover,
given the linear nature of the constraints and the objective
function, the smart charging is solved using the Interior Point
Algorithm in Matlab. In Figure 16, distributed control results
are compared with uncontrolled charging case for an average
daily load for one week. The average load reduction across
the week is 30.25%. In 85% of the time the peak load
has been reduced, and 15% the load was equal to higher
than the uncontrolled case due to ‘‘bouncing effect’’ which
occurs when a load is shifted towards another peak period.
Nevertheless, the proposed method shows that without the
need for any communication systems, the system load could
be reduced significantly. It is worthy noting that distributed
optimisation further shaves the afternoon peak (e.g. 5 pm)
that coincides with UK’s peak electricity load. Average peak
reduction for the evening peaks are presented in the bar graph
of Figure 16. It can be seen that evening peaks can be reduced
by 10% to 30%. Therefore, the real-world implementation
could be beneficial for power grid operators to reduce overall
electricity consumption.

Ref. [13] introduces a centralized smart charging algorithm
that employs a quadratic objective function to minimize the
total energy consumed during a specific time slot s. Simi-
lar to our model, electric vehicles (EVs) in their study are
charged during their respective sojourn durations, allowing

TABLE 6. Commercial customer summer (June-September) energy and
demand tariffs (USD per kW) adopted from pacific gas and electric [50].

for flexibility in vehicle charging. However, there are two key
distinctions between their model and ours. Firstly, our model
is distributed, meaning that the charge schedule for a partic-
ular vehicle is unknown to other vehicles. Therefore, it is
easier to implement. Secondly, our model incorporates the
minimum charge rate (Cmin) as a constraint. This constraint is
of utmost importance from a technological standpoint since,
in reality, vehicles cannot charge at rates below Cmin (i.e.,
between 0 and Cmin).

D. LOAD SHIFTING WITH TIME OF USE TARIFFS
The flexibility of EV charging sessions could also be
exploited using Time-of-Use (ToU) based electricity tariffs
for EV charging. In ToU, tariffs, unit electricity price varies
over time and typically higher during peak hours to discour-
age EV charging to lower the peak electricity demand. In this
case study, EV charging tariffs from Pacific Gas and Electric,
a utility company in San Diego, California, are used and
details are given in Table 6.

In this case, the objective function of the optimisation
function becomes

Minimize −

∑
s

Cs
1
s
Pis
Di

, (14)

where Cs is the energy rate as given in Table 6.
In this case study, the EV charging events in London during

weekdays are considered. Moreover, the focus is on lower-
ing evening peaks occurring from EV charging. Therefore,
charging sessions after 4 pm are chosen and smart charging
framework given in objective function (14) and constraints
(11), (12), and (13) is solved. As shown in Figure 17, the
evening peak at 8 pm is shifted to after midnight (at 4 am)
without requiring EV owners to stay extra longer. The pri-
mary reason for this shift is the lower offpeak tariffs. In this
case study, a total of 240 EVs with different attributes (start
time, departure time, demand). The total cost of charging
under no control scenario is 8681.5 USD, while optimised
charging reduces this cost to 7144.9 USD (17.7% cost reduc-
tion). Similar to the previous scenario, if the chargers have
information about all other EVs and their schedules, then
a more flat load profile could be achieved. However, real-
time access to such information in physically distant charging
networks is often constrained by company policies and other
data protection policies. Hence, our case studies are limited
to distributed charging cases as presented in this and the
previous sections.
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FIGURE 16. Comparison of distributed and uncontrolled charging cases. Average load reduction over the week is 30.25%.
% of evening demand is calculated for average load between 4:30 pm - 5:30 pm.

FIGURE 17. Smart charging to shift the peak load to off-peak periods
using time of use prices.

VI. CONCLUSION
A. SUMMARY OF FINDINGS
In this paper, statistical characterization of the first public AC
charging sessions across the UK for four months (April –
July 2022) has been presented. The dataset includes 7 kW
and 22 kW chargers with nearly twelve thousand sessions.
Firstly, utilisation rates for each charger type were analyzed.
It was shown that the utilisation rates are slightly lower than
those in Nordic countries such as Sweden and Finland, but
higher than the US case. Secondly, the machine learning
DBSCAN algorithmwas used to cluster the charging sessions
based on arrival and departure times and showed that 82% of
the charging sessions occur during the daytime. As a conse-
quence, the dataset is classified as weekend/weekdays and by
charger type. Using raincloud analysis, empirical probability
distribution functions and descriptive statistics were analyzed
and presented for arrival, departure, sojourn, overstay, and

energy transfer sessions. The inter-arrival times were fit-
ted to well-known probability distribution functions, and a
goodness-of-fit test was carried out using the Chi-square test.
It was shown that exponential inter-arrival times, dominantly
in queuing-based modeling, are reasonable. An RSM-based
metamodel to quantify the factors affecting overstay lengths
was developed. It was shown that the cost of EV charging
is the most important parameter determining overstay dura-
tions. Finally, we presented two case studies that demonstrate
the utilisation of overstay periods by employing reduced
charging rates, resulting in a reduction of the overall electric
vehicle (EV) charging load. The first case study focuses on
scheduling techniques that aim tominimize peak usage. In the
second case study, we explored the effectiveness of time-of-
use prices in targeting specific time periods, such as peak
electricity usage hours, to further decrease the EV load. The
results showed that, even with the distributed case, smart
charging could lead to an average of 30% savings. The load
curves further show that the peak durations of public chargers
occur 2-3 hours earlier than domestic EV charging, which
peaks around 7-8 pm [51].

B. LIMITATIONS OF THE STUDY
The limitations of this study can be listed as follows. Firstly,
our dataset covers four months (April-July), hence there
could be differences in energy demand in other seasons such
as winter due to cold weather and shorter daylight hours.
For instance, in August and February, the percentage of
annual trips per month drops compared to other months [46].
Secondly, our dataset includes transferred energy and does
not include instantaneous charging power. Therefore, it is
assumed that the charging power is constant throughout the
charging session. In reality, the actual charging power will
be slightly lower than the peak rate due to efficiency losses,
weather, and limitations of specific EVs, particularly for
22 kW chargers. For instance, Tesla Model 3 has a maximum
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AC charging rate of 11 kW, while Renault Zoe can accept
a 22 kW AC charging rate. Therefore, even though sojourn
durations would be the same, actual overstay periods are
expected to be slightly shorter.

C. OPEN RESEARCH QUESTIONS
The analysis presented in this study leads to the following
future research directions. Firstly, as can be observed from
Figure 3, there is significant variability in utilisation rates.
Further investigation is needed to understand the factors (e.g.,
driving pattern, access to domestic charging, EV adoption
rates) affecting the utilisation rates, which can strongly influ-
ence future charger deployment projects
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