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ABSTRACT A non-intrusive load disaggregation method based on residual U-Net and conditional gen-
eration adversarial networks (RUCGAN) model is proposed to address the low decomposition accuracy
and poor generalization of traditional load disaggregation algorithms. The method is based on a conditional
generative adversarial networks (CGAN), which is a variant of the encoder-decoder model that is suitable for
processing time-series data and overcomes the limitation of requiring a manually designed feature extractor
in traditional encoder-decoder structures. By introducing the U-Net structure as the encoder of the CGAN
network, the size of the feature map can be gradually reduced through convolution and pooling operations,
and gradually restored through deconvolution and upsampling operations. The U-Net structure also has skip
connections that effectively preserve feature information and accelerate gradient propagation, thus improving
model stability and generalization. Furthermore, combining the residual structure with the U-Net structure
further enhances the model’s performance, as the residual connections can effectively reduce the number
of network parameters and computation. Experimental results show that the MAE value of the model on
the UK-DALE dataset decreased by at least 20.5%, and the MAE value of the model on the REFIT dataset
decreased by at least 9.9%.Moreover, while improving the decomposition accuracy, themodel size decreased
by at least 5.6%.

INDEX TERMS Conditional generative adversarial networks, NILM, ResU-net.

I. INTRODUCTION
With the rapid development of society, energy sources such
as oil are being used in large quantities, thus causing energy
stress. The burning of fossil fuels is contributing to global
warming. Energy is a significant constraint on human devel-
opment, whether in the past or the future. The use of
renewable energy sources, such as wind, water, and solar
energy, optimizing the structure of energy use and increasing
energy use efficiency are two of the main sustainable ways
to save energy. With residential and commercial buildings
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consuming 36%of their energy and accounting for 39% of the
world’s carbon emissions, energy use must be managed effi-
ciently to improve energy efficiency. According to research
reports, energy losses can be reduced by up to 20% with the
feedback of load consumption data to the user [1]. In recent
years, smart grid technologies based on artificial intelligence
have received close attention from researchers at home and
abroad. Load Monitoring (LM) technology is an important
part of the smart grid and is an effective way to reduce losses
and energy consumption in the grid. There are two types of
loadmonitoring: hardware-centric Intrusive LoadMonitoring
(ILM) and software-centric Non-intrusive Load Monitoring
(NILM). While traditional ILM obtains more comprehensive
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and accurate measurement data, it does so at the price of high
cost and low privacy [2]. In contrast, NILM can measure and
analyze the power consumption of load devices by simply
installing smart metering devices at the entrance to the house
power bus. This guides customers to use electricity rationally
and more efficiently and helps the power company analyze
customers’ electricity consumption patterns. Non-intrusive
load monitoring was first proposed by Professor Hart in
1991 to identify load appliances using a supervised classi-
fication model combined with a clustering approach on the
P-Q plane [3]. In terms of load disaggregation, Professor Hart
proposed the Combinatorial Optimization (CO) algorithm,
which has poor disaggregation performance because the CO
algorithm cannot distinguish between appliances with sim-
ilar load characteristics. In 2011, [4] proposed the Hidden
Markov Model (HMM) algorithm, which transforms the load
disaggregation problem into a statistical and probabilistic
modelling problem to identify individual loads from the total
power consumption. In the same year, [5] proposed four
variants of HMM, Factorial HMM (FHMM), Conditional
FHMM (CFHMM), Factorial Hidden semi-Markov Model
(FHSMM) and Conditional Factorial Hidden semi-Markov
Model (CFHSMM). Modeling and experimenting with these
four models, CFHSMM outperforms the remaining three
models, but the complexity is too high. In 2013, [6] pro-
posed a load disaggregation method based on Bayesian
networks and Hidden Markov models with good results.
In the same year, [7] proposed an FHMM-based algorithm
that achieves better results for multi-state loads by selecting
multiple load features in series for modeling and train-
ing. Parson et al. [8] cited the difference HMM proposed
in [9] to construct a generic model based on Viterbi and
expectation-maximization algorithms. The model only per-
forms well on periodic devices; thus, the model is not very
scalable. Algorithms based on HMM and various variants
such as the Adaboost algorithm [10], K-nearest neighbor
algorithm [11], support vector machine algorithm [12] and
fuzzy algorithm [13], [14], [15] have a wide range of applica-
tions in disaggregation tasks. Still, they are more dependent
on a priori knowledge modeling and are generally effective
for multi-state loads.

Recently, deep learning algorithms have been widely
adopted in fields such as computer vision [16], speech recog-
nition [17], and natural language processing [18], because
they can extract the inherent features of raw data. This has
led many researchers to conduct related studies on energy
disaggregation based on deep learning. Kelly et al. [19] first
proposed the application of deep learning methods to load
disaggregation, and tested recurrent neural networks (RNNs),
denoising autoencoders (DAEs), and a regression model
that outputs device on/off times and average power on the
UK-DALE public dataset. They obtained performance that
was comprehensively superior to CO and FHMM algorithms.
Reference [20] proposed a deep neural network model based
on DAE and improved Kelly’s data processing method,

which was validated on multiple datasets and achieved
better performance than Reference [19]. Reference [21]
proposed an energy disaggregation method based on the
variational autoencoder framework, which accurately gener-
ated more complex load distributions, thereby improving the
reconstruction of power signals for multi-state appliances.
Reference [22] designed an encoder-decoder model with an
attention mechanism, which is a commonly used method in
sequence-to-sequence models to focus on information related
to output in longer input sequences. The performance on the
REDD and UK-DALE datasets indicated that the model has
stronger generalization ability and higher accuracy. Although
models based on the encoder-decoder architecture have
shown superior performance in handling time series prob-
lems compared to other algorithms, such structures typically
require a manually designed feature extractor to extract fea-
tures, and cannot utilize prior knowledge or knowledge from
other domains to assist in generating load signals. This can
result in generated signals that are not realistic enough com-
pared to actual load signals.

The sequence-to-point model proposed in [23] predicts
only the midpoint of the input sequence window, resulting in
smaller errors and lower computational complexity compared
to the sequence-to-sequence method that predicts the entire
output sequence. Reference [24] proposes a sequence-to-
point model based on time convolutional neural networks
that provide a more flexible receptive field. Seq2subseq,
introduced in [25], is a hybrid of seq2point and seq2seq
that reduces over-prediction of the output sequence while
maintaining contextual relevance. Reference [26] proposes
a novel LSTM-based algorithm that integrates seq2point
and LSTM to reduce computation while ensuring effective
feature extraction. Seq2point predicts the electrical state of
each time step by treating the entire time series as input,
while seq2seq predicts the electrical state of the entire time
series. In contrast, seq2subseq is more suitable for NILM
because it decomposes the time series into sub-sequences and
independently performs classification in each sub-sequence,
which better handles changes in electrical state. Addition-
ally, seq2subseq can share features between sub-sequences,
enhancing the accuracy and generalizability of the model.

In this paper, we apply the CGAN [27] model to
non-intrusive load disaggregation and introduce deep residual
U-net [28]. The ResU-Net was initially applied in the field
of image segmentation in computer vision. Image segmen-
tation is the task of assigning each pixel in an image to
one of several pre-defined categories. Similarly, NILM aims
to identify and predict the electrical behavior of individual
appliances through monitoring the entire building or home
energy information. Both require analysis and prediction
of complex multidimensional data, thus they share some
similarities. Representing energy data as a 2D matrix and
processing it using image segmentation-based methods holds
some research value. The residual network can deepen the
network depth without causing gradient disappearance or
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gradient explosion problems. The main contributions of this
paper are as following:

• We propose a new non-intrusive load disaggregation
algorithm called RUCGAN. Compared to traditional
encoder-decoder structures, RUCGAN can handle data
with conditional information, help the generator gener-
ate more realistic load signals, and automatically learn
feature representations.

• To improve the decomposition accuracy of the model,
we used a U-Net network as the encoder. This structure
can effectively extract signal features, and uses skip
connections to transmit high-level semantic information
to the decoder, thereby helping the decoder to better
recover the output.

• Introducing residual blocks and utilizing residual con-
nections can effectively reduce the number of network
parameters and computational complexity, while avoid-
ing the problem of model degradation and making the
model more stable.

• The experimental results have proven the effective-
ness of the proposed algorithm. On the UK-DALLE
and REFIT datasets, the MAE value of the algorithm
decreased by at least 20.5% and 9.9%, respectively.
Moreover, from the decomposition results, the algorithm
has a good fitting degree, which verifies its generality
and effectiveness.

II. METHODOLOGY FOR NILM
The concept of NILM was introduced by Hart, and the sys-
tematic NILM process he proposed has been used to this day.
Since then, the NILM research has attracted the attention of
related researchers and spawned numerous research results.
The disaggregation of the load appliance can be abstracted
as a mathematical problem. This disaggregation problem
can be formulated to show that: assuming that there are N
electrical devices in residence, their sampling time series are
t = [1, 2, · · · ,T ], and the total power consumption series
are p = [p1, p2, · · · , pT ], the total power at the moment of
entrance t can be expressed as follows:

pt =

N∑
i=1

(aipit ) + σ (t) (1)

where ai represents the switch operation status of the ith
device. If the operation status is on, then ai = 1, oth-
erwise ai= 0. pit is the operating power of the ith device,
i∈ [1, 2, · · · ,N ]. σ (t) represents the noise generated by the
power fluctuations of the equipment and the environment.

The task of the NILM is to infer the power contribution of
the device at moment t . The problem of solving NILM can
be transformed into the problem of solving the value of ai
for different devices at different moments. Specifically, σ (t)
represents the noise generated by the environment, which
should have a small value in theory. It is assumed that in the
case of incorrect determination of the equipment operating
state, the first part of pt , or

∑N
i=1 (aip

i
t ). Its difference from the

FIGURE 1. Overall structure of RUCGAN.

actual prediction is attributed to σ (t), which leads to a larger
σ (t). Therefore, (1) is modified to transform the problem
into one of solving for the optimal equipment operating state
a= [a1, a2, · · · ,aN ], which is expressed as follows:

â = argmin
a

σ (t) = argmin
a

pt −

N∑
i=1

(aipit ) (2)

Obviously, the above problem is an NP-hard problem.
This means that it is computationally intractable and diffi-
cult to solve precisely by impractical exhaustive techniques.
As computer technology has evolved, many new approaches
to address such problems have emerged, such as solving the
problem through machine learning.

III. PROPOSED METHOD
The overall structure of this study is shown in Fig. 1. The
following will describe the proposed RUCGAN, including
the U-Net module, the residual module, and the loss function.
The U-Net module and the residual block together constitute
the generator module.

A. LOAD DISAGGREGATION PRINCIPLE OF THE RUCGAN
MODEL
GAN [29] has excellent generation ability and data augmen-
tation ability, and it has been widely used in fields such as
image generation, natural language processing, and speech
synthesis. The main idea of using GAN for NILM problem is
to use generative adversarial learning to decompose the entire
electricity consumption data into the usage data of individual
appliances, thus achieving appliance detection and energy
consumption monitoring. Through this approach, GAN can
effectively solve the NILM problem. We optimized the orig-
inal GAN framework as follows: using the power signal of
the load appliance as conditional information to guide the
output of the generator, using the U-Net which is good at
handling time series as the generator of the model, and fusing
residual blocks with U-Net to improve the transfer of feature
information..

RUCGAN takes the aggregated power signal and appliance
power signal as inputs. By utilizing CGAN, it can auto-
matically learn the relevant feature representations from the
conditional information and generate more accurate appli-
ance disaggregation signals. The output of the generator is
mixed with the real appliance power signal and used as input
for the discriminator. The discriminator can then judge the
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FIGURE 2. CGAN model framework.

difference between the generated and real power signals,
which guides the updating of the generator. Through repeated
iterations, the generator can generatemore realistic individual
appliance usage data, thereby achieving disaggregation of the
aggregated power signal.

B. ADD CONDITION INFORMATION
During the training process, GAN lacks a clear objective
function and suffers from mode collapse and mode dropping
problems, which can lead to generated load signals that are
not realistic or lack diversity. Therefore, conditional informa-
tion is crucial for load disaggregation tasks. To address these
issues, we use the power signal of the target appliance as con-
ditional information to guide the generator’s data generation,
as shown in Fig. 2.

In this approach, the target appliance’s power signal y
is paired with the aggregate power signal Z to produce a
conditioned load signal, which is then input to the generator
G. G generates a fake target appliance power signal G(z),
which is input along with the true target appliance power
signal X to the discriminatorD.D computes the error between
G(z) and X and feeds the data back to G to guide its updates.
Through iterative training, the model can gradually learn the
features of the appliance power signal and effectively predict
and separate energy consumption.

The optimization objective function of GAN is shown in
(3):

min
G

max
D

V (D,G)

= Ex∼Pdata(x)[logD(x)] + Ez∼PZ (z)[log(1 − D(G(z)))] (3)

where D(x) denotes the probability that the true sample x is
discriminated as a true sample by the discriminator, D(G(z))
denotes the probability that the generated sample data is
discriminated as a true sample by the discriminator. After
introducing conditional information y, the objective function
is as shown in (4):

min
G

max
D

V (D,G)

= Ex∼Pdata(x)[logD(x |y )] + Ez∼PZ (z)[log(1 − D(G(z |y )))]

(4)

From equation (4), it can be seen that the objective func-
tion of CGAN is equivalent to a ‘‘min-max optimization’’
problem, which can be achieved in two steps. The first step

FIGURE 3. Generator module structure.

optimizes the discriminator model D, and the second step
optimizes the generator modelG, which is expressed as equa-
tions (5) and (6).

max
D

V (D,G)

= Ex∼Pdata(x)[logD(x|y)]

+ Ez∼PZ (z)[log(1 − D(G(z|y)))] (5)

min
G
V (D,G) = Ez∼PZ (z)[log(1 − D(G(z|y)))] (6)

We define the label for real samples as 1 and the label
for generated samples as 0. The goal of D is to distinguish
between real and fake samples. We expect the value ofD(x|y)
to be as close to 1 as possible and the value of D(G(z|y)) to
be as close to 0 as possible. Based on these two conditions,
we optimize D using sample data to maximize V (D,G),
which is the meaning of formula (5). Similarly, formula (6)
shows that we need to optimize D(G(z|y)) to be as close to
1 as possible, which is equivalent to minimizing V (D,G).
By iteratively training the generator and discriminator, we can
obtain the global optimal solution when pdata = pz.

C. ENCODER MODULE
In the NILMproblem, the encoder of the CGANnetwork usu-
ally adopts models such as Convolutional Neural Networks
(CNNs) or Recurrent Neural Networks (RNNs). Common
CNN models include VGG and ResNet, which are designed
for image classification and object detection tasks. Although
they perform well in the image domain, these models usually
ignore temporal information and cannot handle sequential
data. Common RNNmodels include LSTM and GRU, which
are often used for modeling sequential data. However, they
may be limited in modeling long-term dependencies and may
face issues such as vanishing or exploding gradients, making
them difficult to train.

To address the aforementioned issues, we designed the
encoder using U-Net [30]. U-Net has the advantage of
extracting multiscale, high-level semantic information and
has strong feature reuse capabilities, which is particularly
useful for load disaggregation. Moreover, U-Net has a similar
encoder-decoder structure, which can preserve the details of
the input signal, enabling it to achieve better performance in
load disaggregation.
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FIGURE 4. Residual module diagram.

The encoder framework is shown in Fig. 3. The left half
of the figure is the encoding layer, which is used to gradually
extract features from the time series and reduce the resolution
of the feature map. The right half is the decoding layer, which
is used to restore the feature map and generate the output
result. In addition, there are some skip connections between
the encoder and decoder to fuse the low-level and high-level
featuremaps, thereby retainingmore original information and
improving the accuracy of the model for load disaggregation.

D. FUSION OF RESIDUAL BLOCKS
In U-Net, multiple downsampling and upsampling operations
may cause gradient vanishing. This is because during the
backpropagation process, gradients need to be propagated
from high-level layers to low-level layers. Each downsam-
pling operation reduces the size of the feature map by half,
which means that gradients need to pass through multiple
levels of downsampling and upsampling operations to reach
shallow layers. To address this issue, we use residual blocks
to directly add the information of the original input to the
output. This method can help the network retainmore original
information during the sampling process and improve the
stability of the model.

The residual block is a network module proposed by
He et al. [31] in ResNet, which includes a shortcut connec-
tion and a convolution block. The shortcut connection directly
adds the input to the output, thus preserving the original
information. The convolution block is responsible for feature
extraction. The structure of the residual block is shown in
Fig. 4.

The main path is F(x), the shortcut is x, and the output is:

xl+1 = xl + F(xl,Wl) (7)

By recursion, the feature expression of any deep residual
module can be obtained, which is expressed in follows:

xL = xl +
L−1∑
i=l

F(xi,Wi) (8)

For backpropagation, assuming ε as the loss function, (9)
can be derived according to the chain rule of backpropagation.

∂ε

∂Xl
=

∂ε

∂XL

∂XL
∂Xl

=
∂ε

∂XL
(1 +

∂

∂XL

L−1∑
i=l

F(Xi, ωi)) (9)

From (9) we can find that no matter how small the
derivative parameter in the brackets is, the presence of the
constant 1 and the fact that the concatenated multiplication in

the original chain derivative becomes concatenated addition
guarantees that the node will not experience gradient disap-
pearance or gradient explosion.

The framework of the fusion between residual block and
U-Net is shown in Fig.4, where the dark module represents
the residual structure.

E. LOSS FUNCTION
From (4), the objective function of CGAN is

LCGAN (G,D)

= Ex∼Pdata(x)[logD(x |y )] + Ez∼PZ (z)[log(1 − D(G(z |y )))]

(10)

The L1 loss function is added to the objective function to
improve the generation quality of the generator. The L1 loss
function is expressed as

LL1(G) = Ex∼pdatd (x),z∼pZ (z)[∥y− G(z |y )∥ 1] (11)

The traditional loss function of CGAN uses L2 distance
instead of L1, but the L1 loss function has strong robustness.
The L1 loss function is not susceptible in the face of obser-
vations with significant errors. This is because the L1 loss
function adds only an absolute value error, while the L2 loss
adds the square of the error. When the error is large, we need
to adjust the model more to fit this observation, so the L2 loss
function is less stable than the L1 loss function.

The final objective function is obtained by combining (10)
and (11). The formula is as follows:

G∗
= argmin

G
max
D

LCGAN (G,D) + λLL1(G) (12)

where λ is the coefficient of L1 loss function.

IV. EXPERIMENTS
We compare the model with LSTM [19], VAE [21],
Seq2point [23], TCN [24], seq2subseq [25], LSTM+ [26]
andResNet+ [32], to verify the validity and superiority of this
model in terms of power disaggregation accuracy. To ensure
fairness, we make the experimental process as consistent
as possible. The proposed model is implemented in Python
using TensorFlow and is trained onNVIDIARTX2080 super.

A. DATA SET
In this paper, we choose public datasets UK-DALE [33], and
REFIT [34]. Choosing two datasets from different regions
can be a good way to verify the generalization of the pro-
posed model. We select kettle, fridge, washing machine,
microwave and dishwasher as the target appliances for dis-
aggregation. The data used for training and testing do not
come from the same residence and can satisfy the require-
ment of deep learning generalizability. In addition, these
five target appliances have different operating states. The
two loads, kettle, and refrigerator, have only two operating
states, and the refrigerator is cyclical. Load changes in wash-
ing machines and dishwashers are characterized by multiple
states and long periods. The microwave oven has a short
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TABLE 1. Building used for training and testing(UK-DALE).

TABLE 2. Building used for training and testing(REFIT).

running time and frequent power changes. Thus, the disag-
gregation performance of the model proposed in this paper
can be comprehensively verified.

UK-DALE records load data, including active power, cur-
rent information and appliance switching status, for five
UK households through devices such as current sensors and
power loggers. The sampling period lasted from November
2012 to January 2015, and the sampling frequency was
1/6 Hz. The load data for each residence always contains
one master meter power record and a varying number of
individual power records for each appliance.

REFIT dataset is currently the largest dataset in the NILM
research area, and it contains data from 20 houses in the UK
between 2013 and 2015, with data sampled at a frequency of
8 seconds. The dataset provides us with a variety of different
electricity usage behaviors, enriching the diversity of the data.

B. DATA PROCESSING
To verify the generalization performance of the model, we set
up the training and test sets for the five target appliances,
as shown in Table 1 and Table 2. The load data activation
extraction of the target appliances is performed with the help
of the NILMTK [35] toolkit proposed by Batra et al. The
power thresholds of the five appliances are obtained as shown
in Table 3. The power threshold value allows us to know
the switching state of the target appliance and prepares the
ground for the calculation of the evaluation index below.

C. METRICS
NILM’s programs require appropriate performance eval-
uation metrics to measure the program’s strengths and
weaknesses. Hart used the percentage of correctly classified
power events to evaluate his program in his pioneering work.
This section describes the evaluation metrics of common
disaggregation algorithms and points out their characteristics.
Event detection is essentially a dichotomous problem that

TABLE 3. Power threshold of the target appliances.

aims to determine the presence or absence of events. But
the load disaggregation based on event classification is a
multi-classification problem. Therefore the relevant statisti-
cal evaluation metrics in classification problems are often
used to assess the performance of the NILM algorithm [36].
In statistics, four indicators are used to describe the rela-
tionship between predicted outcomes and actual values in
dichotomous problems: True Positive (TP), True Negative
(TN), False Positive (FP), and False Negative (FN).

A series of relevant evaluation metrics can be obtained
from four base metrics, mainly including precision, recall,
accuracy, and F1-Score.

Precision =
TP

TP+ FP
(13)

Recall =
TP

TP+ FN
(14)

Accuracy =
TP+ TN

TP+ TN + FP+ FN
(15)

F1 =
2 · Precision · Recall
Precision+ Recall

(16)

The above four evaluation metrics evaluate the model
mainly in terms of accuracy, and in addition, we also intro-
duce the MAE metric to evaluate our model in terms of total
power. MAE is calculated as follows:

MAE =
1
T

T∑
t=1

∣∣ŷt − yt | (17)

where ŷt denotes the disaggregation value of the model at
moment t and yt denotes the true value at moment t , and
T denotes the total amount of predicted time points. MAE
characterizes the average error between the target electrical
power decomposed by the model and the actual electrical
power consumed.

V. RESULTS
Based on the experiments, we will analyze the results in
three aspects: training model size, visual analysis of load
disaggregation results, and evaluation metrics.

A. MODEL SIZE
The Seq2subseq model uses the U-Net structure to
build a code-and-decode framework and the number of
Encoder-Decoder layers of the model is 8. While the
Encoder-Decoder layer of our proposed model is 5, the model
depth is reduced but the disaggregation performance of the
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TABLE 4. Model parameters.

model is improved. This is attributed to the ResU-Net, where
we add the residual module to each Encoder-Decoder layer,
which can be seen in Fig. 3. From Table 4, it can be seen that
the number of parameters in the RUCGAN model is nearly
800,000 less than seq2subseq, and the model size is reduced
by 5.6%. The model size was reduced by 57.5% and 29.7%
compared to Seq2point and TCN, respectively.

B. VISUAL ANALYSIS OF LOAD DISAGGREGATION RESULTS
From Fig. 5, we can conclude that the operating states of the
fridge, dishwasher and washing machine are more complex,
and the running time of the washing machine is relatively
long. The microwave oven and kettle are in a simple state
of operation and have a short working time. But these two
appliances operate more frequently. For the fridge, it can be
seen from the diagram that it has two operating states, one is
a long sequence shaped like a square, and the other is a short
sequence shaped like a rectangle. The power fit of the short
sequences is higher than that of the long sequences, mainly
because a wave with a short duration and large amplitude
appears in each long sequence. The model does not fit the
spikes well, but the RUCGAN model gives a high-accuracy
disaggregation for both start-end times and peaks. For the
washing machine, a complete section of the waveform is
given in Fig. 5, and the fit of the disaggregation results
remains good despite the long time span. Whether it is the
main wave on the far left or the three secondary waves on the
right, and even if the wave is very dense on the far right, the
model can still decompose its contours. For microwave ovens
and kettles, which are two appliances with simple operating
states, the accuracy of the model fit is high, especially for
kettles, where the model provides a perfect load disaggrega-
tion even when the waveform duration is short, and start-end
events occur frequently. For the dishwasher, the overall model
disaggregation fits well, and similarly, for the spikes in the
waveform, themodel does not fit well. A total of three troughs
are decomposed in Fig. 5(e), and one trough is incorrectly
decomposed. The analysis of the appliance disaggregation
results shows that the model disaggregation is highly accu-
rate, which proves that the RUCGAN model proposed in this
paper has strong stability and robustness.

The U-Net network is used in the seq2subseq model, and
we use the ResU-Net, so we summarize the excellent per-
formance of the residual module on both datasets through
experiments, and the results are shown in Fig. 6 and Fig. 7.
Analyzing the performance of the models on the UK-DALE
dataset, both models have an excellent disaggregation for the

dishwasher, but the U-Net appears burred and, therefore, less
stable than the residual model for the left-hand waveform.
For the microwave oven, the U-Net showed a large amplitude
at the top of both waveforms, while the ResU-Net remained
more stable. For the kettle, due to its short running time, both
models showed errors in predicting the start and end times,
but the errors in the residual model were smaller, and the
residual model remained stable at the peak in the kettle power
disaggregation. For fridges, due to long working hours and
frequent switching of operating states, U-Net has more errors
in start-end time prediction and the waveform tears in the
disaggregation process due to the instability of the model.
Since the results of the Washingmachine are similar under
both models therefore omitted. This shows that the residual
network can mitigate the phenomenon of model gradient dis-
appearance, and can optimize the network while the network
deepens. The powerful local feature extraction ability of the
residual module is used to obtain the deep features of the
power sequences and guide the CGANwith powerful context
awareness so that the before-and-after information of the
power sequences can be well explored.

For the REFIT data, the RUCGAN model proposed in
this paper still shows good disaggregation performance,
as shown in Fig. 7. U-Net still exposes problems such as
start-stop time disaggregation errors and waveform tearing in
the REFIT dataset, and frequent un-disaggregation and mis-
disaggregation problems occur in Fig. 7(b). The experiments
on different datasets demonstrate both the effectiveness and
the generalization of the ResU-Net module in RUCGAN.

C. COMPARISON OF EVALUATION METRICS AND
DISAGGREGATION RESULTS
It is shown in Fig. 8 that the disaggregation perfor-
mance of the RUCGAN model proposed in this paper is
improved for all the five target appliances in the UK-DALE
dataset. In terms of accuracy, washing machines, dishwashers
and fridges have improved significantly, while kettles and
microwaves have seen limited improvement as the accuracy
of previous algorithms to decompose them has been close
to 1. However, the proposed algorithm maintains the best
performance compared to other algorithms in this paper.
Recall and precision describe the classification of individ-
ual categories, which are not holistic and are intermediate
quantities of the F-score, so attention is focused on the
analysis of the F-score. Except for the fridge, which had lim-
ited improvement, the remaining four appliances improved
significantly. We also found that previous algorithms per-
formed poorly in disaggregation for appliances with complex
operating states, especially for the Seq2point model. The
disaggregation results of the F-score of the RUCGAN model
all exceeded 70% and even exceeded 80%, except for the
dishwasher.

The RUCGAN model proposed in this paper, and
the Seq2subseq and VAE models all belong to the
Encoder-Decoder framework model, and it can be seen from
Table 5 that the Encoder-Decoder framework model outper-
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FIGURE 5. UK-DALE House 2: decomposing results of RUCGAN. (a) Fridge. (b) WashingMachine. (c) Microwave. (d) Kettle.
(e) Dishwasher. The blue solid line represents the true values, and the orange solid line represents the decomposition values of the
RUCGAN model.

FIGURE 6. Positive effect of ResU-Net module on the model (UK-DALE). Only RUCGAN uses the ResU-Net
module. (a) Dishwasher. (b) Microwave. (c) Kettle. (d) Fridge. The blue solid line represents the true values,
the orange solid line represents the decomposition values of the comparison model Seq2subseq, and the
green solid line represents the decomposition values of the RUCGAN model.

FIGURE 7. Positive effect of ResU-Net module on the model (REFIT dataset). (a) Fridge. (b) WashingMachine.
(c) Microwave. (d) Kettle. (e) Dishwasher. The blue solid line represents the true values, the orange solid line represents
the decomposition values of the comparison model Seq2subseq, and the green solid line represents the decomposition
values of the RUCGAN model.

forms the other models in general. These models have good
disaggregation performance for load appliances with simple

structures and no complex operation state, for example, the
disaggregation of kettle and microwave oven is better than
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FIGURE 8. Load disaggregation classification results. (a) Accuracy. (b) Recall. (c) Precision. (d) F-score.

TABLE 5. The appliance-level mae(watt) for uk-dale data. best results are shown in bold and underlined.

TABLE 6. Number of samples used for load disaggregation.

the other three appliances. The Seq2subseq and VAE models
are only based on the Encoder-Decoder framework or the
adoption of the U-Net, and from the data, the simple appli-
cation of the U-Net does not improve the performance of
the Encoder-Decoder framework model. But the performance
of the RUCGAN model proposed in this paper is improved
by 20.5% and 29.3% compared with Seq2subseq and VAE,
respectively, proving that CGAN, U-Net and residual mod-
ules are deeply fused in this paper rather than simply stacked.

The performance improvement of the RUCGAN model is
more obvious than the model of the non-Encoder-Decoder
frame work. Compared with LSTM, Seq2point, LSTM+,
ResNet+, and TCN, the performance is improved by 91.1%,
58.2%, 52.7%, 41.2% and 39.2%, respectively. We note that
for the power disaggregation of the dishwasher the results are
mostly above 20 except

for the three models of the Encoder-Decoder framework.
Table 6 shows the number of samples of each appliance in the
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TABLE 7. The appliance-level mae(watt) for refit data. best results are shown in bold and underlined.

UK-DALE dataset used for training, with the dishwasher hav-
ing the fewest number. This explains one of the reasons why
the model of the Encoder-Decoder architecture outperforms
other models; the framework model has data regeneration
capability, and if the input is N samples, the network learns
2N samples. Therefore, we can appropriately increase the
number of training samples to improve the disaggregation
accuracy of the model.

In this paper, MAE metrics were also calculated and ana-
lyzed for five appliances in the REFIT dataset, as shown in
Table 7. Since models such as ResNet+ use the UK-DALE
and REDD datasets and the code is not open source, the
remaining models were selected for the analysis of the MAE
metrics comparison for the REFIT dataset. It can be seen
that the MAE values of the proposed model in this paper
decreased by 9.9%, 12.5%, 22.1%, and 28.9% compared to
Seq2subseq, LSTM+, VAE, and Seq2point, respectively. For
appliances with high power and simpler operation modes,
such as microwave ovens, the MAE values of the above mod-
els are kept low.While for relatively complex appliances such
as fridges and dishwashers, the deep feature extraction and
context awareness of the RUCGAN model makes its power
decomposition prediction much more accurate than other
models. There were exceptions, however, where the washing
machines in the VAE model showed better performance in
terms of MAE metrics.

In summary, the model proposed in this paper uses the
residual module with powerful local feature extraction capa-
bility and U-Net with depth perception capability to make
the RUCGAN model perform its proper strength. The com-
parison with the Seq2subseq model shows the advantages of
ResU-Net, and the comparison with the rest of the models
reflects that generative adversarial network is one of the
effective methods to solve the NILM problem. Tests on the
UK-DALE and REFIT datasets show that the proposedmodel
is generalizable.

VI. CONCLUSION
In this work, we proposed RUCGAN, a non-intrusive load
decomposition algorithm based on the CGAN model, aiming
to improve the model’s decomposition accuracy and gen-
eralization performance. Firstly, we introduced the U-Net
to process time series data, which preserves feature infor-
mation and accelerates gradient propagation through skip
connections. Secondly, we fused the residual block with the

U-Net to reduce network parameters and simplify computa-
tion using residual connections, thereby avoiding the problem
of model degradation. Our method achieved significant per-
formance gains through the development of a specific model
and the improvement of the encoding-decoding structure for
time series data. Experimental results on different datasets
showed that RUCGAN effectively reduced the MAE index
and maintained high robustness performance. Furthermore,
it also reduced the model size to some extent. In summary,
compared to existing publicly available load decomposition
algorithms, RUCGAN has significant advantages in terms of
decomposition accuracy, model size, and stability. However,
future research should focus on reducing the training time of
the encoding-decoding structure model to achieve real-time
decomposition.
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