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ABSTRACT PM2.5 is a type of particulate matter that contributes to air pollution in Thailand on a
yearly cycle. Exposure to PM2.5 can cause acute health problems, including respiratory and cardiovascular
diseases, as well as an increased risk of premature death. In this paper, we present a spatio-temporal model
based on a deep learning approach for PM2.5 concentration prediction via an image-like approach at a
country-wide level. Our model: SimVP-CFLL-ML is based on a video prediction model, called ‘‘SimVP’’.
To enhance its performance when attempting to predict high PM2.5 concentration, SimVP includes two
major improvements i.e. a cross-feature learning layer (CFLL) using 1×1 convolution layer to learn feature
correlation and a masking layer (ML) to calculate loss in specific locations. The experiment is conducted
on data collected from the pollution control department (PCD) of Thailand and sensor for all (SFA). Results
show that our model outperforms all baselines. Our model’s F1 perforance is 3.51% better than the best
baseline model for classifying high PM2.5 concentration class.

INDEX TERMS PM2.5 prediction, machine learning, deep learning, video prediction.

I. INTRODUCTION
Air pollution is the problem of unclean air with strange
particles in it. When there are more dirty particles in the
air, people who live nearby are more likely to get sick.
PM2.5 stands for ‘‘particles with a diameter of fewer than
2.5 microns’’ that measure how dirty the air is. It is noted
that PM2.5 particles are small enough that they can get past
the defenses of the human respiratory system, get deep into
the lungs, and even get into the bloodstream. Such an out-
come can adversely affect people’s health, leading to many
chronic diseases. Throughout the year in Thailand, particle
concentration is exceptionally high. Every year between the
months of December and April, farmers in Southeast Asia
burn crop residues to clear fields for the following year’s
planting. Although this method is cost-effective and efficient,
it has become a major environmental and health concern
as it produces clouds of smoke and air pollutants that can
cross international borders. The combustion of crop residues
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is a primary source of PM2.5 concentration in Thailand.
This pollution contributes to the urban industry and vehicle
pollution that already exists, making it a significant problem.

The impact of transboundary burning plays a dominant role
in determining PM2.5 concentrations in Thailand, accounting
for approximately 67% of the influence, while local sources
contribute approximately 33% [1]. This emphasizes the criti-
cal fact that the primary source of PM2.5 emissions primarily
originates from burning activities, occurring outside the coun-
try’s borders. It is essential, therefore, to improve the accuracy
of predictions for high PM2.5 concentrations in Thailand.
Preserving public health is vital. Air pollution is a factor that
affects the entire population. There is a need for better air
quality management strategies, andmore direct governmental
decisions, regarding pollution control and urban planning.

In Figure 1, the daily average PM2.5 concentration in
Thailand in 2022 indicates that the month’s PM2.5 concen-
tration is high, which corresponds to the periods when fields
are left to burn. Burning can be detected from satellites as
hotspots, allowing for the finding of a spatio-temporal corre-
lation of the relationship between PM2.5 and such hotspots.
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FIGURE 1. The daily average PM2.5 concentration in Thailand in 2022.

Numerous studies have established a correlation between
these hotspots and PM2.5 levels [2], [3], [4], [5]. There is
also a correlation between PM2.5 concentration and wind
features [6], [7], [8], [9]. Wind patterns play a significant
role in the dispersion and transport of PM2.5 particles in the
atmosphere. Both the direction and wind speed determine
the movement of PM2.5 from their source regions to other
areas. With the help of fire hotspots and wind characteristics,
it is possible to predict where particulate matter travels and
when high PM2.5 concentration is likely to occur. According
to data obtained, air quality in Thailand has a strong rela-
tionship with fire hotspots and wind patterns in Southeast
Asia [10], [11], [12], [13].

As a time-series problem, many machine learning mod-
els have been used to predict PM2.5’s future trend. For air
pollution prediction, common traditional time-series machine
learning models such as ARIMA [14], [15], [16], and
SVM-based regression model [17], [18], [19] are frequently
employed. Recently, new models based on deep learning
such as recurrent neural networks (RNN) can learn complex
non-linearity relations of time-series data, providing greater
accuracy [20]. Long short-term memory (LSTM) has been
used to predict the next four timesteps of PM2.5 concen-
trations [21], [22]. Besides, researchers have compared the
performance of gated recurrent units (GRU) with RNN and
LSTM for air quality prediction using AirNet data [23], [24].
Results show that GRU performed better.

PM2.5 concentration prediction can be differentiated into
two distinct categories: temporal PM2.5 concentration pre-
diction and spatio-temporal PM2.5 concentration prediction.
For temporal PM2.5 concentration prediction, common tra-
ditional time-series machine learning models and common
temporal deep learning models such as RNN, LSTM, and
GRU are often used. A number of prior works have tried
to predict PM2.5 concentration based on temporal prediction
techniques [14], [15], [16], [17], [18], [19], [20], [21], [22],
[23], [24], [25], [26], [27], [28]. However, such techniques
are seen to be limited in their scope for prediction due to
their focus on single locations. In contrast, spatio-temporal

PM2.5 concentration prediction encompasses predicting
PM2.5 at multiple locations at the same time [29], [30], [31].
Moreover, in spatio-temporal prediction, results can be pre-
dicted via an image-like approach.

The image-like approach for spatio-temporal PM2.5 con-
centration means that predicted results can easily be seen
viewed on a heatmap by experts at a country-wide level.
The image-like approach is easier for ordinary humans to
see the picture of PM2.5 concentration distribution at a high
level like a heatmap. To the best of our knowledge, only
one recent study on how to predict PM2.5 concentration
using spatio-temporal data has been shown in an image-
like approach. The model was based on CNN-LSTM for
estimating PM2.5 concentration inside a city [32]. Thismodel
used multiple features, including meteorology, traffic con-
ditions, and urban morphology while learning cross-feature
correlations through ResNet and 1 × 1 convolution layers.
However, it is emphasized that this work was conducted at a
city-wide level only: fire hotspots were not considered. Using
deep learning techniques, video prediction models can be
used in an image-like approach to predict PM2.5 concentra-
tions [33], [34], [35], [36], [37], [38]. Video prediction is a
rich avenue for the learning of spatio-temporal correlations,
providing prediction capabilities. We use each timestep of
spatio-temporal PM2.5 concentration as a frame for a video
prediction model.

In this paper, the application of a spatio-temporal
PM2.5 concentration prediction model having an image-like
approach is duly investigated. This approach is based on the
video prediction model i.e. ‘‘SimVP’’ that has been specif-
ically designed for spatio-temporal prediction by origin.
This inspires us to incorporate SimVP into spatio-temporal
PM2.5 prediction. To improve the performance of SimVP
when predicting high PM2.5 concentration, SimVP employs
a cross-feature learning layer (CFLL) in conjunction with
a masking layer (ML). The proposed model is applied
country-wide. Herein, our work is new and authentic.
Thailand PM2.5 dataset is an hourly prediction for the
next 24 timesteps using the previous 24 timesteps. More-
over, fire hotspots and wind patterns ascertained via from
different data sources are preprocessed and used in our
work.

The contributions of this paper are summarized as follows:
• SimVP, a video prediction deep learning model, is used
as a backbone model for spatio-temporal PM2.5 con-
centration prediction in an image-like approach on a
country-wide level.

• The model was further improved with two proposed
modules. Firstly, a cross-feature learning layer (CFLL)
was added to combine all features (wind and fire
hotspots) and enriched the spatio-temporal input before
feeding it to the model. Secondly, a masking layer (ML)
was added to make the model focus only on regions in
Thailand.

• Important features from other sources (wind and
fire hotspots) were combined together for Thailand’s
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PM2.5 prediction. Fire hotspots, especially, due to crop
burning, are a major source of PM2.5 pollution.

The rest of this paper is organized as follows: Section II
discusses the related work. Section III describes the dataset
and proposed method. Section IV describes the experimental
settings and the experiment’s results. Section V is the discus-
sion and future work. Section VI gives the conclusion of this
paper.

II. RELATED WORK
A. TEMPORAL PM2.5 CONCENTRATION PREDICTION
The techniques most frequently employed by researchers for
air quality prediction are common deep learning techniques
such as RNN, LSTM, and GRU. Liu et al. [25] established an
air quality predictor (AAQP), which is an encoder-decoder
model employing a fully connected neural network as an
encoder and RNN as a decoder, using either LSTM or GRU.
Nguyen et al. [26] used a genetic algorithm for selecting fea-
tures and an encoder-decoder model with long short-term
memory (LSTM) for predicting PM2.5. In addition, there
are studies that use PM2.5 data from neighboring stations
to improve the accuracy of predictions. Cheng et al. [27]
proposed the attentional deep air quality inference network
(ADAIN), which combined feedforward neural networks,
recurrent neural networks, and an attention-based pooling
layer that automatically learns the weights of features from
various monitoring stations. Liu et al. [28] presented the
geographic self-organizing map (GeoSOM) in conjunction
with GRU, which clusters groups of stations and predicts
PM2.5 concentrations at the target station, using data from
all stations within the cluster.

For temporal PM2.5 concentration prediction, the deep
learning models often used are LSTM andGRU. These works
apply the models to their own techniques. However, predic-
tion remains focused on individual stations, and the ability of
the models to predict multiple stations simultaneously is still
limited.Moreover, spatial feature factors from other locations
that can affect PM2.5 concentrations have not been fully
considered. In this work, we use LSTM and GRU as baseline
models for temporal PM2.5 concentration prediction.

B. SPATIO-TEMPORAL PM2.5 CONCENTRATION
PREDICTION
PM2.5 concentration can be predicted at multiple locations:
in a spatial way. This strategy’s main goals are to increase
efficiency by utilizing a single model to anticipate data
from multiple PM2.5 stations at once, and learn a high-level
PM2.5 correlation for the interested region. Spatio-temporal
PM2.5 prediction can be separated into two categories i.e.
predictions based on multiple PM2.5 stations, and image-like
data prediction. Xu et al. [29] presented an LSTM autoen-
coder multitask learning model to predict PM2.5 time-series
at a number of different places in the city. Shi et al. [30]
introduced a spatial attention-based long short-term mem-
ory (SA-LSTM), which combined LSTM and a spatial

attention mechanism to utilize the spatio-temporal informa-
tion of multiple factors in an adaptive manner. Wen et al. [31]
set up ST-E-LSTME that used k-nearest stations in combi-
nation with CNN and LSTM to predict PM2.5 at multiple
stations. Zhang et al. [32] initiated Deep-AIR, a novel hybrid
deep learning framework that combined CNN with LSTM.
Deep-AIR uses city-wide urban dynamics as an image-like
data approach. Deep-AIR incorporates both CNN having
1×1 convolution layers to extract spatial features and LSTM
to learn the temporal correlation of the extracted features. The
1×1 convolution layers are adopted to strengthen the learning
of cross-feature spatial representation between air pollution
and various important urban dynamic features.

As for spatio-temporal PM2.5 concentration predic-
tion, in this work, we focus on an image-like approach.
The Deep-AIR model is similar to our approach. How-
ever, Deep-AIR is still based on simple deep learning models.
Deep-AIR uses CNN for spatial learning and LSTM for
temporal learning separately. Herein, the Deep-AIR model
has been chosen as a baseline model for spatio-temporal
PM2.5 concentration prediction.

C. VIDEO PREDICTION BASED ON DEEP LEARNING
Video prediction is a subfield of computer vision’s deep
learning that involves predicting upcoming frames based on
past frames. This is the problem involving the prediction of
spatio-temporal sequences. Shi et al. [33] set up ConvLSTM:
a type of recurrent neural network for spatio-temporal pre-
diction that employed convolutional structures in both the
input-to-state and state-to-state transitions. Wang et al. [34]
proposed PredRNN; the core of this model is a new
spatio-temporal long short-term memory (ST-LSTM) unit
that extracts and memorizes spatial and temporal rep-
resentations simultaneously. Wang et al. [35] put forward
MIM networks for learning higher-order non-stationarity
from spatio-temporal dynamics. Lin et al. [36] introduced
a self-attention mechanism into ConvLSTM, which is
self-attention memory (SAM), in order to remember features
with long-range dependencies in both the spatial and tem-
poral domains. Chang et al. [37] submitted a motion-aware
unit (MAU) to capture dependable inter-frame motion
information by expanding the temporal receptive field
of the predictive units. Zhangyang et al. [38] demonstrated
SimVP (Simple yet better Video Prediction), which is fully
CNN-based but achieved state-of-the-art performance on five
benchmark datasets. SimVP is easy to comprehend and use as
a common benchmark due to its simplicity.

Originally designed for predicting spatio-temporal prob-
lems, video prediction techniques can be applied to our work.
Our work focuses on predicting spatio-temporal PM2.5 con-
tentrations, extending across the whole country. In this paper,
ConvLSTM, PredRNN, and SimVP were chosen as base-
lines for the video prediction approach (spatio-temporal).
Moreover, since SimVP showed the best performance in
recent video prediction works, it was chosen as our model
backbone.

VOLUME 11, 2023 69603



N. Sirisumpun et al.: Spatio-Temporal PM2.5 Forecasting in Thailand

III. METHODOLOGY
This paper addresses spatio-temporal PM2.5 prediction using
an image-like approach and a model based on video predic-
tion. From beginning to end, the modeling process consists of
two primary parts. First, the data is preprocessed, employing
different preprocessing techniques, depending on the data
source. The second part is the proposedmodel: SimVP, which
is the backbone model based on video prediction.

A. DATASET AND DATA PREPROCESSING
1) DATASET DESCRIPTION
The PM2.5 data used in this study was collected from the sen-
sor for all (SFA)1 and pollution control department (PCD)2 in
Thailand. Both centres are air quality monitoring systems in
Thailand. These systems deploy sensors in various locations
across the nation, enabling real-time monitoring of air quality
data. The Faculty of Engineering at Chulalongkorn Univer-
sity, the Ministry of Energy, and the Electricity Generating
Authority of Thailand have collaborated to provide access to
the SFA data through their website and application. Presently,
in Thailand, there are 501 operational PM2.5 measurement
stations for SFA sources and 213 operational PM2.5measure-
ment stations for PCD sources. SFA and PCD are ones of the
major organizations responsible for handling PM2.5 concen-
tration and providing the reliable data in Thailand.

ERA5 [39], which stands for ECMWF Reanalysis v5,
is the main source of the wind data utilized in this study.
The Copernicus Climate Change Service, which is funded
by the European Union, created ERA5, the fifth generation
of a reanalysis of the global atmosphere. ERA5 provides
hourly estimates of a large number of atmospheric, land, and
oceanic climate variables, making it essential for understand-
ing and monitoring climate change processes and forecasting
future climate change. In this study, we used two wind data
variables from ERA5: the u-component of wind, which rep-
resents the Easterly wind speed in meters per second, and the
v-component of wind, which represents the Northern wind
speed in meters per second. High PM2.5 concentrations are
correlated with a wind speed of 850 hPa [6]. Such wind
data at the 850 hPa pressure level was selected because it
is most likely the primary factor influencing the movement
of PM2.5 particles from neighboring countries into Thailand,
where crop burning is the source of these particles. It is noted
that when crop burning occurs in neighboring nations, wind
patterns play a crucial role in the transport of these particles
into Thailand.

This study utilized fire hotspots data from FIRMS: an
acronym for Fire Information for ResourceManagement Sys-
tem [40], [41], [42]. This system was developed by NASA to
provide information on global hotspots. Global hotspots are
areas with high heat values on the surface of the earth that
can be detected almost in real-time. The primary objective of
this system is to support fire management efforts by tracking

1https://sensorforall.eng.chula.ac.th/
2https://air4thai.pcd.go.th/

TABLE 1. Summary of dataset characteristics.

FIGURE 2. The resulting format after preprocessing each feature at each
timestep.

and notifying potential fires. FIRMS uses information from
both VIIRS and MODIS satellite sensor systems to detect
these hotspots. VIIRS is available on the Suomi-NPP and
NOAA-20 satellites, whereas MODIS is available on the
Terra and Aqua satellites. Within three hours of detecting a
hotspot, FIRMS can provides both the location and time of
detection.

In summary, this study makes use of three distinct collec-
tions of data: namely, PM2.5 concentration, wind speed, and
fire hotspots. In Table 1, a summary of dataset characteristics
are given.

2) DATA PREPROCESSING
Data preprocessing can be divided into three parts, based on
the type of data from each source. Each source employs dif-
ferent preprocessing techniques, depending on the source of
the data. The objective of preprocessing is to create a uniform
format that can combine together all the information from
each source. The resulting format contains spatio-temporal
data with a grid. The size of the grid used in this work was
0.5 degrees (latitude) and 0.5 degrees (longitude). 55.5 km x
55.5 km is the approximate size of the grid. Herein, the area
of interest is defined by latitudes ranging from 4.0 degrees
North to 22.0 degrees North, and longitudes ranging from
95.0 degrees East to 110.0 degrees East. This area covers the
whole of Thailand on the map, resulting in spatial data maps
for image-like PM2.5, as displayed in Figure 2. The spatial
data maps will be combined into map sequences, yielding
spatio-temporal data whereby each map in the sequence rep-
resents a one-hour timestep.

The ERA5 wind dataset is organized such that each grid
is 0.25 degrees in both latitude and longitude. The timestep
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FIGURE 3. The proposed model uses SimVP as a backbone model along with additional layers: Cross-Feature Learning Layer (CFLL) and Masking Layer
(ML). T denotes the number of timesteps for input and output, C denotes the input channel, C ′ denotes the channel after cross-feature learning, H
denotes height, W denotes width, and X denotes the number of focus grids after the mask.

is also one hour. As a result, it is sufficient to filter the
grid size from 0.25 degrees to 0.5 degrees. In the section
quantifying the fire hotspot dataset, the characteristics of the
obtained data incorporate the latitude, longitude, and detec-
tion time of the heat detected on the Earth’s surface. The data,
therefore, will be grouped according to the specified grid
position and timestep during the preprocessing phase. Then,
the number of heat detections for each grid will be counted
as a fire hotspot and represented on the grid. Due to the fact
that each PM2.5 station stores data every 5 min on average
for SFA, it is necessary to calculate the hourly average of
the PM2.5 concentration measured at each station for the
PM2.5 dataset. For PCD, the timestep is already one hour.
Then, stations within the same grid are grouped together,
and the average PM2.5 concentration from each station is
calculated to represent the hourly PM2.5 concentration of the
grid. In some grids and during some hours, some data may
be missing due to the fact that all PM2.5 station data was not
collected. The missing values in the grid data are estimated
using the grid of the nearest valid neighbor. Because of the
spatial limitation of PM2.5 data, the values are only filled in
for grids located in the Thailand zone. Due to the differences
in their measurement units, the value ranges of data obtained

from various sources can vary considerably. To eliminate the
effects of these varying numerical ranges, the data must be
normalized. To normalize the data, we utilized various nor-
malization techniques for the various features. The number
of fire hotspots and PM2.5 concentration were normalized in
the range of 0 to 1, usingmin-max normalization.Meanwhile,
standard normalization was applied to the u-component and
v-component features of the wind dataset.

B. SPATIO-TEMPORAL MODEL BASED ON SimVP
Once data preprocessing is complete, the data become
spatio-temporal data consisting of four channels, including
fire hotspot data, PM2.5 concentration data, the u-component
of wind, and the v-component of wind. In Figure 3, the model
architecture composed of 3 modules is illustrated. The first
module is the cross-feature learning layer (CFLL). The sec-
ond module is the backbone video prediction model, which
is SimVP. The last module is the masking layer (ML)

The first module is cross-feature learning, which employs
a 1 × 1 convolution layer to understand feature correlation
across the four channels. The processing of this convolution
layer’s kernel in each grid is important, as each grid has four
distinct characteristics, and the kernel aids in learning the
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relationships between them. The 1 × 1 convolution layer is
identical to a linear combination of multiple feature maps in
each grid. This is inspired by Deep-AIR [32], which uses the
concept of a cross-feature learning layer known as AirRes
(ResNet + 1×1 convolution layer). Once the channel interre-
lationship has been learned and encoded into a new number of
channels to account for their mutual correlation, the encoded
data will be sent to the SimVP video prediction model.

The second module is the core model which is SimVP.
SimVP is the Simpler yet Better Video Prediction model,
which is entirely built on CNN and trained by mean square
error (MSE) loss in an end-to-end fashion. The model
achieves state-of-the-art performance on five benchmark
video prediction datasets without introducing any addi-
tional tricks or complex strategies. For our spatio-temporal
PM2.5 concentration prediction, the SimVP model was
selected due to its efficiency and simplicity. SimVP con-
sists of the following three primary components: encoder,
translater, and decoder. (i) A stack of ConvNormReLU
blocks (Conv2d + LayerNorm + LeakyReLU) constitutes the
encoder, which is responsible for extracting spatial features.
(ii) The translator used to study temporal evolution is made
up of Inception modules. These modules contain a Conv2d
bottleneck with a 1 × 1 kernel, followed by GroupConv2d
parallel operators. (iii) A stack of UnConvNormReLU blocks
(ConvTranspose2d + GroupNorm + LeakyReLU) constitute
the decoder, which integrates spatio-temporal information to
predict future frames. Due to the fact that all of SimVP’s com-
ponents are based on CNN, the model is easy to comprehend,
quick to train and predict, and provides exceptional prediction
performance. Since we only wish to predict PM2.5 concen-
tration, the final layer of the SimVP model, the convolution
layer, is modified to predict only one channel.

For the last module, we use a masking layer to improve the
performance of the model. The masking layer helps to restrict
loss function by calculating the loss for the grids within a
specific location, in this case: Thailand’s grids. This ensures
that the predicted values for grids located outside the country
do not factor into the loss function. In conclusion, for each
timestep, the model’s final output includes only the grids
within Thailand and their PM2.5 concentrations.

IV. EXPERIMENTAL SETTING AND RESULTS
A. EXPERIMENTAL SETTING
1) DATASET
The data utilized in our study were collected in the year
2022. Due to the limited period of PM2.5 data from SFA
in Thailand, we chose the last ten days of each month as
the test dataset, while the remaining days were split into
training and validation datasets. This selection was made to
reserve data trends that occur on a monthly basis and to
assess the performance of the model in predicting various
trends. After separating the data into train, validate, and test
sets for each month, we applied a window sliding technique.
The window sliding technique generates input and output for

model training in order to forecast PM2.5 concentrations for
the next 24 hours using data from the previous 24 hours.

2) BASELINE MODEL
This study evaluates and compares six baseline models that
can be separated into two distinct categories. The first cat-
egory is the PM2.5 prediction baseline. This category can
be separated into two subcategories: temporal PM2.5 predic-
tion, and spatio-temporal PM2.5 prediction in an image-like
approach. For the temporal PM2.5 baseline models, both
LSTM and GRU models, based on an encoder-decoder tech-
nique, were chosen. These models learned only temporal
characteristics within each grid. In this work, Thailand had
198 grids, so it was necessary to train 198 distinct temporal
models for each grid. For the spatio-temporal PM2.5 pre-
diction in the image-like approach, the Deep-AIR network
(ResNet + 1 × 1 convolution layer + LSTM) was chosen.
The second category is the video prediction category, which
involves both temporal characteristics and spatial correlation
with deep learning. As baselines for this category, the stan-
dard video prediction models: ConvLSTM, PredRNN, and
the most recent video prediction, SimVP were chosen.

3) EVALUATION CRITERIA
This paper evaluates the model’s performance in three dif-
ferent ways. The first way is the regression aspect, which
evaluates the results direct from the model that predicts
the PM2.5 concentration values. In this case, this study
uses MAE (mean average error) and RMSE (root mean
square error) to evaluate the performance. MAE is defined
as follows:

MAE =
1
n

n∑
i=1

∣∣yi − ŷ
∣∣ (1)

where n denotes the number of observations in the dataset,
yi denotes the actual value of the target variable for the i-th
observation, and ŷ denotes the predicted value of the target
variable for all observations. RMSE is defined as follows:

RMSE =
1
n

n∑
i=1

(
yi − ŷ

)2 (2)

where n denotes the number of observations in the dataset,
yi denotes the actual value of the target variable for the
i-th observation ŷ denotes the predicted value of the target
variable for all observations.

The second way is the classification aspect, where the
model’s output is classified into three categories: Low for
concentration below 35.5 µg/m3, Medium for concentration
between 35.5 µg/m3 and 55.5 µg/m3, and High for con-
centration above 55.5 µg/m3. After categorizing the results,
we evaluated the classification performance using the F1
score. The F1 score for each class is used to evaluate indi-
vidual performance. The F1 score is defined as follows:

precision =
TP

TP+ FP
(3)
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recall =
TP

TP+ FN
(4)

F1 = 2 ·
precision · recall
precision+ recall

(5)

where TP denotes the number of true positives and FP
denotes the number of false positives.

The third aspect of our study involves visualizing the
performance of the models in terms of spatial information.
This is done by applying the Pearson correlation coefficient
for each prediction, which is calculated to determine the
correlation between the ground truth and the model’s predic-
tion in that grid. The Pearson correlation coefficient can be
expressed as:

rxy =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
(6)

where n is the number of observations in the dataset, xi is
the i-th observation of variable x, yi is the i-th observation of
variable y, x̄ is the mean of variable x, and ȳ is the mean of
variable y.

B. RESULTS
After training both the proposed SimVP-CFLL-ML model
and baseline models on the Thailand dataset, we evaluated
the results on the test dataset using four aspects: overall
evaluation, the study of feature ablation, evaluation at each
timestep, and spatial evaluation.

1) OVERALL EVALUATION
To provide an overall evaluation, we considered all grids in
every timestep of the model prediction output. The purpose
of this evaluation was to fully compare how well the model
worked. The evaluation was conducted to evaluate the regres-
sion aspect using RMSE and MAE, as shown in Table 2.
Results demonstrate that SimVP-CFLL-ML was the win-

ner with MAE and RMSE attaining 4.51 µg/m3 and
7.59 µg/m3, respectively. The best-performing PM2.5 pre-
diction model baseline was Deep-AIR with MAE and RMSE
achieving 4.96 µg/m3 and 8.27 µg/m3, respectively. The
best-performing video prediction model baseline was SimVP
with MAE and RMSE reaching 4.51 µg/m3 and 7.63 µg/m3,
respectively. As for the PM2.5 prediction model baseline,
Deep-AIR, which is a spatio-temporal approach was the win-
ner, showing that the spatial-temporal approach outperformed
the temporal approach, As for the video prediction approach,
SimVP proved to be the winner.

Another overall evaluation was carried out by categorizing
the model prediction output from each grid using pre-defined
PM2.5 concentration classes, followed by an evaluation of
the classification aspect using F1 per class and Macro F1.
In Table 3, the results of this evaluation are shown.
Results reveal that SimVP-CFLL-ML was the winner

with F1 scores in the Low, Medium, and High classes
corresponding to 0.9613, 0.5419, and 0.4638, respectively:
the Macro F1 score was 0.6557. Deep-AIR was the best-

TABLE 2. Overall evaluation in terms of regression: MAE and RMSE.
Boldfaces refer to the winners.

TABLE 3. Overall evaluation in terms of classification: F1. Boldfaces refer
to the winners.

TABLE 4. Features ablation study in terms of regression: MAE and RMSE.
Boldfaces refer to the winners.

TABLE 5. Features ablation study in terms of classification: F1. Boldfaces
refer to the winners.

performing PM2.5 prediction model baseline with an F1
score of 0.9543 in the Low class, 0.4907 in the Medium
class, and a Macro F1 score of 0.5912. However, GRU out-
performed Deep-AIR in the High class, with an F1 score
of 0.3687. SimVP was the best-performing video prediction
model baseline with an F1 score of 0.9607 in the Low class,
0.5282 in the Medium class, and a Macro F1 score of 0.6371.
However, it is seen that PredRNN outperformed SimVP in the
High class, with an F1 score of 0.4287.

2) FEATURES ABLATION STUDY
In the features ablation study, we evaluated the model’s per-
formance using the same aspects as for overall evaluation.
Thus, we considered all grids at every timestep of the model
prediction output. The difference was in the features used
for model input, which were the possible combinations of
wind and fire hotspots for PM2.5 concentration. This study
aimed to demonstrate the importance of feature selection.
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TABLE 6. Each predicted timestep evaluation: MAE and Macro F1. Boldfaces refer to the winners. ts denotes the timestep of prediction.

The SimVP-CFLL-ML model was used for this experiment.
As shown in Table 4, evaluation was determined to assess
the regression aspect using RMSE and MAE. In Table 5, the
aspect of classification was evaluated using the F1 score.

In table 4, it is seen that when input only contained
PM2.5 concentration, the model demonstrated the best MAE
performance, achieving an MAE of 4.46 µg/m3. How-
ever when the input contained wind, fire hotspots, and
PM2.5 concentration features, the model attained the best
RMSE performance, demonstrating an RMSE of 7.59µg/m3.
Moreover, in the classification evaluation aspect, the F1 score
was best when all features were taken into consideration,
with an F1 score of 0.9613 in the Low class, 0.5419 in
the Medium class, 0.4638 in the High class, and 0.6557 in
the Macro F1 score. Results indicate that the features did
not significantly affect the model’s performance in terms of
regression, but feature selection was highly effective in terms
of classification.

3) EACH TIMESTEP EVALUATION
To evaluate the performance of the model at each timestep,
MAE was used to represent the aspect of regression eval-
uation, and Macro F1 was used to represent the aspect
of classification evaluation. The model’s performance was
calculated by evaluating all grids, corresponding to each
timestep. In Table 6, it is noted that as the prediction timestep
increased, the performance of all models decreased. In most
models, the first timestep revealed the best performance.
In the second timestep, however, performance dropped sig-
nificantly. To illustrate the difference in model performance
between short-term and long-term predictions, the first
timestep is used to represent the most short-term prediction
and the twenty-fourth timestep is used to represent the most
long-term prediction. In the first timestep, SimVP-CFLL-ML
demonstrated the highest Macro F1 with 0.7833 but had the
lowest MAE with 3.22 µg/m3. In the twenty-fourth timestep,

SimVP-CFLL-ML achieved the highest Macro F1 with
0.6054. For MAE, SimVP proved to be the best-performing
model for the video prediction baseline and performed better
than SimVP-CFLL-ML with MAE reaching 5.33 µg/m3.
Overall, as observed in Macro F1, the SimVP-CFLL-ML
model outperformed other models at every timestep. As for
MAE, in the first twelve timesteps SimVP-CFLL-ML per-
formed the best. However, in the last twelve timesteps,
SimVP recorded the best performance for MAE.

4) SPATIAL EVALUATION
For spatial evaluation, our aim is to see how efficiently
the model worked. Using the Pearson correlation coeffi-
cient, we examined how well the ground truth and predic-
tions matched up in each grid at every predicted timestep.
In Figure 4, the correlation values are given. Besides, green
means a high correlation, and red means a low correlation.
The Pearson correlation coefficient ranged from -1 to 1, with
higher values showing a stronger correlation between what
actually happened and what was predicted. Moreover, when
the overall performance of temporal PM2.5 prediction model
baselines was compared to that of the image-like approach
which included spatio-temporal PM2.5 prediction model
baseline and video prediction model baselines, it was clearly
found that the image-like approach did a much better job of
predicting PM2.5 concentration in most parts of Thailand.
This outcome demonstrated the fact that its visualization
revealedmore green grids than the temporal PM2.5 prediction
baseline models. For all models, the South of Thailand is seen
to be more of a challenge to predict PM2.5 concentration, due
to the lower number of green grids in this area. In this area,
LSTM and GRU revealed a yellow color, due to the fact that
the Pearson correlation coefficient was lower, meaning that
the PM2.5 concentration pattern in this area is hard to learn.

In Table 7, the number of grids with Pearson correlation
coefficient for each model is shown. Results demonstrate that
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FIGURE 4. Spatial evaluation: using Pearson correlation coefficient in each grid.

TABLE 7. The total number of grids in the spatial evaluation for each
Pearson correlation coefficient range.

SimVP-CFLL-ML performed better than the other baseline
models having the highest number of grids within the high
Pearson correlation coefficient range of 0.8-1.0. Specifically,
the resulting number of grids was 125 being more than half
of the total of the predicted grids.

V. DISCUSSION AND FUTURE WORKS
The purpose of this study is to predict PM2.5 concentration
in a spatio-temporal manner by combining video prediction
deep learning techniques with the Thailand PM2.5 concen-
tration dataset. The study also takes into account both wind
and fire hotspot data as additional factors that can affect
PM2.5 concentration.

Overall, SimVP-CFLL-ML achieved better performance
than the baseline models, including the PM2.5 prediction
baseline models and video prediction baseline models. As for
the regression aspect, experimental results demonstrated that
SimVP-CFLL-ML outperformed the best PM2.5 prediction
baseline model (Deep-AIR) by 9.07% and 8.22% for MAE
and RMSE, respectively. However, SimVP-CFLL-ML did

not surpass the spatio-temporal deep learning model baseline
(SimVP) as its performance did not significantly improve
(Refer to Table 2). Nonetheless, in the classification aspect,
experimental results showed that SimVP-CFLL-ML outper-
formed both the PM2.5 prediction baseline model and the
video prediction baseline model. Besides, SimVP-CFLL-ML
performed best in the high PM2.5 concentration class. More-
over, SimVP-CFLL-ML outperformed PredRNN which is
the best-performing baseline model by 3.51% in the high
PM2.5 concentration class (Refer to Table 3). In all models,
the F1 score was the highest for the PM2.5 concentration
class: Low. For most of the year, due to the rainy season and
dearth of hotspots, PM2.5 concentration is usually Low. Thus,
the model’s performance in this class did not differ much.
In other classes of PM2.5 concentration, especially the high
PM2.5 concentration class, the SimVP-CFLL-ML model did
much better than the other baseline models.

In the feature ablation study, the effects of wind at 850 hPa
and fire hotspots at high PM2.5 concentration in Thailand are
shown. The results of the SimVP-CFLL-ML model’s feature
ablation study show that feature combinations do not have
a big effect on how well a model does at regression. When
features were added, the model’s MAE performance is seen
to get a little worse, while its RMSE performance is seen
to get a little better (see Table 4). However, in terms of
classification, the addition of wind or fire hotspots along-
side PM2.5 concentration improved the performance of the
model. When using all features along with PM2.5 concen-
tration, the F1 score of the high PM2.5 concentration class
increased by 7.16%, and the macro F1 score increased by
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FIGURE 5. SimVP-CFLL-ML model’s inputs and outputs for predicting PM2.5 concentration. The images in row A show the wind and fire hotspot
data used as input for the model. The wind data is represented by blue arrows, with the direction of the arrow indicating the direction of the wind
and the length of the arrow indicating the speed of the wind. The fire hotspot data is represented by red circles, with the size of the circle
indicating the number of fire hotspots detected in the grid. The images in row B show the PM2.5 concentration data used as input for the model.
The concentration levels are represented by different colors: red indicating high concentration, yellow indicating medium concentration, and green
indicating low concentration. The images in row C show the ground truth PM2.5 concentration. The images in row D show the model’s predicted
PM2.5 concentration.

2.67% (see Table 5). These results suggest that the combi-
nation of wind and fire hotspots is the feature that greatly

affects PM2.5 concentration. In addition to this, the data
herein highlights the fact that the SimVP-CFLL-ML model
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is capable of learning the correlation. Morever, the factor of
fire, which is the burning of organicmaterials, is a widespread
contributor to PM2.5 pollution worldwide in both developing
and developed countries. Fire occurrences, whether through
intentional land clearing, agricultural practices, or natural fire
events, release significant amounts of particulate matter into
the atmosphere.

In this work, the SimVP-CFLL-MLmodel is able to visual-
ize an example of the inputs and outputs, as shown in Figure 5.
The time span of the twenty-four timesteps for the model’s
input is covered from 2022-02-26 08:00:00 UTC to 2022-02-
27 07:00:00 UTC.Moreover, the time span of the twenty-four
timesteps for the model’s output is covered from 2022-02-
27 08:00:00 UTC to 2022-02-28 07:00:00 UTC. This case
was specifically selected to demonstrate a scenario in which
multiple fire hotspots were discovered in Cambodia; the wind
direction flowed through this area, encompassing the central
part of Thailand. To be more specific, the fire hotspot data
indicated that several fire hotspots were discovered in the pre-
vious three hours, which is the same time that the wind data
indicated that the wind direction flowed towards the central
region of Thailand. As a consequence, there was an increase
in the concentration of PM2.5 in this area. A second scenario
was also depictedwhereby fire hotspots were detected in Laos
and the wind direction passed through Thailand, resulting
in high PM2.5 concentrations in the north-eastern region of
Thailand. A few fire hotspots were also seen in Thailand.
In this scenario, a high PM2.5 concentration was recorded
in Thailand due to the presence of PM2.5 from both inside
and outside the country. When we compared the predictions
made by the model with the actual results, we found that
the model’s accuracy was not completely identical in all
grids. However, our model was able to accurately predict the
concentration level in each zone at a regional level. This led
us to the conclusion that the proposed model was reasonably
acceptable in performance.

There are many ways in which this research can be
improved. For instance, the low number of air pollution mon-
itoring stations that are currently in operation has hampered
the accuracy of the model that we have proposed. Hence,
if more monitoring stations were available in Thailand, our
model would be more robust and be able to perform better.
Further, our experiment focuses only on the wind at 850 hPa,
which has been reported to affect high PM2.5 concentration.
Wind at different pressures has the potential to also affect
PM2.5 concentration. Finally, the cross-feature learning layer
would need to be improved if additional features were added,
which would also cause the correlation to become more
complicated.

VI. CONCLUSION
In this paper, the SimVP-CFLL-ML model was proposed
and used for spatio-temporal PM2.5 concentration prediction
via an image-like approach. This model based on a video
prediction technique utilized SimVP as the backbone model,
which included CFLL and ML to learn feature correlation

TABLE 8. Supplementary experiment on the impact of features on the
proposed model. Boldfaces refer to the winners.

and emphasize specific location predictions, respectively.
To the best of our knowledge, this is the first model that
applies a video prediction technique to predict PM2.5 con-
centration via an image-like approach at country-wide level.
The features used in this work focus on fire hotspots and
wind, playing an important role in PM2.5 concentration
patterns. Results demonstrate that the proposed model can
outperform all baselines especially when predicting high
PM2.5 concentration with 3.51% improvement from the best
baseline F1 score. In the features ablation study, results show
how important feature correlation is and illustrate that the
proposed model can learn the correlation. Although our find-
ings represent a new approach for predicting spatio-temporal
PM2.5 concentration, further experiments and screening are
needed to validate the effectiveness of the proposed method.
In time, with the establishment of more PM2.5 monitoring
stations, the image-like data can represent PM2.5 with greater
precision, thereby enhancing the proposed model’s perfor-
mance. Finally, the factor of fire, which is the burning of
organicmaterials, is a widespread contributor to PM2.5 pollu-
tion worldwide, in both developing and developed countries.
We hope that our model can be applied to such scenarios.

APPENDIX A SUPPLEMENTARY EXPERIMENT
In this appendix, we present an additional experiment
that investigates the relationship between additional fac-
tors and the prediction of PM2.5 concentrations, using the
SimVP-CFLL-ML model. The experiment aims to pro-
vide insights into feature selection for future approaches.
We specifically focus on the impact of temperature, humidity,
and rainfall on PM2.5 concentration. To analyze the influence
of these factors, we utilized ERA5 with regards to 2m tem-
perature data, 2m dewpoint temperature data (humidity), and
total precipitation data (rainfall). The model’s performance
was evaluated using metrics such as mean absolute error
(MAE), root mean square error (RMSE), and Macro F1.

Table 8 presents a summary of the results obtained
from the experiment. When all features were utilized, the
SimVP-CFLL-ML model achieved the best RMSE:
7.47 µg/m3 and Macro F1 score of 0.6620. However,
when considering the best MAE performance, the model
only included rainfall as a feature, resulting in a value of
4.38 µg/m3. These findings indicate that our model is able to
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benefit from the incorporation of additional features, leading
to further improvement. Comparing the performance of all
features used in our work with the inclusion of additional
features in the model, the results suggest that the features
employed in our work exhibit superior performance in clas-
sifying PM2.5 concentrations. However, there is a slight
decrease in MAE and RMSE performance, which is not
significant. This can be attributed to the fact that in Thailand,
the PM2.5 concentration is generally low throughout most of
the year. When additional features are added, the model aims
to better predict high PM2.5 concentrations. In conclusion,
the features used in our work prove to be quite adequate
for predicting PM2.5. When more features are included, the
model’s performance significantly improves.
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