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ABSTRACT Prediction of accurate wind speed is necessary for a variety of applications such as energy
production, agriculture, climate modeling, and weather forecasting. Various satellites orbiting the earth
measure the wind speed, which is particularly useful as they provide measurements of wind speed over large
areas and in remote locations that might be difficult to measure using other methods. However, satellite-
based wind speed measurements have relatively low spatial resolution compared to other methods, such
as ground-based radar. In this research, we develop WindSR and a lightweight tiny-WindSR to improve
the resolution of satellite wind speed data by four times from the NASA’s GEOS-5 Nature Run dataset.
WindSR has SRResNet-based architecture consisting of several Residual-in-Residual Dense Blocks to
compute features from low spatial resolution (28 km) wind speed for upscaling. We train WindSR with
more than 20,000 pairs of low-resolution (28 km) and corresponding high-resolution (7 km) wind speed
data and evaluate its performance on the validation set consisting of 2,102 wind speed images. Experimental
results show that WindSR outperforms classical upsampling algorithms, such as Bicubic interpolation and
Lanczos interpolation by 17.89% and general-purpose super-resolution GANs such as BSRGAN and SwinIR
by up to 11.35% on the RMSE metric. The dataset developed in this research is publicly available at:
https://github.com/sekilab/WindSR_Dataset.

INDEX TERMS CNN, GAN, super-resolution, wind speed.

I. INTRODUCTION
As one of the most important renewable energy sources, wind
is an inexhaustible, no-cost, and sustainable energy source.
It has become one of the focus of energy studies due to
the availability of megawatt-size wind machines, accessible
management facilities, ease of maintenance, tax benefits,
and government subsidies [1]. Wind, however, is not a con-
trollable energy that can be scheduled and planned and the
prediction and calculation of wind speed are essential for a
variety of applications, such as energy production, weather
forecasting, agriculture, transportation, etc.

The associate editor coordinating the review of this manuscript and

approving it for publication was Gerardo Di Martino .

Large-scale wind speed on the earth can be measured
mainly by two techniques, such as ground-based radar and
earth-observing satellites. Ground-based radar measures the
wind speed by sending out radio waves that bounce off the
atmospheric particles. By measuring the Doppler shift [2]
of the returned signal, wind speed is calculated. Ground-
based radar techniques, however, cannot measure wind speed
in remote locations [3]. Satellite-based techniques use a
similar principle to measure wind speed and other atmo-
spheric variables [4] from earth-observing satellites. They
are particularly useful in covering a large area and remote
locations, where ground-based radar cannot be used. Com-
pared to ground-based radar techniques that generally have
a high resolution of less than one kilometer, satellite-based
wind speed measurement techniques have a low spatial
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resolution, ranging from hundreds of meters to tens of
kilometers [3].

Deep learning techniques, particularly, convolutional neu-
ral networks have been shown to be successful in a variety
of tasks such as object detection, image classification, image
generation using GANs, etc [5]. Recently, transformers have
also been shown to be successful for image processing
tasks [6], [7], [8], [9]. Such deep learning techniques for
image super-resolution are useful since they can learn from
a large amount of training dataset and generalize well on the
unseen/test dataset. A wide range of techniques have been
developed utilizing GANs to reconstruct a high-resolution
image from a low-resolution image [10], [11], [12], [13], [14],
[15], [16], [17].

Present methods for image super-resolution tasks mainly
focus on super-resolution problems for standard real-world
images. Some studies [18] have explored the use of other
types of data, such as wind speed and solar data limited
to benchmarking existing super-resolution techniques [12],
[19]. Existing super-resolution techniques utilizing GANs
consider natural image, which has textures and shapes. Satel-
lite data, on the other hand, have different properties than
natural images (e.g., no regular texture or shapes) and the use
of such satellite data for super-resolution tasks has not been
fully explored.

In this research, we develop WindSR and tiny-WindSR
based on the SRResNet architecture [12], [14] to improve the
resolution of wind speed by four times from 28 km to 7 km
using the satellite wind speed data from the NASA’s GEOS-5
Nature Run dataset. Specifically, we

• Develop a large-scale wind speed dataset consisting of
more than 20,000 pairs of Low Resolution-High Resolu-
tion (LR-HR) images for super-resolution from NASA’s
GEOS-5 Nature Run dataset

• Propose an SRResNet-based architecture – WindSR as
well as a small version of it, tiny-WindSR for real-time
applications to upscale wind speed from 28 km spatial
resolution to 7 km

• Compare the accuracy of the proposed architecture with
classical upsampling techniques as well as state-of-the-
art GAN-based algorithms, such as BSRGAN [20] and
SwinIR [21] on a validation set consisting of more than
2,100 wind speed images

• Understand the performance of discriminator networks
and loss metrics for remote sensing data, such as wind
speed, compared to standard three-channel real-world
images

II. METHODOLOGY
A. GEOS-5 NATURE RUN DATASET
The GEOS-5 Nature Run dataset [4] contains gridded out-
put files at a resolution of 7 km from a non-hydrostatic,
global mesoscale simulation produced by the non-hydrostatic
version of the GEOS-5 Atmospheric Global Climate
Model (AGCM). The GEOS-5 Nature Run dataset offers
two resolutions: reduced-resolution and full-resolution.

TABLE 1. Full-resolution GEOS-5 Nature Run dataset details.

FIGURE 1. We calculate the wind speed for each grid/pixel using the
2-meter eastward and northward component in the GEOS-5 Nature Run
dataset. The resolution of the dataset is 7 km.

A reduced-resolution dataset contains hourly data intervals,
while a full-resolution dataset contains data at 30-minute
intervals. In this study, we make use of the full-resolution
dataset for conducting research studies, which has a fre-
quency of 30 minutes and starts from 23:30 UTC. The
GEOS-5 Nature Run dataset contains a total of 75 variables
such as cloud top pressure, cloud top temperature, total pre-
cipitation, snowfall, northward wind, eastward wind, etc. The
values for those variables are contained in the grid with a
resolution of 7 km. The description of the full-resolution
GEOS-5 Nature Run dataset is shown in Table 1. As the
GEOS-5 Nature Run dataset is available for several months
at intervals of 30 minutes, we randomly download the dataset
for different days and times to ensure a wide range of wind
speeds for better generalization, and process it as explained
in the next subsection.

B. PREPARATION OF DATASET
From the GEOS-5 Nature Run dataset, we consider two
variables U2M and V2M, which are 2-meter eastward and
2-meter northward wind, respectively. The unit of both U2M
and V2M is ms−1. Using U2M and and V2M compo-
nents, we calculate the wind speed for each grid as, W =√
U2M2 + V2M2. The visualization of the wind speed is

shown in Figure 1. From Figure 1, we find that the wind speed
varies greatly across the globe with some places having wind
speed above 30 ms−1. We also notice that the wind speed in
oceans is particularly high compared to the land.

From the calculated wind speed shown in Figure 1,
we extract patches/crops of resolution 400 × 400 in such
a way that no two patches intersect in any way and are
exclusive. We then use bilinear interpolation [22], [23] to
down-sample the crops to 100 × 100. Since the original
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FIGURE 2. Examples of low-resolution (LR) at 28 km and high-resolution
(HR) at 7 km wind speed present in the training dataset. LR wind images
are scaled four times to match the same dimensions as HR images for
visualization.

resolution of the wind speed is 7 km, the resolution after 4×
down-sampling is 28 km. The 7 km high-resolution (HR) and
the corresponding 28 km low-resolution (LR) pairs are, then,
used to train the super-resolution resolution model. In total,
we prepare 20,046 pairs (LR-HR) for training and indepen-
dently prepare another 2,102 pairs (LR-HR) for validation.
To consider the robustness of the approach, the 2,102 pairs for
validation are prepared from different dates and times used
for training. Figure 2 shows the visualization of the LR-HR
pair.

While it is common to use the compressed form of data
representations such as JPEG, PNG, etc. in general computer
vision tasks for super-resolution, the same is not applicable
in this problem since the value of each pixel represents wind
speed value, and retrieval of exact value is necessary. Thus,
we need a lossless format to save all the wind speed values in
raw format without any loss of information. For this reason,
we save the LR-HR wind speed values in raw numpy [24]
format.

C. DEVELOPMENT OF WINDSR
1) WINDSR AND TINY-WINDSR ARCHITECTURE
WindSR and tiny-WindSR have SRResNet-based architec-
ture [14] (LR→ CONV2D→ RESIDUAL BLOCKS →

CONV2D→ UPSAMPLE→ CONV2D→ HR), which con-
sists of multiple residual blocks [25] to upsample low-
resolution images. We replace the residual blocks in the
generator of the SRResNet with Residual-in-Residual-
Dense-Blocks (RRDB) [12] for upscaling lower resolution
data to higher resolution, as shown in Figure 3. Figure 3
shows that WindSR and tiny-WindSR compute the maximum
feature in the LR space through RRDB blocks before upsam-
pling. Both WindSR and tiny-WindSR have 128 filters in
each of the convolutional layers in the generator, including
those inside the RRDB blocks. tiny-WindSR consists only of
one RRDB block and 128 filters in each of the convolutional
layers. Being very lightweight, tiny-WindSR can be used to
upscale input wind speed for real-time applications.

Both WindSR and tiny-WindSR do not contain batch nor-
malization layers after convolution blocks that have been seen
to generate artifacts in the image [12]. The effect of batch
normalization is presented in the results section.

2) LOSS FUNCTION
During the development of the WindSR and tiny-WindSR
architecture, we consider two common types of loss functions
in image generation, which are pixel losses (L1 and L2)
and content loss (LC ). In pixel loss, image differences are
measured at the pixel level, and high-level features such as
texture and structure are not taken into account, which may
result in extremely smooth and blurry images. L1 pixel loss
considers the absolute difference between pixel values of the
generated and ground truth image, as shown in Eq. 1, while
L2 pixel loss considers the squared difference between the
pixel values, as shown in Eq. 2.

L1
= E

[ ∣∣∣G(LRi) − HRi
∣∣∣ ] (1)

L2
= E

[(
G(LRi) − HRi

)2]
(2)

In Eq. 1 and Eq. 2, G(LRi) represents the high-resolution
wind speed image (7 km) generated by the generator (G) for
the input low-resolution LRi at 28 km.HRi corresponds to the
ground-truth high-resolution wind speed data at 7 km for the
low-resolution wind speed LRi.

To consider high-level features, content loss (LC ) is used,
which measures the difference between the feature represen-
tations of the generated image and the ground truth image,
typically obtained from a pre-trained convolutional neural
network, such as VGG-19 [26], as shown in Eq. 3. Content
loss is more effective in preserving the global structure and
texture of the image, and can producemore visually appealing
results than pixel loss.

LC = E
[ ∣∣∣FVGG4

(
(G(LRi)

)
− FVGG4

(
HRi

)∣∣∣ ] (3)
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TABLE 2. Hyperparameters during training.

In Eq. 3,FVGG4
((G(LRi)) refers to the featuremap obtained

for the generated high-resolution image (G(LRi)) image by
the 4th convolution layer in the VGG-19 network. Simi-
larly, FVGG4

(HRi) refers to the feature map obtained for
the ground-truth high-resolution (HRi) wind speed at 7 km
resolution.

3) HYPERPARAMETERS AND TRAINING DETAILS
We train WindSR with different hyperparameters for
300 epochs on Tesla A100 GPUs [27] and consider various
hyperparameters, as shown in Table 2. The discriminator
during the experiment has the same architecture as presented
in [12]. Residual scaling [19], [28] in Table 2 refers to scaling
down the residual values in the RRDB blocks before adding
to the main path to prevent instability of training very deep
neural networks. It is important to note here that for the
calculation of content loss (LC ), we use the pre-trained VGG
network on the ImageNet dataset. Since the input has three
channels in the VGG dataset, as compared to the one channel
present in the wind speed dataset, we simply repeat the wind
speed values along three axes for both the generated image
and ground truth image and compare the feature difference in
the intermediate VGG layer.

D. BASELINE METHODS
For the comparison of the proposed models, we use four clas-
sical upsampling techniques and two GAN-based techniques
utilizing the state-of-the-art convolutional neural network and
transformer backbones.

1) CLASSICAL UPSAMPLING TECHNIQUES
a: NEAREST NEIGHBOR
Nearest neighbor upsampling is one of the simplest upsam-
pling techniques that copies the value of the nearest pixel
to increase the resolution of the images. It is also known as
the pixel replication method and can preserve sharp image
details, but it can substantially introduce non-uniform texture
to images that were previously smooth.

b: BILINEAR
The bilinear sampling method estimates each new pixel in the
upsampled image by averaging the four nearest pixels in the
original image. The weights for each pixel are determined by
the distance between the new pixel and each of its nearest
neighbors.

c: BICUBIC
In bicubic interpolation, cubic splines or other polynomial
techniques are used to upsample images. The new pixels in
the upsampled image are assigned values based on a weighted
average of the nearest 16 pixels in the original image, accord-
ing to a cubic polynomial function that takes into account the
distance between the new pixel and its neighbors. Compared
to the standard bilinear algorithm, it preserves fine detail
more effectively.

d: LANCZOS
Lanczosmethod is helpful when the upscaled image is used to
identify features or boundaries. Edge and linear elements may
be detected more easily with Lanczos resampling. During
upsampling, zeros are inserted between the pixels of the
original image, and then the Lanczos kernel Eq. 4 is used to
interpolate the missing values.

L(x) =

{
sinc(x) · sinc(x/a) if |x| ≤ a
0 otherwise

(4)

In Eq. 4, sinc(x) =
sin(πx)

πx , and a refers to the width of the
kernel.We consider 8×8 pixels neighborhood for the Lanczos
interpolation.

2) GAN-BASED DEEP LEARNING TECHNIQUES
Classical upsampling techniques have several limitations,
such as the introduction of artifacts, lack of details, and
irregular quality due to fixed rules of algorithms. A deep
learning-based upsampling technique upsample images sev-
eral times without losing quality due to its generalization by
training on a large-scale dataset. In this research, wemake use
of two deep learning upsampling techniques for comparison
with our developed WindSR. It should be noted that we
consider the real wind speed values using the raw image
formats instead of using lossy formats, such as JPG used for
training standard images.

a: BSRGAN
All super-resolution algorithms first degrade the high-
resolution image to low-resolution using techniques, such
as bicubic interpolation, bilinear interpolation, etc. and try
to reconstruct the high-resolution image from the degraded
image. Blind Super Resolution with Generative Adversar-
ial Networks (BSRGAN) [20] introduces novel techniques
to degrade high-resolution images to low-resolution using
more practical approaches for blurring, downsampling and
introducing noise compared to traditional techniques such
as bicubic interpolation commonly used in downsampling
images. BSRGAN tries to reduce the mismatch between the
assumed degradation model, such as bicubic compared to
how the images are degraded in the real-world scenario.

The BSRGAN architecture utilizes the widely used
ESRGAN [12] architecture to train a PSNR-oriented [29]
BSRNet model, followed by a perceptual quality-oriented
BSRGAN model. The PSNR-oriented model focuses mainly
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FIGURE 3. The network architecture of WindSR and tiny-WindSR consists of 16 and 1 RRDB modules, respectively to compute features from
low-resolution wind speed at 28 km. Based on the experiment results, we remove the batch normalization layer (BN) from the RRDB block. The
RRDB layer consists of CONV2D→ReLU→CONV2D blocks and BN is not used after convolution, as also presented in [12]. Both WindSR and
tiny-WindSR have 128 filters in each of the CONV2D layers.

on pixel-level reconstruction and for real-world images is less
practical, as it leads to the smoothing of the image. From the
perspective of wind speed super-resolution, pixel-level values
are significant rather than the natural perceptual quality of
the image. For this reason, in our experiment, we only report
PSNR-oriented BSRNet model results.

b: SWINIR
While the majority of super-resolution techniques use the
convolutional neural network, SwinIR [13] utilizes trans-
former networks to achieve the same goal. SwinIR uses
a multi-scale strategy to process images at different levels
of detail, such as shallow feature extraction, deep feature
extraction, and high-resolution image reconstruction. Each
level is processed by a separate instance of the swin trans-
former [21]. In particular, the deep feature extraction module
consists of residual swin transformer blocks. The residual
swin transformer has a convolutional layer at the top, which
enhances the translational equivariance of SwinIR [13]. The
residual connection allows the aggregation of different levels
of features using identity-based connections between differ-
ent blocks and the reconstruction module. SwinIR has been
shown to outperform state-of-the-art super-resolution tech-
niques on several real-world data sets such as DIV2K [30],
ImageNet [31], and Flickr2K [32].

Similar to the BSRGAN, we train PSNR-oriented SwinIR
without any discriminator network with the GEOS-5 Nature
Run dataset [4] since our target is not on the visual appearance
of the image, but the values of individual pixels.

III. RESULTS
We evaluate the performance of various upsampling tech-
niques on the validation dataset consisting of 2,102 wind

TABLE 3. Comparison of RMSE values of various upsampling algorithms
on the validation dataset.

speed images using RMSE metric and present the results in
Table 3. In Table 3, we report BSRGAN and SwinIR results
only for the pixel-wise loss since having a discriminator
increases the pixel-wise loss further. From Table 3, we notice
that WindSR achieves the lowest RMSE on the validation set.
Classical upsampling techniques, such as the nearest neigh-
bor have a large RMSE compared to deep learning-based
algorithms, such as BSRGAN, SwinIR, etc. From Table 3,
we notice that tiny-WindSR also outperforms BSRGAN and
SwinIR models.

In Table 4, we show the results of various hyperparame-
ters on the performance of WindSR. We find that changing
pixel loss to L2 in the case of WindSR_V1 increases the
RMSE loss slightly. Decreasing the number of filters to 16 in
WindSR_V2 and having a batch normalization in the convo-
lutional layers in WindSR_V3 increases the RMSE loss by
9% in both cases compared to WindSR.

From Table 4, we notice that having a discriminator net-
work introduces a significant increase in the RMSE value.
Further, the introduction of content loss on the extracted fea-
tures from a pre-trained VGG-19 network increases RMSE
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TABLE 4. RMSE on the validation dataset and GFLOPs of the generator with various hyperparameters. Training a discriminator, if present, is done using
content loss, while training a generator is done using pixel loss.

loss significantly, even in the absence of the discriminator net-
work. This could mean that content loss increases the RMSE,
rather than the discriminator itself in WindSR_V4. However,
this is not true, because when we remove the content loss
and keep the discriminator in the case of WindSR_V6, the
RMSE increases by 29.21% compared to WindSR_V4 with
both pixel and content loss.

In the case of tiny-WindSR, even after reducing the number
of RRDB to one, the RMSE does not increase considerably,
but merely 5.22%. This is significant because tiny-WindSR
has an 88.52% reduction in the number of parameters to
128.19 GFLOPs compared to the original WindSR with
1,117 GFLOPs.

Figure 4 shows the comparison results of the high-resolution
images generated using WindSR and tiny-WindSR (7 km)
from low-resolution images at 28 km resolution compared to
the ground truth (7 km). We find that generated wind speed
looks close to the ground truth for a range of wind speed
values, but with slightly smooth edges and overestimated
values.

IV. DISCUSSIONS
From the results presented in Table 3, we notice that both
tiny-WindSR and WindSR significantly outperform classi-
cal upsampling techniques and GAN-based super-resolution
algorithms. GAN-based algorithms, such as BSRGAN, and
SwinIR have lower RMSE compared to classical upsam-
pling algorithms as they can learn more complex features of
low-resolution images for upsampling through training on a
large amount of data sets.

From Table 4, we notice that WindSR has the lowest
RMSE on the validation dataset compared to other models.
Changing the pixel-wise loss function during training to L2
(WindSR_V1) increases the RMSE on the validation set,
which suggests that the absolute difference in the value of
pixels (L1) helps minimize the pixel-wise error. WindSR_V2
with a reduced number of filters has a higher value of RMSE.
tiny-WindSR, however, with a reduced number of RRDB
has a smaller increment in the RMSE value compared to
WindSR_V2, which suggests that the number of features
in a shallow network is more important compared to the
deeper network with several RRDB blocks. The introduction
of batch normalization (BN) layers in WindSR_V3 increases

the RMSE by approximately 9% compared to the original net-
work. This phenomenon is also observed in super-resolution
real-world images as they lead to the occurrence of arti-
facts [12] in the generated images.

WindSR_V4 is based on the real-world super-resolution
GANs [12], [14], which has both a generator and a discrim-
inator. Apart from the pixel loss, it also has content loss
which is obtained by calculating features from an interme-
diate VGG-19 layer. The introduction of the discriminator,
however, significantly increases the RMSE loss on the vali-
dation set by 73.33%. In the super-resolution of wind speed,
the primary goal is to only learn the values inside each
pixel. This is, however, not the case for real-world images
because the generated image should look more natural to
human eyes compared to the values of individual pixels.
A discriminator may increase the pixel loss value, however,
it may help with other metrics (such as Perceptual Index [33])
to make the generated image look more natural. WindSR_V5
with the introduction of content loss and no discriminator
performs better thanWindSR_V4 but has significantly higher
RMSE compared to the original WindSR. This is because
content loss is calculated by computing features extracted
from the VGG-19 layer, which is trained using the ImageNet
dataset [31] and the computed high-level features are not
a good representative of the wind speed data and are not
necessary.

Interestingly, we notice that if we remove the content loss
and keep only the L1 pixel loss with the discriminator in
the case of WindSR_V6, the RMSE increases significantly
by 29.31% compared to WindSR_V4. Thus, the loss func-
tion must incorporate high-level features for training the
discriminator.

The tiny-WindSR model contains only one residual block
and 128 filters in each of the convolutional layers, making it a
lightweight model. However, the increase in the RMSE loss is
5.22% compared to a decrease in the GFLOPs over 88.52%.
This clearly shows that we do not need to have a very deep
network for super-resolution tasks that require working on
data (e.g., satellite wind speed, precipitation) where the value
of the individual pixel is important compared to the overall
perception of the visual appearance. tiny-WindSR could be
helpful for increasing the resolution of wind speed models in
real-time.
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FIGURE 4. Comparison of the visualization of the WindSR and tiny-WindSR generated high-resolution (7 km) wind speed images with ground
truth data.

V. CONCLUSION
In this research, we propose a novel framework WindSR
and tiny-WindSR to increase the resolution of the satel-
lite wind speed data using super-resolution. WindSR con-
sists of several RRDB modules to compute features from
low-resolution wind speeds for upsampling. We train the
proposed networks and baseline GAN networks – BSRGAN
and SwinIR using NASA’s GEOS-5 Nature Run dataset with
low-resolution wind speed at 28 km resolution as input and
high-resolution wind speed at 7km resolution as the output

of the network. Both WindSR and tiny-WindSR outperform
traditional upsampling interpolation techniques, such as the
nearest neighbor, bilinear, etc., and also deep learning-based
techniques such as BSRGAN, and SwinIR by up to 17.89%
on the validation dataset.

Through the experimental results, we found that the use of
the discriminator for super-resolution of data such as wind
speed hurts the performance of the accuracy, which is due
to an increase in pixel-wise loss. Pixel-wise loss is less sig-
nificant for normal images because texture and quality are
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important for the generated image to look realistic, which is
supported by the presence of a discriminator. However, for
the remotely sensed wind speed data, we find that pixel-wise
loss alone is sufficient for upsampling. In the continuation
of our research work, we would evaluate the performance of
WindSR in other domains for super-resolution tasks. Wind
speed from the satellite is often collected at low resolutions
due to the limitations of the sensors. Findings from this study
would be useful for improving the resolution of satellite
wind speed models as well as using super-resolution in other
domains.
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