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ABSTRACT This paper proposes a detection and classification method for unmanned aerial vehicles,
commonly called drones, using sensor fusion schemes. Datasets for drone detection and classification are
collected by field measurements of actual drones using the optical camera, radar, and audio microphone as
well as obtained from open online databases. In the first stage of the proposed method, drone detection and
classification are conducted using the convolutional neural network (CNN) models separately trained by the
optical images, radar range-Doppler maps, and audio spectrograms. Then, the CNN output probabilities are
combined by the multinomial logistic regression to improve the drone surveillance accuracy through the
fusion of the optical, radar, and audio sensors. Numerical simulations are performed with the experimental
data and the open datasets. From the results, it is verified that the proposed sensor fusion method can improve
the drone detection accuracy by up to 15.6% and can enhance the drone classification accuracy by up to
28.1% in terms of the F-score, compared to individual sensing schemes.

INDEX TERMS UAV detection, UAV classification, sensor fusion, convolutional neural network (CNN),
multinomial logistic regression.

I. INTRODUCTION
Unmanned aerial vehicles (UAVs), commonly called drones,
are widely used in our lives with various applications for mil-
itary missions, agriculture, entertainment, safety diagnosis,
disaster relief, shipping, and wireless communications. With
the rapid expansion of the drone industry, we are exposed to
potential threats by drones, such as security area invasion,
privacy infringement, and destructive terrors. Considering
recent advances in UAVflight systems, anti-drone (or counter
drone) technologies have been actively investigated to protect
essential facilities and areas from accidental or intentional
intrusion of drones [1], [2], [3], [4], [5], [6], [7]. Some civilian
drone manufacturers have embedded geofencing software to
prevent drones from flying over no-fly and flight-restricted
zones, such as government buildings and airports. However,
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it is formidable and challenging to apply geofencing to
military-purpose drones and to enforce flight restrictions on
all civilian drones. Therefore, deploying anti-drone systems
for protecting security-sensitive areas is very important.

The anti-drone system requires real-time detection of
drones, estimation of location, and classification of drone
types (or models) to determine if the object is a threaten-
ing drone. Practically, it is challenging to detect a drone
because of its small size, low flying speed, low altitude, low
radar cross section (RCS), and low vibration. To overcome
these difficulties, several surveillance techniques have been
devised based on the video sensor, radar sensor, acoustic
sensor, and radio frequency (RF) receiver. Each detection
method has complementary advantages and disadvantages.
Drone detection using video images is a sort of object
detection problem which has been extensively studied in
the field of pattern recognition and computer vision, and
many research results have been reported based on image
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features such as colors, line shapes, geometric forms, and
edges [8], [9], [10], [11], as well as based on motion fea-
tures such as the object velocity, moving direction, and flight
pattern [12], [13], [14]. Whereas optical cameras provide
low-cost detection and fine-grained tracking of drones, there
are shortcomings like the relatively short detection range,
high sensitivity to weather conditions, and invisibility by
obstacles. In an attempt to find drones under low light condi-
tions, thermal infrared cameras detect the heat emitted from
motors, batteries, and internal hardware [15], [16]. Thermal
detection enables drone surveillance at night, yet the practical
detection range is significantly shorter than other surveillance
methods.

Although radar is commonly used for surveillance of large
aircraft, it is not easy to detect drones with radar due to
the limited RCS, low speed, and low altitude. With recent
advancements in radar system technology, it has been possi-
ble to detect extremely small targets including drones [17].
Radar surveillance is a promising technology due to the
long detection range, the high position accuracy, the weather
independence, the capability for multi-target detection, and
the night operability [18], [19], [20], [21], [22]. For exam-
ple, the micro-Doppler signatures caused by the rotation
of rotors and propellers can be used to detect and classify
small drones with high accuracy [23]. Further research has
been conducted to improve the detection granularity via the
multi-channel passive radar [24], [25] and to provide more
advanced features like high resolution and phase interfer-
ometry through the frequency-modulated continuous wave
(FMCW) radar [26], [27], [28]. Despite these advantages, the
use of high-power radar is strictly regulated in densely popu-
lated urban areas, and the drone detection radar necessitates
high costs for installation and operation. Consequently, it is
difficult to construct an anti-drone system only using radar
except in the government and military areas.

Alternatively, we can exploit the sounds emitted from
the rotors and propellers including inherent drone features.
Acoustic drone detection can be accomplished with a single
microphone [29] andmultiple microphones [30] by analyzing
the acoustic signatures in the time and/or frequency domains.
Various techniques are jointly considered to improve the
acoustic detection performance: a noise reduction technique
is employed in [31]; machine learning and deep learning
approaches are utilized in [29], [32], [33], and [34]; and
the use of acoustic sensors equipped with drones has been
investigated for target localization in [34], [35], and [36].
In [34], to mitigate the influence of noise, acoustic features
are extracted by the short-time Fourier transform (STFT)
in combination with convolutional neural networks (CNNs).
Moreover, machine learning is applied, followed by feature
extraction methods such as mel-frequency cepstral (MFC)
coefficients and linear predictive cepstral coefficients in [29],
and similarly, the independent vector analysis is employed
for feature extraction from sounds in [37]. Acoustic sensors
enable a low-cost implementation for anti-drone systems and

provide detection performance which is resilient to light and
weather conditions as well as less impacted by obstacles.
However, the detection range is relatively shorter than other
methods (up to a few hundred meters), and the detection
accuracy can be significantly degraded in the presence of
background noise.

Utilizing an RF scanner is another promising technique
for drone detection. RF scanning devices intercept wire-
less signals used to control a drone which contain various
sensing data for navigation, flight commands, and so on.
Commercial drones use RF signals typically in the range
of 2.4 GHz to 5 GHz reserved for industrial, scientific, and
medical radio bands (ISM bands), which can be detected
by the RF scanner [38], [39]. As the frequency used by an
illegal drone is usually unknown, an RF scanner hops among
multiple frequency bands in order to find a control signal in
all possible frequency ranges [40]. RF-based drone detection
and identification methods can be further enhanced by using
machine learning [41], [42] and deep learning [43]. The RF
scanner is robust against weather conditions allowing for
long-range and low-cost drone surveillance, if the frequency
bands and/or the control protocols are known. However,
this method has some limitations in detecting drones, if the
control information is transferred without adhering to a stan-
dard communication specification or if a drone operates
autonomously without communication between the drone
and its controller. Also, the performance can be deteriorated
by interference from other RF signals [44].

Drone detection using individual sensors reveals problems
in specific scenarios due to the drawbacks of the aforemen-
tioned sensing methods. In an attempt to improve detection
performance, sensor fusion technologies have been investi-
gated [45]. The first approach for sensor fusion is to use
two or more different sensors simultaneously for accurate
and reliable detection. Several sensor fusion techniques are
developed by combining optical and acoustic sensors in [46]
and by concatenating signatures of acoustic, optical, and
radar sensors in [47]. Both audio and video streams are
concurrently used for drone detection by extracting features
and feeding to a classifier [48]. A deep neural network (DNN)
to process the RF sensing data is concatenated with a CNN
to process the visual sensing data to form a combined DNN
for sensor fusion [49]. The second approach is to use one
sensor for acquisition and the other sensor for verification,
that is, one sensor with a more extended range detects the
presence of a drone, and the other sensor with higher accu-
racy confirms the initial detection results by adjusting the
parameters such as the angle of arrival (AoA) and the zoom
level of the camera. For example, a new procedure for drone
detection and tracking is developed based on the fusion
of daylight camera, thermal camera, and acoustic sensors
in [50]. Sensor fusion can facilitate more reliable, robust, and
precise drone surveillance across diverse operating scenarios,
though it demands higher system complexity and deployment
costs. For instance, multiple sensors need to be synchronized
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in time to detect targets from the combined sensing data,
and parameter optimization for joint detection is required
to enhance the performance. In other words, sensor fusion
methods necessitate a sophisticated design and experimental
validation to accelerate the development of a practical anti-
drone system.

In this paper, we consider the detection of illegal drones
that utilize autonomous flight or seldom communicate with
the controller. To this end, we collect experimental data for
drone detection via field measurements using an optical cam-
era, FMCW radar, and acoustic microphone. We propose a
two-stage approach for drone detection and classification.
In the first stage, drone detection and classification are carried
out using individual sensing data and CNNmodels, and in the
second stage, three kinds of sensing data are combined based
on the multinomial logistic regression model to improve
surveillance performance. The contribution of this paper is
summarized as follows.

• Through field measurements at Korea Aerospace Uni-
versity (KAU) and Chung-Ang University (CAU),
experimental sensing data are obtained for the optical
image, the radar range-Doppler map, and the acoustic
spectrogram. We collect experimental data on drones in
flight using three types of drones with different sizes.
Sensing data for non-drone objects are obtained by field
measurements and also acquired from open datasets for
machine learning [51], [52]. We convert the measured
data into images so that drones can be detected and
classified using the same type of CNN models. For this
purpose, optical images are scaled to accommodate the
input image size of CNN models; FMCW radar echoes
are transformed to range-Doppler maps via radar signal
processing; and acoustic signals collected by a micro-
phone are used to create spectrograms through the MFC
filtering and STFT.

• Two-stage deep learning models are developed corre-
sponding to optical images, range-Doppler maps, and
audio spectrograms to detect and classify drones. Using
the transfer learning technique, the first-stage CNN
models are adapted for drone detection with a sin-
gle output node for binary classification, while the
second-stage CNN models are revised for drone classi-
fication with multiple output nodes corresponding to the
number of drone types.

• A new sensor fusion method is proposed based on a
multinomial logistic regression model [53] to enhance
the accuracy of drone detection and classification. Dur-
ing the training phase, the coefficients for integrating
data from the three sensors are optimized using the
probabilities of three CNN output nodes and the ground
truth labels. During the test phase, the logistic regression
models trained in this way are used for drone detection
and classification based on concurrently measured data
from the sensors.

• Numerical simulations are performed with the exper-
imental data and the open datasets to evaluate the

performance of the CNN models associated with
individual sensors. Moreover, the probability datasets
obtained from the CNN output nodes are employed
to train and test the proposed multinomial logistic
regression models for sensor fusion. The results demon-
strate that the proposed fusion method, incorporating
data from three sensors, improves the drone detection
accuracy by 2.4%∼15.6% and enhances the drone clas-
sification accuracy by 8.7%∼28.1% in terms of the
F-score, compared to individual sensing schemes.

The organization of this paper is as follows. Section II
presents the measurement setup to obtain experimental
data for individual sensors using commercial drones, and
Section III introduces the drone detection and classifica-
tion techniques using an optical camera, FMCW radar, and
acoustic microphone. In Section IV, we propose a new
sensor fusion method based on the multinomial logistic
regression model. Section V presents numerical results to
evaluate various drone detection and classification schemes,
and Section VI provides concluding remarks and future
research issues.
Notations: Superscripts T and−1 denote transposition and

inversion, respectively, for any scalar x, vector x, or matrix
X . 1 denotes the all-ones column vector; diag(x) returns a
diagonal matrix whose main diagonal elements are equal to
x; yx stands for elementwise division between vectors y and x;

and ∂yT
∂x means a matrix whose (m, n)th element is ∂yn

∂xm
where

xm and yn are the mth and nth elements of x and y.

II. MEASUREMENT SETUP
This section provides a description of the location and
surrounding environments where the experiments were con-
ducted, the specification of drones, and the setup of sensing
devices for detection and classification of drones.

A. LOCATIONS FOR MEASUREMENT
Experiments were mainly conducted in the Drone Airfield
at Korea Aerospace University (KAU) located in Goyang-si,
Republic of Korea, as shown in Fig. 1(a). The measurement
data in this place is influenced by trees and grass surround-
ing the location. To obtain measurement data from various
environments, field experiments were performed in the Futsal
Field at Chung-Ang University (CAU) located in Dongjak-
gu, Seoul, where the place is surrounded by buildings with
more than five stories on three sides, as shown in Fig. 1(b).
We collected non-UAV measurement data such as moving
cars, people passing the crosswalk, and running people in the
street with a 40 m width in South Seoul.

B. DRONES FOR FIELD EXPERIMENTS
In the experiments, three types of drones are used, namelyDJI
Inspire2, Mavic3, and Phantom4. Each drone is different in
size, shape, color, and material, as shown in Table 1. Inspire2
is the largest and heaviest in size and weight and has black
and gray colors. The body is made of plastic and magnesium-
aluminum alloy, and the arm is made of carbon fiber. Mavic3
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FIGURE 1. Locations for field measurement: (a) Drone Airfiled at KAU,
(b) Futsal Field at CAU.

TABLE 1. Specifications of the drones used in experiments.

is the thinnest and lightest and has black and gray colors. The
material comprises plastic, polycarbonate and carbon fiber
reinforced nylon. The body of Phantom4 has the same length
and width with a medium size and weight, whose color is
white. The material is made of plastic and magnesium alloy.

C. SENSING EQUIPMENT
Three types of sensors were used in the experiments: optical,
radar, and acoustic sensors. For optical sensing, a camera
attached to a commercial smartphone was used. As shown in

FIGURE 2. Drones used in experiments: (a) Inspire2, (b) Mavic3,
(c) Phantom4.

FIGURE 3. Setup for field measurements using the smartphone camera,
the FMCW radar, and the microphone.

TABLE 2. Specifications of the optical camera used in experiments.

Table 2, the focal length is 26 mm, the resolution is 12 Mpix-
els (the image size is 4032 × 3024), the image sensor size is
1/2.55 inch, and the size per pixel is 1.4 µm.

Table 3 presents the specifications of the radar sensor with
multiple-input multiple-output (MIMO) FMCW waveforms
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TABLE 3. Specifications of the radar used in experiments.

TABLE 4. Specifications of the acoustic microphone used in experiments.

which are transmitted and received in the range of [24 GHz,
24.25GHz] frequency band. The radar is equipped with four
receive antennas and two transmit antennas on the front.
The radar can simultaneously detect the range, speed, and
angle of multiple targets. The maximum distance and the
velocity range can vary depending on the chirp configuration.
Our experiments set the maximum distance to 80 m and
the velocity range to [−12, 12] m/s. Notice that the maxi-
mum detection distance is limited due to the transmit power
regulation, and a commercial anti-UAV system can increase
the detection range using a high-power radar. A Cardioid
microphone was used with a polar pattern as an acoustic
sensor. The microphone’s sensitivity is−45 dB, the sampling
rate is 48 kHz, and the bit depth is 16 bits, as shown in Table 4.
The detection distance of the microphone depends on the
background noise level caused by various sources, such as
driving cars, strong wind, and talking people. In typical quiet
environments, the maximum detection distance is approxi-
mately 90 – 150 m (90 m for Mavic3, 110 m for Phantom4,
and 150 m for Inspire2). In a commercial anti-UAV system,
microphone arrays can be used to increase the audio detection
distance through acoustic beamforming [30].

As shown in Fig. 3, each sensor is attached to a tri-
pod and placed at an identical height. In the case of the
radar and microphone, the sensors are controlled by built-in
softwares and the measured data are saved in Laptop1 and
Laptop2 through USB cables. Since the optical sensing data
is an image, no conversion procedure is required. The data
obtained through the radar and the acoustic sensor are con-
verted into images through signal processing. The echoes
received from radar sensors are converted to a range-Doppler
map through signal rearrangement and fast Fourier transform
(FFT), and the waveform obtained by the acoustic sensor is
converted into a spectrogram via the STFT. The signal pro-
cessing procedure will be explained in the following section.

III. UAV DETECTION AND CLASSIFICATION USING EACH
INDIVIDUAL SENSOR
In this section, we explain the procedures for obtaining the
optical images, range-Doppler maps, and spectrograms from
the field measurement data obtained by the camera, FMCW
radar, and microphone, respectively, and then present several
example results corresponding to each sensor. Moreover,
CNN models are employed for detecting and identifying
drones using the optical, radar, and audio data, separately.

A. OPTICAL SENSING
The built-in camera of a commercial smartphone was used to
obtain the optimal images of drones and non-drone objects
such as helicopters, sky, surrounding buildings, background
trees, and so on. The size of the image data taken through
a smartphone is 4032 × 3024 × 3. Since the drone can
be operated until the sun goes down, the experiments were
conducted during the daytime, and the images were taken
with the sun behind. The focal length was set to 27 mm
and 52 mm corresponding to the 2x zoom mode, and the
continuous shooting mode of the smartphone was exploited
to take as many pictures as possible. The actual drone images
were obtained by taking pictures of three kinds of drones
in Table 1 during flight, and the non-drone images were
achieved by taking pictures of the sky, the helicopters in flight
near KAU, the trees around the hill in KAU Drone Airfield,
and the surrounding buildings near the CAU Futsal Field.

Moreover, additional external images were acquired for
drones and non-drone objects from open datasets in [51]. The
non-drone images include airplanes, warplanes, helicopters,
rockets, and other objects which look like drones seen from
a distance. Notice that the external datasets provide a variety
of images that are difficult to obtain through measurements.
We convert the size of optical images measured by the built-in
camera and obtained from open datasets to 224× 224× 3 to
fit the input image size of the pre-trained CNN models.
No additional preprocessing is performed except the image
size conversion because the CNN models include the con-
volution and pooling layers to extract features from the input
image. The detailed structure of pre-trained CNNmodels will
be described in Section III-D.
Figs. 4(a), 4(b), and 4(c) show the drone images taken

by the built-in smartphone camera, and Fig. 4(d) presents
an image of a military helicopter acquired from the open
dataset. Whereas the Phantom4 drone is clearly recognized
in Fig. 4(a), the Inspire2 drone is not well differentiated in
Figs. 4(b) and 4(c) due to the background colors similar to
that of the drone. These example images demonstrate the
drawbacks of drone detection based on optical imaging.

B. RADAR SENSING
We obtain the radar sensing data by EV-TINYRAD24G [54].
This radar transmits the rapid chirps waveform, and the
received echoes are used to construct the range-Doppler
map representing the target range and velocity that can be
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FIGURE 4. Images obtained by the built-in smartphone camera:
(a) Phantom4 drone in flight, (b) Inspire2 drone in forest background with
a similar color, (c) Inspire2 drone in building background with a similar
color, (d) Military helicopter.

FIGURE 5. Overall procedure for generating the range-Doppler image
from FMCW received signals.

used for drone detection and classification. Fig. 5 shows
the overall procedure for generating the range-Doppler map
using the received echoes of FMCW signals. Initially, the
received signal is down-converted to a baseband signal and
then sampled to form amatrix composed of complex samples.
Subsequently, the fast time FFT is performed on the columns
of the complex sample matrix, and followed by the execu-
tion of the slow time FFT on the rows in order to create a
range-Doppler map corresponding to the sample matrix. The
resulting range-Doppler map includes the range and velocity
information of targets, which can be used for drone detection
and classification.

Fig. 6 presents a conventional FMCWwaveformwith rapid
chirps which have a very short duration Tchirp. By reduc-
ing this duration, the frequency components associated with
the distance and velocity can be independently estimated,
enabling low-complexity and high-accuracy radar signal

FIGURE 6. FMCW waveform with rapid chirps.

FIGURE 7. Generation of the range-Doppler map using two FFT
operations.

processing. Specifically, the received signal is composed of
reflected echoes from multiple targets as follows:

r(t) =

P∑
p=1

rp(t), (1)

where rp(t) is the received FMCW echoes reflected from
the pth target and P is the total number of targets. Suppose
that there are no noises and clutters affecting the received
signal.When the chirp is expressed as a frequency-modulated
signal with instantaneous phase ϕi, the received signal can be
expressed as [18]

r(t) =

P∑
p=1

Ap
M−1∑
m=0

cos(ϕi(t − mTchirp − τp)) exp(j2πvpt).

(2)

where Ap, τp, and vp denote the amplitude, time delay, and
Doppler frequency shift corresponding to the pth target,
respectively,M is the number of chirps, and the instantaneous
phase is given by

ϕi(t) = 2π f0t + πkf αt2. (3)

Here, f0 is the lower carrier frequency, kf is the frequency
deviation, and α is the modulation signal amplitude.

The frequency down-conversion is separately performed
for each in-phase and quadrature component of the received
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signal. After lowpass filtering, the baseband signal is accu-
mulated to obtain the beat signal as follows:

b(t) =

M−1∑
m=0

P∑
p=1

Ap exp(jϕbmp(t)), (4)

where ϕbmp(t) is the instantaneous phase given by

ϕbmp(t) = ϕi(t − Tchirp) − ϕi(t − mTchirp − τp) + 2πvpt.
(5)

By substituting (3) into (5), we have

ϕbmp(t) = ϕ0 + 2πkf ατpt + 2πvpt, (6)

where ϕ0 is a constant phase term independent of the time
t . From (6), the instantaneous frequency of the beat signal is
obtained as

fbmp =
1
2π

dϕbmp(t)
dt

= kf ατp + vp. (7)

Here, the first term of fbmp is proportional to the delay τp and
the second term is equal to vp, and used to estimate the target
range and velocity, respectively. Thus, (7) can be rewritten as

fbmp =
fsweep
Tchirp

τp + vp = fRp + fDp, (8)

where fRp and fDp are the instantaneous frequencies related to
the target range and velocity, respectively.

The received signal is sampled and the range-matched
filtering is performed. When N is the number of samples
during the fast time, thematched filter output is arranged as an
N×M complexmatrix. The frequency fRp can be estimated by
taking the fast time FFT, i.e., theN -point FFT is carried out on
each column to the range direction, and the results are stored
in the columns of the N ×M matrix as shown in Fig. 7. The
FFT magnitudes are proportional to the amplitudes of targets
(if a target exists at the considered frequency). After the FFT,
the peaks of columns correspond to the target ranges, and the
phases at the peaks of columns are denoted as

ϕm,p = ϕ0p + 2π fDpmTchirp, (9)

where ϕ0p = 2π f0τp − πkf ατ 2p is a constant phase indepen-
dent of the fast time and slow time indexes. Note that the
phases after the fast time FFT depend on the chirp index m as
shown in (9). After the slow time FFT performed to each row
of the N × M matrix, the resulting peak values are mapped
to the Doppler frequencies fDp, as seen on the right side of
Fig. 7. After the fast time and slow time FFTs, the final matrix
represents the range-Doppler map with the range and velocity
information of targets.

Figs. 8 and 9 present the range-Doppler maps obtained
from the measured FMCW radar signals. The intense ver-
tical yellow lines around the zero velocity are a kind of
clutters caused by the leakage of transmit FMCW signals.
In Figs. 8(a), 8(b), and 8(c), the red spots on the left
plane indicate the Inspire2, Mavic3, and Phantom4 drones,
respectively, moving away from the radar sensor at about
30 ∼ 40 m distance with −4 m/s velocity (i.e., having

FIGURE 8. Range-Doppler maps obtained from the FMCW radar signals
for the drones when the distance is 30 ∼ 40 m, the velocity is −4 m/s,
and the altitude is 8 m: (a) Inspire2, (b) Mavic3, (c) Phantom4.

a negative Doppler frequency). Moreover, 9(a) shows the
range-Doppler map obtained from people playing soccer so
that several spots are located near the yellow center line,
and 9(b) denotes several vehicles driving on an eight-lane
boulevard. These range-Doppler maps clearly demonstrate
the difference between drones and non-drone objects, and
also show subtle differences corresponding to three types
of drones. For example, Inspire2 has the most vivid and
widest yellow spot, whereasMavic3 presents the weakest and
smallest spot.

C. ACOUSTIC SENSING
In the field test, acoustic signals are measured with the micro-
phone shown in Fig. 3 using actual drone sounds in flight
and non-drone sounds such as helicopters, vehicles, human
voices, background noises, and so on. Additional non-drone
sounds are obtained from the open dataset in [52] such as
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FIGURE 9. Range-Doppler maps obtained from the FMCW radar signals
for non-drone objects: (a) People playing soccer, (b) Vehicles driving on a
boulevard.

those from engines, propellers, aircraft, rain and thunder, air
conditioners, and background noises. The measured acoustic
data is stored in the .wav file format with 48 kHz sampling
rate and 16-bit quantization per sample.

As shown in Fig. 10, the audio file is converted to a mel
spectrogram through audio signal processing. A spectrogram
is a method for analyzing a sound waveform whose fre-
quency characteristics change over time, which is derived
by arranging the spectrum of the acoustic data in the
time-frequency domain. Firstly, from the recorded audio
waveform, we extract the one-second interval with the highest
entropy. When the number of quantization bits is B, the
entropy of the audio sequences starting at ℓ is defined as

H (ℓ) = −

2B∑
m=1

pm,ℓ log2(pm,ℓ), (10)

where pm,ℓ is the empirical probability corresponding to the
quantization level qm, i.e.,

pm,ℓ = E[xn = qm], n = ℓ, ℓ + 1, · · · , ℓ + L − 1. (11)

Here, xn is the nth input audio sample, qm =

(m − 0.5 − 2B−1)/2B, and L is the number of samples
corresponding to the one-second interval. From the definition
in (10), the audio interval with the highest entropy can be
selected as

ℓo = arg max
ℓ∈{1,1+1ℓ,1+21ℓ,··· }

H (ℓ), (12)

where 1ℓ is the index spacing. Note that the candidate start-
ing index ℓ is adjusted by 1ℓ to reduce complexity.

As a next step, the Hamming window is applied to the
extracted audio signals, and then 1440-point STFT is per-
formed with 960 samples of analysis window overlap length.
The number of bands for mel filtering is 32 and the number
of frames is 89, when the sampling rate is 48 kHz. Finally, the
size of the audio mel spectrogram is adjusted to fit the input
size for the CNN model that conducts the drone detection or
classification. Notice that the mel filter (or mel-scale triangle
filter) describes low-frequency bands with high resolution
while denoting high-frequency bands with low resolution.
Therefore, the mel filter tends to emphasize the acoustic
characteristics of drones in low-frequency bands.

Fig. 11 shows example spectrograms obtained by the audio
signal processing in Fig. 10. Figs. 11(a), 11(b), and 11(c)
present the spectrograms corresponding to Inspire2, Mavic3,
and Phantom4, respectively. It is clearly seen that the spec-
trogram is different according to the type of drone. Fig. 11(d)
is the spectrogram obtained from the sounds of people’s
conversation, which is completely different from those of
drones.

D. CNN-BASED DETECTION AND CLASSIFICATION
In this paper, we consider two-step approach composed of
drone detection and classification. In the first step, we deter-
mine whether it is a drone or a non-drone object from a given
image. If a drone is detected in the first step, the type of
drone is identified in the second step using the same image.
The input image can be either an optical image, a range-
Doppler map, or an audio spectrogram. Drone detection and
classification are conducted by utilizing six CNNmodels that
individually adjust the neural network coefficients with the
training data. Three CNNmodels are used for drone detection
from the optical image, the range-Doppler map, and the
audio spectrogram, respectively, and the other three models
are utilized for drone classification based on the same input
images obtained from three sensors. In a CNN model shown
in Fig. 12, convolution layers and pooling layers that perform
convolutional operations are repeatedly arranged to extract
features of an input image, and the features are sent to the
fully connected layer for detection and classification. In this
paper, GoogLeNet [55], ResNet-101 [56], and DenseNet-
201 [57] are employed among the pre-trained CNN models.

As mentioned before, measurement data obtained by the
camera, radar, and microphone are used in combination with
open datasets for drone detection and classification. Though,
the number of images is not enough to train the CNNmodels,
because the CNN models include a lot of parameters for
feature extraction,1 image processing, and metric computa-
tion for classification. To overcome this problem, we employ
transfer learning that partially modifies a pre-trained CNN
model for other purposes. As shown in Fig. 13, a pre-trained
model is imported, and then some layers are newly configured

1GoogLeNet is composed of 22 layers with 6.8 million parame-
ters, ResNet-101 consists of 101 layers with 1.7 million parameters,
and DenseNet-201 has 201 layers with about 20 million parame-
ters [55], [56], [57].
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FIGURE 10. Overall procedure for generating the spectrogram from measured acoustic signals.

FIGURE 11. Spectrogram obtained from the audio signals: (a) Inspire2,
(b) Mavic3, (c) Phantom4, (d) Sound of people conversation.

FIGURE 12. Overall processing architecture of a convolutional neural
network.

and modified to produce an output suitable for new tasks.
In this paper, the final layers of a pre-trained CNN model are
replaced for drone surveillance, and themodified CNNmodel
is trained using the corresponding training images. Through
this procedure, six trained CNN models are developed for
drone detection and classification with three kinds of sensing
images (i.e., an optical image, range-Doppler map, and audio
spectrogram).

FIGURE 13. Modification of a CNN model for transfer learning.

TABLE 5. Parameters for transfer learning with optical images, radar
images, and spectrogram.

As shown in Table 5, three kinds of sensing images are
converted to 224 × 224 × 3 to fit the input image size of
the pre-trained models. In the case of optical images, we use
70% of the data for training and 30% for verification of the
trained CNN model, while we split the radar images and
audio spectrograms into 80% and 20% for training and ver-
ification, respectively. Image augmentation is used to create
more training examples from the measurement data and open
datasets. Optical images are reflected around x-axis as well
as translated in both x-axis and y-axis over [−30, 30], and
range-Doppler maps and audio spectrograms are translated
in y-axis over [−30, 30] with no reflection. In addition, the
minimum batch size is set to 128 for optical images and 64 for
range-Doppler maps and audio spectrograms considering the
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number of training data, the number of epochs is set to 40,
and the initial learning rate is set to 0.0001.

IV. PROPOSED SENSOR FUSION METHOD FOR UAV
DETECTION AND CLASSIFICATION
In this section, to improve the surveillance performance,
we propose a new drone detection and classification tech-
nique that combines multiple sensing schemes. When using
the optical, radar, and acoustic sensing data, we can combine
the optical image, range-Doppler map, and audio spectro-
gram to make a decision. For notational convenience, the
optical image, radar sensing data, and audio signals are
henceforth referred to as image, radar, and audio in the
following of the paper. For example, the proposed sensor
fusion method can combine two sensing data like image +

radar, image + audio, and radar + audio as well as three
sensing data like image+ radar+ audio. In the following of
this section, we explain the proposed sensor fusion method
combining three kinds of sensing data, i.e., image+ radar+

audio, because two-sensor fusion techniques are a special
case of three-sensor fusion.

Fig. 14 presents the overall block diagram for drone detec-
tion and classification through sensor fusion of the image,
radar, and audio data. As described in Section III-D, three
kinds of sensing data are converted to the resized optical
image, range-Doppler map, and audio spectrogram through
pre-processing, respectively. An initial drone detection proce-
dure is conducted by the CNN model with individual sensing
data. By utilizing the logistic regression model, we combine
the initial detection probabilities obtained from three CNN
models corresponding to the image, radar, and audio data, and
then determine whether a drone is present or not. If a drone
is detected, we perform the drone classification procedure.
The CNN models for drone classification separately com-
pute the probabilities for Inspire2, Mavic3, and Phantom4
utilizing the same input data as the CNN models for drone
detection. Finally, the multinomial logistic regression model
is exploited to compute the combined probabilities for sensor
fusion in the classification procedure.

The drone detection based on the sensor fusion is accom-
plished by the logistic regression model. Given training
datasets, the logistic regression model is given by

ŷ = g(a0 + a1p1 + a2p2 + a3p3), (13)

where ŷ is an N × 1 vector predicting the probability for
drone presence; p1, p2, and p3 represent the N×1 probability
vectors for training obtained from the CNN models with
the image, radar, and audio sensing data, respectively; a0 is
a bias term; a1, a2, and a3 are weight coefficients for the
probabilities obtained from the image, radar, and audio CNN
models; and N is the number of training datasets. Here, g(x)
is the sigmoid function defined as

g(x) =
1

1 + e−x
. (14)

The logistic regression model in (13) can be rewritten in a
vector-matrix form as follows:

ŷ = g(Pa), (15)

where P = [1, p1, p2, p3] and a = [a0, a1, a2, a3]T . To find
the optimal coefficients {a0, a1, a2, a3} for sensor fusion,
we define the cost function

J (a) = −
1
N

[
yT log(ŷ) + (1 − y)T log(1 − ŷ)

]
+

λ

2N
aT0 a0,

(16)

where a0 = [0, a1, a2, a3]T and λ is the regularization
parameter. The gradient of J (a) is expressed as

∂J (a)
∂a

=
1
N
D−1(ŷ)

∂ ŷT

∂a
y

+
1
N
D−1(1−ŷ)

∂ ŷT

∂a
(y−1) +

λ

N
a0, (17)

where D(x) = diag([x1, x2, · · · , xN ]) for x = [x1, x2, · · · ,

xN ]T . Here, from the logistic regression model in (15),
we have

∂ ŷT

∂a
= PTD2(ŷ)D(exp(−Pa)). (18)

By substituting (18) into (17), the gradient is expressed as

∂J (a)
∂a

=
1
N

[
PT (ŷ− y) + λa0

]
. (19)

Using the gradient method, the coefficient vector a(j) at the
jth iteration can be updated as

a(j) = a(j− 1) − µ
∂J (a)
∂a

= a(j− 1) − µ
1
N

[
PT (ŷ− y) + λa0

]
. (20)

Suppose that ao = [ao0, a
o
1, a

o
2, a

o
3]
T is an optimal coefficients

for sensor fusion obtained by (20), the test datasets are used
to evaluate the drone detection performance as follows:

ŷtest = g(ao0 + ao1p
test
1 + ao2p

test
2 + ao3p

test
3 ), (21)

where ŷtest is anM × 1 vector representing the probability of
drone presence; ptest1 , ptest2 , and ptest3 are theM×1 probability
vectors of test datasets obtained from the CNN models with
the image, radar, and audio sensing data, respectively; andM
is the number of test datasets.

For the drone classification based on sensor fusion,
we exploit the multinomial logistic regression with the logit
model. Given the training datasets, the model for the relative
risk is denoted as [53]

log(r13) = b0 + b1,Mq1,M + b1,Pq1,P + b2,Mq2,M
+ b2,Pq2,P + b3,Mq3,M + b3,Pq3,P (22a)

log(r23) = c0 + c1,Mq1,M + c1,Pq1,P + c2,Mq2,M
+ c2,Pq2,P + c3,Mq3,M + c3,Pq3,P, (22b)

where q1,∗, q2,∗, and q3,∗ represent theNc×1 probability vec-
tors obtained from the CNN models for drone classification

68800 VOLUME 11, 2023



H. Lee et al.: CNN-Based UAV Detection and Classification Using Sensor Fusion

FIGURE 14. Block diagram for drone detection followed by classification through sensor fusion of the image, radar, and
audio.

with the image, radar, and audio sensing data, respectively;
qj,M and qj,P mean the probability vectors associated with
Mavic3 and Phantom4; b0 and c0 are bias terms; {bj,∗} and
{cj,∗} are weight coefficients for logistic regression; and Nc is
the number of training datasets for drone classification. Here,
rkℓ is given by

rkℓ =

[
P(y1 = k)
P(y1 = ℓ)

,
P(y2 = k)
P(y2 = ℓ)

, · · · ,
P(yNc = k)
P(yNc = ℓ)

]T
. (23)

where k, ℓ ∈ {1, 2, 3}, and P(yi = 1), P(yi = 2), and
P(yi = 3) denote the probabilities that the ith observation is
Inspire2, Mavic3, and Phantom4, respectively. The equations
in (22a) can be rewritten in a vector-matrix form as below:

log
P(y = 1)
P(y = 3)

= Qb, (24a)

log
P(y = 2)
P(y = 3)

= Qc, (24b)

where Q =
[
1 q1,M q1,P q2,M q2,P q3,M q3,P

]
, b =

[b0, b1,M , b1,P, b2,M , b2,P, b3,M , b3,P]T , and c = [c0, c1,M ,

c1,P, c2,M , c2,P, c3,M , c3,P]T . Following the approach in [53],
the problem for finding the optimal coefficients is for-
mulated as the maximum a posterior (MAP) estimation,
and can be solved by an iterative procedure such as the
gradient-based optimization algorithm [53] and the coordi-
nate descent algorithm [58].

Using the optimal coefficient vectors bo and co, we can
predict the probabilities for drone classification given test
datasets. From (24a), we may write

P(ytest = 1) = P(ytest = 3) exp(Qtestbo) (25a)

P(ytest = 2) = P(ytest = 3) exp(Qtestco), (25b)

whereQtest is anMc×7 matrix composed of the probabilities
obtained from the CNN models using the test datasets. Using
(25a) and the fact thatP(y=1)+P(y=2)+P(y=3)=1, we can

predict the probabilities for drone classification as below:

P(ytest = 1) =
exp(Qtestbo)

1 + exp(Qtestbo) + exp(Qtestco)
(26a)

P(ytest = 2) =
exp(Qtestco)

1 + exp(Qtestbo) + exp(Qtestco)
(26b)

P(ytest = 3) =
1

1 + exp(Qtestbo) + exp(Qtestco)
. (26c)

V. NUMERICAL RESULTS
In this section, we evaluate the drone surveillance perfor-
mance of the proposed sensor fusion method and compare
those of the schemes based on individual sensors. Specifi-
cally, we consider the following methods for drone detection
and classification.

• Image [9]: Based on the optical images, CNNmodels are
used for drone detection and classification as in [9]. For
training and verification, the measured optical images
in Section III-A are used along with the open datasets
available in [51].

• Radar [20]: Based on the range-Doppler maps obtained
from the FMCW radar, CNN models are used for drone
detection and classification as in [20]. For training and
verification, the measured radar signals are converted to
the range-Doppler maps as explained in Section III-B.

• Audio [34]: Based on the audio spectrograms, CNN
models are used for drone detection and classification
as in [34]. For training and verification, the measured
audio signals are converted to the spectrograms as in
Section III-C and the open datasets in [52] are used as
well.

• Image + Radar: The proposed sensor fusion method is
designed by combining the optical images and range-
Doppler maps.

• Image + Audio: The proposed sensor fusion method
is utilized by combining the optical images and audio
spectrograms.
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TABLE 6. Overall datasets for training and verification of the CNNs
models corresponding to the optical images, radar range-Doppler maps,
and audio spectrograms.

TABLE 7. Open datasets obtained from [51], [52].

TABLE 8. Number of datasets for coefficient training and final test in the
proposed sensor fusion method based on the multinomial logistic
regression.

• Radar + Audio: The proposed sensor fusion method is
used by combining the range-Doppler maps and audio
spectrograms.

• Image + Radar + Audio: The proposed sensor fusion
method in Section IV is fully implemented by integrat-
ing the optical images, range-Doppler maps, and audio
spectrograms.

We employed pre-trained CNN models provided by MAT-
LAB deep learning toolbox, and modified the CNN models
via transfer learning as described in Section III-D. Table 6
presents the overall datasets for training the CNN mod-
els with the optical images, range-Doppler maps, and
audio spectrograms. In the case of the optical sensing,
a total of 13685 datasets were used including 8870 field
measurement images and 4815 online datasets in [51].
Through actual measurements, we obtained 400 non-drone
images and 8470 drone images composed of 3576, 2665,
and 2229 datasets for Inspire2, Mavic3, and phantom4,

FIGURE 15. Learning curves of the GoogLeNet used for drone detection
with optical images.

FIGURE 16. Learning curves of the GoogLeNet used for drone detection
with radar range-Doppler maps.

respectively. In the case of the radar sensing, a total of
24348 datasets were obtained through field measurements,
i.e., 10728 range-Doppler maps for non-drone objects,
7085 datasets for Inspire2, 2777 datasets for Mavic3, and
3758 datasets for Phantom4. Note that open datasets were
not employed for radar sensing because it is difficult to find
range-Doppler images that match the FMCW radar specifi-
cations used in our experiments. In the case of the acoustic
sensing, a total of 7236 spectrograms were used including
1533 actual measurement datasets and 5703 online datasets
in [52]. In field measurements, we acquired 300 audio
datasets for non-drone objects, 426 datasets for Inspire2,
433 datasets for Mavic3, and 374 datasets for Phantom4.

As shown in Table 7, the open datasets for optical images
consist of images for airplanes, helicopters, warplanes, and
rockets similar to drone images in flight. Also, the open
datasets for acoustic signals include the sounds of vehicle
engines, aircraft propellers, rain and thunder, air condition-
ers, and various background noises. It is noticeable that all
datasets for drones and non-drone objects are utilized when
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FIGURE 17. Learning curves of the GoogLeNet used for drone detection
with audio spectrograms.

FIGURE 18. Learning curves of the GoogLeNet used for drone
classification with optical images.

the CNN models are applied to drone detection while only
the datasets for drones are used to the CNN models for drone
classification.

The proposed sensor fusion method requires datasets con-
currently measured from the camera, radar, and microphone
to combine the optical image, the range-Doppler map, and
the audio spectrogram obtained under the same drone flight
conditions. Table 8 describes the number of datasets for
coefficient training and the final test in the multinomial
logistic regression model obtained by the field measure-
ments. For drone detection, we used 900 drone datasets and
300 non-drone datasets in the training mode to find the opti-
mal coefficients, and performed the final test for 450 drone
datasets and 150 non-drone datasets. For drone classification,
we used the same drone datasets as those for drone detection.
So, we exploited 300 datasets for each type of drone in the
training and 150 datasets for each type of drone in the final
test.

Figs. 15–17 show the learning curves of the CNN models,
which are applied to drone detection using optical images,

FIGURE 19. Learning curves of the GoogLeNet used for drone
classification with radar range-Doppler maps.

FIGURE 20. Learning curves of the GoogLeNet used for drone
classification with audio spectrograms.

radar range-Doppler maps, and audio spectrograms, respec-
tively, and Figs. 18–20 present the learning curves of the
CNNmodels used for drone classification. In the simulations,
GoogLeNet was used as a pre-trained CNN model and the
parameters were set as in Table 5. Overall, with the increment
of the number of iterations, the accuracy gradually increases
while the loss function gradually decreases. The converging
speed is somewhat different depending on the type of sensors
and the sort of surveillance (detection or classification), yet
the accuracy and the loss function converge to the steady-state
values when the number of iterations is greater than 2000 in
all cases.

A. UAV DETECTION RESULTS
Figs. 21–23 show the confusion matrices for drone detec-
tion using GoogLeNet, ResNet-101, and DenseNet-201,
respectively, with the input images obtained from the indi-
vidual sensors and the two-sensor fusion techniques. Fig. 24
presents the results for drone detection using the proposed
three-sensor fusion method. Moreover, Table 9 denotes the
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FIGURE 21. Drone detection results using the GoogLeNet with individual
sensors and two-sensor fusion.

FIGURE 22. Drone detection results using the ResNet-101 with individual
sensors and two-sensor fusion.

FIGURE 23. Drone detection results using the DenseNet-201 with
individual sensors and two-sensor fusion.

detection accuracy of individual and combined sensing meth-
ods for drones and non-drone objects, where the positive
predictive value (PPV) and the true positive rate (TPR) are
also called the precision and the recall, respectively. The
F-score, F1, is defined as

F1 = 2
PPV × TPR
PPV + TPR

. (27)

FIGURE 24. Drone detection results using various CNN models with
three-sensor fusion (Image+Radar+Audio).

TABLE 9. Detection accuracy of individual and combined sensing
methods for drones and non-drone objects, where the bold numbers
indicate the highest value in each column. (PPV = positive predictive
value, TPR = true positive rate.)

Among individual sensing methods, the optical image has the
lowest detection accuracy and the audio sensor achieves the
highest detection accuracy in terms of the F-score, because
the verification datasets contain drone images with drone-like
background colors and non-drone images that are difficult to
distinguish from drones (see Fig. 4). The F-score tends to
increase as the number of combined sensors increases, and
thus the proposed three-sensor fusion method presents the
highest F-score for all CNNmodels. Specifically, the F-score
is improved by 2.4% ∼ 15.6% by the proposed three-sensor
fusion method compared to the individual sensing schemes.
In the proposed three-sensor fusion method, the ResNet-101
model achieves slightly better F-score than the GoogLeNet
and DenseNet-201.

B. UAV CLASSIFICATION RESULTS
Figs. 25–27 denote the confusion matrices for drone classi-
fication using GoogLeNet, ResNet-101, and DenseNet-201,
respectively, with the input images obtained from the indi-
vidual sensors and the two-sensor fusion schemes. Fig. 28
shows the results for drone classification using the proposed
three-sensor fusionmethod. Also, Table 10 presents the drone
classification accuracy for individual and combined sensing
techniques. Here, the average PPV, the average TPR, and the
average of class-wise F-scores are defined as

Pavg =
1
3

3∑
k=1

Pk , Ravg =
1
3

3∑
k=1

Rk (28a)
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FIGURE 25. Drone classification results using the GoogLeNet with
individual sensors and two-sensor fusion.

FIGURE 26. Drone classification results using the ResNet-101 with
individual sensors and two-sensor fusion.

FIGURE 27. Drone classification results using the DenseNet-201 with
individual sensors and two-sensor fusion.

F1,avg =
1
3

3∑
k=1

F1,k , (28b)

respectively, where Pk , Rk , and F1,k are given by

Pk =
ck,k

c1,k + c2,k + c3,k
(29a)

Rk =
ck,k

ck,1 + ck,2 + ck,3
(29b)

FIGURE 28. Drone classification results using various CNN models with
three-sensor fusion (Image+Radar+Audio).

TABLE 10. Classification accuracy of individual and combined sensing
methods for entire datasets, where the bold numbers indicate the highest
value in each column. (PPV = average positive predictive value, TPR =

average true positive rate, F-score = average of class-wise F-scores.)

F1,k = 2
PPVk × TPRk
PPVk + TPRk

. (29c)

Here, cm,n is the (m, n)th element of the confusion matrix for
drone classification.

Overall, the classification accuracy in Table 10 is lower
than the detection accuracy in Table 9 because distinguishing
the drone type is more challenging than determining the
presence of a drone. As shown in Figs. 8 and 9, the differ-
ence in range-Doppler maps between drones and non-drone
objects is much more prominent than the difference among
the three types of drones. Similar results are observed in the
audio spectrogram in Fig. 11, and it is inferred that the
optical sensor has similar trends to the radar and audio
sensors. Therefore, the drone classification methods exhibit
much lower accuracy than the corresponding drone detec-
tion schemes. Considering the individual sensors, the image
sensor presents the highest F-score while the audio sen-
sor obtains the lowest F-score. The proposed two-sensor
fusion methods such as Image+Radar, Image+Audio, and
Radar+Audio achieve higher F-scores than individual sens-
ing schemes. The proposed three-sensor fusion method
obtains the highest F-score among all drone classification
techniques in the ResNet-101 and DenseNet-201 models,
while the Image+Radar fusion scheme presents slightly
better performance than the three-sensor fusion method in
the GoogLeNet. Specifically, the F-score is improved by
8.7% ∼ 28.1% by the proposed three-sensor fusion method
compared to the individual sensing schemes. In the pro-
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TABLE 11. Classification accuracy of individual and combined sensing
methods for Dataset-A, where the bold numbers indicate the highest
value in each column.

TABLE 12. Classification accuracy of individual and combined sensing
methods for Dataset-B, where the bold numbers indicate the highest
value in each column.

posed three-sensor fusion method, the DenseNet-201 model
achieves the best F-score.

To further investigate the results of drone classification,
we separate the test datasets into two groups referred to as
Dataset-A and Dataset-B. Dataset-A consists of test datasets
with high classification accuracy. Specifically, the distance
between the sensor and the drone is less than half the maxi-
mum distance for optical, radar, and audio sensing. In optical
sensing, the drone altitude is lower than 10 m, and the
background is relatively simple like a blue sky. Also, the
audio signal is recorded in situations with low background
noises. In contrast, Dataset-B is composed of test datasets
with low classification accuracy. The distance between the
sensor and the drone is greater than half the maximum dis-
tance for optical, radar, and audio sensing. In optical sensing,
the drone altitude is higher than 10 m, and the background
is relatively complicated like many trees and buildings.
Moreover, relatively high background noises are included in
the audio signals. Tables 11 and 12 denote the classifica-
tion accuracies for Dataset-A and Dataset-B, respectively.
As expected, in Dataset-A, the individual sensing meth-

ods have the worst performance, and the performance is
improved as the number of combined sensors increases.
Thus, the proposed three-sensor fusion method achieves the
best F-score irrespective of pre-trained CNN models. How-
ever, in Dataset-B, the proposed three-sensor fusion scheme
does not guarantee the best performance. For instance, the
Image+Radar method achieves higher F-scores than the
Image+Radar+Audio scheme in all CNN models. These
results imply that the initial classification performance of
each sensor needs to exceed a certain threshold in order to
enhance the classification accuracy through sensor fusion
schemes.

VI. CONCLUSION
In this paper, we proposed a sensor fusion method for drone
detection and classification based on the CNN models for
individual sensing and the multinomial logistic regression for
combining the optical, radar, and audio sensing data. Through
field experiments and numerical simulations, it was veri-
fied that the proposed sensor fusion scheme improves drone
surveillance performance compared to individual sensing
methods. It was also shown that the sensor fusion approach
does not guarantee performance enhancement when the accu-
racy of individual sensing is low. Integrating multiple sensors
is crucial for drone surveillance because individual sens-
ing schemes, such as the optical camera, radar, and audio
microphone, have complementary advantages and disadvan-
tages. The results presented in this paper can be exploited
to optimize the combining algorithm for sensor fusion when
designing anti-UAV defense systems to protect security areas.
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