
Received 16 June 2023, accepted 1 July 2023, date of publication 6 July 2023, date of current version 12 July 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3292887

An Empirical Study of Mobile Code Offloading
in Unpredictable Environments
SANABRIA PABLO 1,2, NEYEM ANDRES 1,2, SANDOVAL ALCOCER JUAN PABLO 1,
AND FERNANDEZ BLANCO ALISON 1
1Computer Science Department, Pontificia Universidad Catolica de Chile, Santiago 7820436, Chile
2Centro Nacional de Inteligencia Artificial CENIA, Santiago 7820436, Chile

Corresponding author: Neyem Andres (aneyem@uc.cl)

This work was supported in part by the National Agency for Research and Development (ANID)/Scholarship Program/DOCTORADO
NACIONAL under Grant 2020-21200979; and in part by the National Center for Artificial Intelligence (CENIA), Basal ANID, under
Grant FB210017. The work of Sandoval Alcocer Juan Pablo was supported by ANID FONDECYT Iniciación Folio under Grant 11220885.

ABSTRACT Mobile code offloading is a well-known technique for enhancing the capabilities of mobile
platforms by transparently leveraging the resources to the cloud. Although this technique has been studied
for years, little empirical evidence exists to demonstrate its alleged benefits in terms of performance in real-
life situations. All studies conducted on this topic have so far been relegated to controlled environments
in laboratory settings. As such, there is no evidence of how and how well this technique performs in real-
life scenarios, where network unreliability is the norm. In this work, we present the first empirical study
of an Android mobile application integrated with a code offloading framework being tested in the wild.
We distributed an application that contains a set of benchmarks in APK format and deployed it on a wide
gamut of Android devices to which we had no physical access. We carefully detail the methodology and
infrastructure we used to monitor the benchmarks’ performance of 18 devices. Overall, our results show that
the accuracy of the decision-making engine is heavily affected by a couple of factors, mainly the network
diagnosis and connection type. Therefore, determiningwhether or not it is more convenient to execute a given
task in the cloud is a difficult task. We summarize five lessons we learned by performing our experiment
that we believe should be considered for future experiments in this area.

INDEX TERMS Android, empirical studies, mobile cloud computing, mobile code offloading.

I. INTRODUCTION
Mobile code offloading refers to the computational paradigm
in which expensive tasks in terms of memory and computing
power are transparently migrated from resource-constrained
mobile devices to powerful servers in the cloud [1], [2].
The increased computational resources of the server coun-
terpart are then expected to complete said tasks at a fraction
of the time, therefore improving the end-user perceived
performance of the application and reducing the client
device’s battery consumption. This latest characteristic is
of particular interest to current manufacturers, as modern
smartphone and tablet devices struggle to keep up with
the ever-increasing power requirements of more and more

The associate editor coordinating the review of this manuscript and

approving it for publication was Ding Xu .

complex applications [3]. This is a fact recognized by indus-
try leaders Google and Apple, as some of their innovations
introduced in their latest OS updates specifically target
optimizing power consumption (i.e., background task restric-
tions). Furthering this trend, mobile code offloading offers the
opportunity to keep improving battery lifetime by harness-
ing the power of the cloud. Nevertheless, despite promising
results published in academia, we have yet to see a code
offloading solution being used in the industry. The reason for
this contradiction is actually rather simple: current mobile
code offloading solutions have yet to address the nonfunc-
tional requirements necessary for powering applications in
production. Therefore, although we can read about the results
of mobile code offloading platforms in laboratory environ-
ments under controlled settings, literature regarding such
platforms being experimented on in real-life environments

VOLUME 11, 2023
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 69263

https://orcid.org/0000-0001-6493-3895
https://orcid.org/0000-0002-5734-722X
https://orcid.org/0000-0002-8335-4351
https://orcid.org/0000-0003-1784-814X
https://orcid.org/0000-0002-3759-4805

S. Pablo et al.: Empirical Study of Mobile Code Offloading in Unpredictable Environments

is, as far as we know, non-existent. More importantly, the
lack of results in a practical setting raises the question of
whether or not these technologies even work in production
in the first place. If we are to advance the development of this
discipline, it is imperative to move into the field. Therefore,
the newer mobile code offloading frameworks should begin
by demonstrating that they offer analogous results in real-life
conditions like those claimed under controlled settings. Addi-
tionally, a reference point should be established to evaluate
the effectiveness of said solutions.

Seeking to address these issues, we have developed Mobi-
COP [4], [5], a mobile code offloading framework compatible
with the Android operating system that was built from the
ground-up to satisfy three non-functional requirements we
consider to be essential:

• Reliability: it can work under unreliable network con-
nections, which are very common in mobile scenarios.

• Scalability: it can automatically adjust the number of
server instances deployed in the cloud to attend a vari-
able amount of traffic.

• Distribution: it offers a client fully contained in a library,
which can therefore be imported into any existing
Android project by adding a single Gradle dependency.

The fundamental architecture and implementation details
of MobiCOP have been extensively explained in some of
our previous publications. However, in our original paper,
we also limited our experimentation to standardized bench-
marks in controlled environments. This left the question
open on whether any of our previous claims were actually
applicable to production environments. As a matter of fact,
we noticed that the move into the field required substantial
changes to our original proposal in order to deal with various
unforeseen situations.

The main goal of this paper is to describe our experience
when deploying an existing mobile code offloading solution
in the wild, the considerations that need to be addressed by
developers of such solutions, and to establish the first baseline
to which other offloading frameworks may compare them-
selves against. Here, we describe our experimental setup,
the relevant metrics we collected during our experiments,
and their subsequent analysis. For completeness, we will
briefly cover the implementation details of the MobiCOP
framework. However, we would like to stress that this is
not the focus of this work. Instead, we will only cover a
general overview of the platform and the changes applied to
the newest version of MobiCOP that stemmed from our field
experimentation. For more detailed information concerning
our platform, we would like to refer readers to our original
publication [5].

This paper presents a systematic approach to evaluate a
mobile code offloading solution in real-life scenarios. Specif-
ically, we conducted an experiment in which 18 volunteers,
each with a mobile device, installed a benchmarking app
connected to a prepared cloud infrastructure equipped with
MobiCOP. We carried out the study in different locations

across four countries and used a wide variety of mobile
devices types. Our results show that the accuracy of the
decision-making engine of a code offloading platform is
heavily affected by a couple of factors, mainly the net-
work diagnosis and connection type. Therefore, determining
whether or not it is more convenient to execute a given task in
the cloud is a difficult task. We believe our results will guide
the development and experimentation of the next generation
of mobile code offload frameworks.

In summary, we make the following contributions:

• An analysis and comparison of current mobile code
offloading frameworks.

• A practical approach for evaluating an offloading solu-
tion in real-life scenarios.

• Five lessons learned, challenges, and research areas that
are worth exploring in the field.

The paper is organized as follows. In Section II, we review
the related work and focus on the common pitfalls present
in the most prominent mobile code offloading solutions.
In Section III, we briefly describe MobiCOP’s architecture,
how it differs from other solutions, and the modifications
introduced in its latest version. In IV, we describe our exper-
imental setup and the results we obtained. Next, in VI,
we go over the lessons we learned from our experience; and
finally, VII offers the conclusions and future work.

II. RELATED WORK
MAUI is one of the first mobile code offloading frameworks
meant for modern smartphone devices that appeared in the
academic literature [6]. It defines the basic components a
mobile offloading architecture should contain, including a
profiler for network and code, a decision-making engine,
and a communication layer. MAUI operates at a method
level on .NET platforms. It requires developers to annotate
which methods in an application may be offloaded; these are
later instrumented by MAUI to incorporate the offloading
logic. MAUI incorporates various profilers to decide whether
to offload a method or not. They collect information on a
method’s CPU cycles, the data that is needed to be sent back
and forth to the server, and the state of the network. This infor-
mation is later fed to a server-based optimizer which makes
the final offloading decision. No fine-grained information is
available on the specifics of how this optimizer operates.

CloneCloud is another mobile code offloading frame-
work built for the Android operating system that introduces
automatic migration of arbitrary code without developer
input [7]. CloneCloud features a static analyzer that com-
putes all reasonable partition points in a program within
certain constraints. Additionally, profilers integrated into a
customized OS version collect all the data required for a local
decision-making engine to decide whether to offload or not.
The specific criteria by which the decision to offload is made
is unavailable. Execution on the server is attained through the
usage of application-level virtual machines. To offload code,
CloneCloud uses a thread suspend-wait-resume mechanism,

69264 VOLUME 11, 2023

S. Pablo et al.: Empirical Study of Mobile Code Offloading in Unpredictable Environments

in which threads are halted, their state is transferred to the
server and finally synced back into the client once the server
finishes its execution. Unfortunately, using a customized
Android version makes it very difficult to distribute this
solution to interested end-users.

After CloneCloud came to Comet, also a code offload-
ing framework for Android, that introduced a new method
for achieving transparent code migration through the usage
of distributed shared memory (DSM)) [8]. Comet features
offloading capabilities at the thread level by allowing threads
running locally and on the server to share state through var-
ious VM synchronization primitives. These primitives were
custom-built by the authors and introduced into a branch
of the Android-based CyanogenMod. Java’s robust memory
model is leveraged to achieve memory consistency between
both contexts. Comet however suffers from a strong depen-
dency on fast and reliable networks, as its synchronization
mechanism requires a substantial amount of data to be trans-
ferred between a client and a server, though extensions to
Comet’s offloading model have been suggested to partially
address this issue [9].

Various additional mobile code offloading frameworks
have been built on top of Comet’s offloading architecture
and communications layer, including EMCO [10], a frame-
work that strengthens the accuracy of the decision-making
engine by incorporating rules inferred from crowdsourcing;
and Tango [11], a framework that disposes of the need for
a decision-making engine by always running code simulta-
neously, both remotely and locally, and preserving the result
of the faster agent through a process called flip-flop replica-
tion. Unfortunately, the lack of the synchronization primitives
required by Comet to function on the standard Android SDK
makes it impossible to reproduce any of these solutions on
stock mobile devices.

ThinkAir is one of the first mobile code offloading
frameworks to recognize the scalability issues of previous
offloading frameworks [12]. As such, it supports on-demand
cloud resource allocation by spawning either additional or
more powerful machines according to current traffic and the
specific needs of the client respectively. ThinkAir operates
by creating virtual machines containing the entire state of
the client. Therefore, the network bandwidth requirements
are very high. ThinkAir collects various parameters of the
client in order to decide when to offload a certain piece
of code, including CPU usage, screen brightness, network
interface, network quality, overall method execution time,
CPU cycles, number of method calls, memory allocation, and
garbage collector count. Unfortunately, the specifics of how
this information is used to reach a decision are unknown.

Jade is a mobile code offloading framework for devices
connected through an ad-hoc mobile network [13]. It lever-
ages the power of clusters of idle devices to assist a host
device in processing various tasks. Jade’s main priority
is minimizing energy consumption on the client device,
therefore increasing battery life. Its decision-making engine

translates the offloading problem to an integer linear pro-
gramming optimization problem that contemplates estimates
of power consumption using an energy model and estimates
of the total execution time of the task on the client and the
server. It then uses a solver to decide whether to offload a
given task or not. Since Jade was built with ad-hoc networks
in mind, it supports both Wi-Fi and Bluetooth communi-
cation. Unfortunately, the problem with ad-hoc offloading
solutions, in general, is that there is little incentive for idle
devices to enter the network.

Finally, we would like to mention COARA and RAPID,
the two most recent mobile code offloading frameworks we
have been able to find in the literature. COARA [14] is a
technology that leverages AspectJ to implement its offloading
mechanism and introduces the concept of lazy and pipelined
transmission, wherein some input objects are replaced by
lightweight proxies so remote execution can begin faster.
Data may then be fetched lazily by the server (lazy transmis-
sion) or accessed as it is being sent by the client (pipelined
transmission). On the other hand, RAPID [15] is a code
offloading solution for Android and Linux devices that sup-
ports CPU and GPGPU offloading. Its CPU code offloading
stack is based on ThinkAir, while its server-side GPGPU code
execution mechanism is based on a split-driver model [16]
that allows sharing the sameGPU hardware with several VMs
simultaneously. While both of these platforms offer various
interesting innovations, they do not address the issue of the
decision-making engine at all.

Mobile code offloading has come a long way since the
days of cyber foraging [17], yet despite the various break-
throughs we have seen over the years, there are many pitfalls
that have remained unattended all this time. For one, mobile
code offloading frameworks seem to be overly reliant on
synchronous communication through sockets that need to
be alive throughout the entire execution of a program. This
requirement is unrealistic, as mobile data plans are still very
expensive in various parts of the world and mobile networks
are known to be unreliable. Additionally, the need to scale
has been barely looked into, even though scalability is an
active topic of research in the field ofmobile cloud computing
[18], [19]. With the exception of ThinkAir and its extensions,
we have yet to see another mobile code offloading framework
that tackles this issue. Moreover, we also noticed that several
of these solutions are extremely hard to replicate. The need
to replace the entire OS by a custom version is particularly
egregious as few end-users would be willing to flash their
devices (assuming they even have the technical know-how to
do it). With these issues in mind, it is unlikely for mobile code
offloading frameworks to be adopted by the public.

Another common problem we noticed lies in the imple-
mentation of the decision engines. Although most offloading
frameworks define some sort of mechanism to decide on
runtime if offloading is advisable, the details of most imple-
mentations are very vague.Mostly, we see partial descriptions
of such engines in the literature in which the parameters

VOLUME 11, 2023 69265

S. Pablo et al.: Empirical Study of Mobile Code Offloading in Unpredictable Environments

TABLE 1. Comparison of mobile code offloading frameworks.

which are collected are enumerated but no specific descrip-
tion is given on how these parameters are used to reach a
specific decision. Most importantly, despite some very inter-
esting proposals [20], [21], [22], [23], [24], [25], we have
yet to see practical evaluations of any given decision-making
engine algorithm running on the devices of random end-users.
As such, there is very little evidence that any of the currently
proposed algorithms for these effects is actually useful or
if there is any insight on how they may be improved upon.
The only notable exception to the above we found is CADA
[26], and offloading decision algorithm that was integrated
with the ThinkAir framework and tested by volunteers who
were asked to use a benchmarking application integrated with
said algorithm whenever they had the chance within a 3-day
window. However, the evaluation of CADAwas conducted on
a single Android smartphone model that had to be previously
configured by the researchers, therefore its effects on the
average device held by actual end-users remain unknown.
A comparison of the various frameworks presented in this
section is available in Table 1.

III. THE MobiCOP PLATFORM
MobiCOP is a fully functional mobile code offloading frame-
work that consists of a client library and a server component.
The server component consists of a set of Android execution
environments in charge of running the offloaded code, and
a middleware responsible for routing the messages between
client and server. Genymotion Cloud for Android 8.0 is
currently used for running Android code on the server,
while the middleware was built using the Node.js based
Express.js framework. Our Genymotion Cloud instances are
hooked with Amazon Web Services AutoScaling technol-
ogy to enable scalability through automatic instantiation of
additional machines when the overall CPU usage exceeds
a certain threshold. This module can also destroy spare
instances once traffic diminishes in order to reduce mainte-
nance costs for the developer.

The client component, on the other hand, is distributed as
a standard .aar Android library. It is fully standalone, and
it allows developers to integrate MobiCOP into any Android
project in a matter of minutes. One of the main benefits of this
approach is that, unlike several alternatives proposed in the
literature, no customization of the standard operating system
is required. The library is compatible with Android API

level 17 and above and also includes support for Android’s
newest background restrictions introduced inOreo. The client
contains four components: a decision-making engine that
tells the platform whether to offload a task or not, a network
profiler that continually samples the quality of the network
at reasonable intervals, a communication layer in charge of
communicating with the server and serializing input and out-
put data, and an executor in charge of running the task locally
if offloading is not recommended.

A. ARCHITECTURE
MobiCOP’s architecture was built with simplicity, reliability,
and scalability in mind. It was also built to fit nicely with
Google’s official Android design patterns and philosophy.
MobiCOP exposes a simple API that allows developers to
encapsulate tasks that are good candidates for being offloaded
in isolated components we call ‘‘CloudRunnables’’, akin to
Android’s Services. Services are components defined by the
Android ecosystem that are well-suited for running back-
ground tasks. As per the standard in Android development,
developers are required to manually pass input parameters
in the form of sets of primitives between Activities and our
CloudRunnables. These primitives are then taken into consid-
eration by our decision-making engine to estimate how long
it would take to run the given task either locally or in the
cloud. An overview of MobiCOP’s architecture is available
in Figure 1.

MobiCOP’s communication layer was heavily inspired
by the FTP protocol. It defines two different channels: one
for dispatching control messages to the server to start a
remote execution, and a second optimized for transferring
large amounts of input and output data. Control messages are
lightweight and can usually be contained in a single network
package; input and output data on the other hand can be very
large (i.e., in multimedia applications, whole videos in the
order of dozens of MB may need to be transferred back and
forth between client and server). As such, this channel was
built on top of resumable transfer technologies, so in case
of a network interruption, data transfer can be retried from
the point where the connection was lost. If the result of an
offloaded task fails to reach back the client before the remote
execution time estimated by the decision-making engine has
elapsed, the framework falls back to running the task locally.

69266 VOLUME 11, 2023

S. Pablo et al.: Empirical Study of Mobile Code Offloading in Unpredictable Environments

FIGURE 1. Overview of MobiCOP’s architecture.

When a CloudRunnable task is dispatched, and our
decision-making engine makes the choice to offload, the fol-
lowing process takes place: first, the input data is transferred,
then the server executes the task, the result is later retrieved,
and finally, a local broadcast is dispatched in the client to
inform the task has been completed.

B. ANDROID SERVICES AND OREO BACKGROUND
RESTRICTIONS
MobiCOP was designed specifically for long-running back-
ground tasks. We, therefore, wish to be compatible with tasks
where the user is not required to wait in front of the screen
until they are complete. Services are the de facto Android
component for this type of work. Unlike activities, services
are less likely to be destroyed by the operating system in
case of resource shortage and may run concurrently with one
another. Simply launching long-running background tasks
in a separate thread on an activity when there is a strong
chance for the user to stop interacting with the application
and move it to the background before said task is finished is
considered to be bad practice in Android. However, devel-
opers started to abuse services by having their apps make
continuous usage of them for menial tasks, which would lead
to multiple services running concurrently all the time, hog-
ging the device’s resources. Under such conditions, battery
life became affected, and the probability of services getting
killed regardless of the OS increased. In response, Google
introduced significant behavior changes to background appli-
cations in Android Oreo [27]. Specifically, it introduced the
concept of foreground and background app for purposes of
service limitations (not to be confused with the standard
foreground and background definition used in the context
of memory management). In this context, an application is
considered to be in the foreground if any of the following
is true: it has a visible activity, it has a foreground service,
or it has a component that is currently being used by another
application (bound service or content provider). If none of
the above is true, the application is considered to be in the

background for the purposes of service limitations. Appli-
cations under these conditions are unable to start additional
services, and all of their currently running services are auto-
matically stopped by the operating system, with the exception
of those placed under a temporary whitelist. This includes
applications receiving a high-priority message using the Fire-
base Cloud Message (FCM) service or that have just recently
been moved to the background in terms of memory manage-
ment. This behavior applies to all applications running under
Oreo or above that target API level 26 or above. Nevertheless,
applications running on Oreo that target a lower API level can
still have this behavior enforced through an option available
in the system settings, and applications not targeting the
latest API levels are continually being restricted from being
published in Google’s official store, the Play Store, which
severely limits distribution. This is particularly problematic
for frameworks such as MobiCOP that have been designed
explicitly for long-running background tasks.

In order to solve this problem, MobiCOP admits two
different behaviors: a light mode intended for background
tasks not lasting for more than a couple of minutes, and
an intrusive mode where the background tasks are launched
on a foreground service instead. Foreground services are
excluded from Oreo’s background behavior changes but
carry the disadvantage of requiring an indelible notification
to be present to inform the end user a task is constantly
draining the device’s resources. Light mode is intended for
tasks that can be completed during the small timeframe the
OS grants applications to keep running background services
after a user quits its UI or if it is acceptable for the back-
ground task to be aborted if the user quits the application.
The usage of high-priority FCM messages will ensure the
results retrieved from the server may be adequately processed
by both foreground and background services. Which mode
is more appropriate depends on the specific needs of the
developer.

In the case of Android Pie, MobiCOP’s intrusive
mode also requires the developer to request the new

VOLUME 11, 2023 69267

S. Pablo et al.: Empirical Study of Mobile Code Offloading in Unpredictable Environments

FOREGROUND_SERVICE normal permission in the appli-
cation’s manifest.

C. OPERATION MODES
It is often assumed that mobile code offloading frameworks
should always choose a single context in which to run a task:
either locally or in the cloud, depending often on the output
of a decision-making engine. Nevertheless, since all manner
of unforeseen circumstances can occur during the execution
of a task, from sudden network disconnections to unexpected
delays in the arrival of push notifications, it is impossible for
a decision-making engine to always make the right choice.
As such, it may be of interest to some developers to always
run tasks concurrently on both the local device and the cloud
environment, then keep the result from whichever task fin-
ishes first. Tango is one of the first mobile code offloading
frameworks to suggest this approach. The main advantage of
this method is that the best possible performance is always
attained, albeit at the cost of higher battery consumption,
as the client will always need to simultaneously make full
use of its CPU (for local execution) and radio (for offload-
ing). Nevertheless, this may be an acceptable compromise for
certain use cases where performance is paramount.

MobiCOP acknowledges these potential use cases and
offers two operation modes for developers that we call opti-
mistic and concurrent. In optimisticmode,MobiCOP behaves
as standard code offloading solutions, wherein a task is run
in a single context depending on the output of a decision-
making engine. However, in concurrent mode, the relevant
task is always executed simultaneously locally and in the
cloud, and only the result of whichever is finished first is kept.
The developer may freely select which mode better fits the
intended use case.

D. THE OFFLOADING DECISION
For years, authors have been struggling with figuring out
how to best make the decision on whether to offload or
not a given task. Decision-making engines should ideally
adapt to changing network and device conditions in real-time
and be capable of producing an output without introducing
too much overhead [28]. A popular way of tackling this
problem has been through linear optimization techniques:
decision-making engines would model the offloading task as
an integer linear programming (LP) problem and then make
use of an LP solver to deliver a recommendation [13], [29].
However, LP problems can be computationally expensive
to solve, as they have been proven to be NP-Hard. More
advanced evidence-based methods suggest aggregating data
in the cloud from traces obtained from potentially thousands
of devices, in order to figure out precise rules based on fuzzy-
logic, that are then pushed onto client devices so they can
efficiently make the offloading decision [10], [30]. Although
this is a very promising approach, the question remains on
how to handle the offloading decision for new applications

where no such past evidence exists. This is also known as the
cold start problem in the field of machine learning.

MobiCOP solves both of these issues by using heuristics
based on local historical data. MobiCOP’s decision-making
engine assumes that any given task that has been previously
executed should take similar times to complete if a similar
input is handed in. MobiCOP’s decision engine also reduces
its overhead by focusing solely on the performance variable.
Energy consumption predictions based on software models
are very inaccurate and depend on the specific device on
which they are being run. Moreover, energy consumption
is often related to a task’s execution time, and, most of the
time, longer tasks will consume more energy than shorter
ones. The decision engine comprises two modules: a code
profiler in charge of estimating how long a task would take to
complete with and without offloading, and a network profiler
responsible for estimating network availability, quality, and
throughput.

The code profiler operates by registering in a local DB
statistics of task executions run by the client. Our algorithm
uses this information to estimate how long it would take a task
to complete. If no historical data on said task is previously
available, MobiCOP leverages its concurrent execution capa-
bilities to run the task simultaneously on the client and the
cloud, therefore solving the cold start problem. This serves to
both collect data and not hamper client performance. Energy
consumption may suffer slightly while in this mode, but
MobiCOP will only run tasks concurrently until sufficient
data is available to make educated decisions.

Once this condition is met, the code profiler’s algorithm
works as follows: for every task Ti its input set Ii =

{i1, i2, . . . , in} is transformed into the vector Vi by applying
the function F over every element of Ii. In our particular
case, the input set corresponds to the hash map developers
are required to pass to the framework. Different values of the
input set are distinguished by the key-value pairs in the hash
map. We then define F as follows:

F(ix) =


ix if ix is numeric
length(ix) if ix is string, array or file
1 or 0 ifix is boolean

(1)

Let V̂ equal the normalized vector of V . Let t represent
a task’s execution time in seconds and l represent the size
of a data set in bytes. Whenever a task is completed, the
tuple RT = (tlocal, tcloud , loutput) is stored in a KD-Tree by
the client, with V̂ as its search key. Let TN be a new task to
be executed. The decision-making engine executes a nearest
neighbor algorithm to find those records RTi whose vector
V̂i most resembles V̂N . Let Wi be the inverse of the distance
between V̂i and V̂N ; we can then make an estimate for RTN as:

RTN =

 average(RTi)∀RTi | V̂i = V̂n if ∃i | V̂i = V̂N∑
Wi · RTi∑
Wi

otherwise

(2)

69268 VOLUME 11, 2023

S. Pablo et al.: Empirical Study of Mobile Code Offloading in Unpredictable Environments

On the other hand, the network profiler operates by
periodically sampling the network to estimate availability,
latency (L), and throughput speed (R). We perform a sample
whenever we connect to a Wi-Fi network, when a network
configuration change is detected (i.e., when switching from
Wi-Fi to a mobile network or vice versa), and when our
decision-making engine recommends running a task locally
due to poor network connectivity. The latter is to confirm
that the network is still down. If this is not the case, the
following query to the decision-making engine will consider
this updated information. Once connected to a network, the
sampling is repeated periodically every 15 minutes on aver-
age. The network sampling task is encapsulated in anAndroid
Job and later dispatched through the Job Scheduler API to be
as friendly as possible with the battery. On the other hand,
the profiling of mobile networks is considered a special case,
as constant probing of a metered network over long periods
of time could result in significant unwanted charges to the
end user. For that reason, mobile network throughput speed is
instead estimated using documented average values based on
the mobile network connection’s subtype (e.g., LGE, GPRS,
EDGE, etc.).

Finally, the decision-making engine takes the output of
these two modules and decides to offload the task only if the
two following conditions are met:

• The server is reachable
• The following inequality is true:

tlocal > α ·

(
tcloud +

linput
R

+
loutput
R

)
(3)

The value alfa is an arbitrary multiplier currently set to
1.5 by default, as per the model recommended in [31]. Orig-
inally, we also considered the signal strength as reported by
the Android API for making an offloading decision. However,
subsequent testing revealed that this value was too unreliable
to be of use: offloading was possible in many situations where
the API reported low signal strength, whereas there were also
several cases where offloading was impossible even if the
device reported a strong signal. In the end, simply pinging
the server was much more reliable.

While heuristics-based approaches are much less accurate
than more advanced machine learning techniques, they are
significantly more lightweight. Overall, the overhead intro-
duced by our decision-making engine is negligible. Most
importantly, our empirical testing revealed that accuracy
when estimating the length of a task is far from paramount.
Even in cases where substantial differences were detected
between prediction and reality, our enginemanaged to behave
reasonably well. Interestingly, the network profiler played a
much more important role in making good decisions than the
code profiler.

E. COMUNICATION CHANNELS
MobiCOP supports two ways to communicate with our
server: standardHTTP orGoogle’s FCMupstreammessaging
technology. The latter defines a communications channel in

which XMPP messages are uploaded to Google’s servers
through the same socket used for push notifications and
subsequently relayed to ours. FCM upstream messaging is
advertised as offering several advantages over other standard
HTTP communication, including increased energy efficiency
and better usage of resources thanks to socket reuse and the
asynchronous nature of XMPP. As such, MobiCOP’s first
implementation was exclusively built using this technology.

Unfortunately, long-term testing revealed that FCM
upstream messaging has a strong tendency to introduce sig-
nificant delays in dispatching messages queued for transfer
in background processes. The closed-source nature of Google
Play Services prevents us from pinpointing the exact reason
for this behavior, but we assume this is due to Google’s
energy-saving policies. Because of this, standard HTTP was
later introduced as well.

Developers may select whichever channel they prefer.
Although HTTP has proven to be much more reliable in our
testing, the increased energy efficiency offered by upstream
messaging cannot be overlooked. Therefore, we recommend
using the former when reliability is pivotal and diverting
to the latter if the developer is more interested in saving
power.

IV. EXPERIMENTAL SETUP
In order to better understand the behavior and potential ben-
efits of mobile code offloading in real-life environments,
we conducted an experiment in which volunteers installed
a benchmarking app fitted with MobiCOP. When given a
certain predetermined task, this application would intermit-
tently run a job which executes a set of predefined tasks.
First, the job uses the MobiCOP decision-making engine to
analyze each task, and then it would simultaneously attempt
to execute the task on the local device and offload it to the
server.

A. RESEARCH QUESTIONS
The overall goal of this experiment is to evaluate the perfor-
mance of MobiCOP in real-life environments, in particular,
to answer the following research questions:

• RQ.1. What is the impact of real-life environment on
MobiCOP’s execution time measurements?

• RQ.2. What is the impact of real-life environment on
MobiCOP’s decision-engine accuracy?

• RQ.3. What is the impact of real-life environment on
the overall code offloading performance?

These questions are important to understand and quan-
tify the actual benefits of MobiCOP in terms of execution
time in a real-life environment. More precisely, we are inter-
ested in evaluating the accuracy of MobiCOP’s decision
engine, in particular, how often its outputs correspond to the
environment in which the task is actually run faster.

VOLUME 11, 2023 69269

S. Pablo et al.: Empirical Study of Mobile Code Offloading in Unpredictable Environments

B. METHODOLOGY OVERVIEW
To answer our research questions, we define a linear five-step
methodology:

1) Benchmarks selection
2) Benchmark suite APK implementation
3) APK distribution and devices under study
4) Metrics & data model
5) Benchmark execution and data collection

The rest of the subsections carefully detail each one of these
steps.

C. BENCHMARKS SELECTION
We use three types of benchmarks, one in which the bench-
marks were configured to execute a short, but CPU intensive
task with small amounts of input and output data (small
shared state); another one in which the task involved a long
CPU intensive task that requires the transfer of large amounts
of data between client and server (large shared state); and
one which requires the use of GPU and/or CPU to solve a
machine-learning related task. We believe these three envi-
ronments are the most representative of the actual use cases
where offloading may be involved and it is comparable to
similar experiments made in the state of the art (See Table 2).

TABLE 2. Experiments used in the state of the art of mobile code
offloading frameworks.

Below, we describe each one of these benchmarks:
• N-Queens (CPU-Intensive) – The task in question was
the N-Queens problem, a common benchmarking task
in code offloading literature. This task consists of com-
puting all valid N queens’ placements on a chess board
so that no queen is in range of one another. A value of
N = 14 was chosen for this experiment.

• Video Transcoding (Large-File) – The task consisted of
transcoding a .webm video into an .mp4 equivalent using
the FFMEPG library. The input video had a size of 3MB,
while the output video weighed about 4.5 MB. Because
of the large amounts of shared state in this second exper-
iment, the benchmarking application imposed a much
bigger burden on our users’ data plans and batteries: we
estimate it needed to transfer about 1 GB of data per day
in the background.

• Image Recognition (Machine Learning) – The task con-
sisted in detecting and listing objects present in a picture

using a deep learning model called Mobilenet [33] con-
figured to use the GPU if it is available.

D. BENCHMARKS SUITE APK IMPLEMENTATION
We developed a mobile APK application that contains all the
considered benchmarks. We took special care to design it in
such a way that the benchmarking applications would inter-
fere the least possible with our participants’ usage of their
phones and their battery. For that reason, we encapsulated the
benchmarking task in Android JobService and programmed
it to be run irregularly every 15 minutes using Android’s
Job Scheduler API. Job Scheduler is an API introduced in
Android Lollipop that allows the operating system to coordi-
nate background tasks among multiple applications so all of
themmay run consecutively during timewindows determined
by the OS. The purpose of this API is to bundle as many
background jobs as possible in order to minimize intermittent
wakeups and therefore reduce battery consumption. As such,
with our given parameters, it does its best to ensure jobs are
executed once every 15 minutes, but two consecutive jobs
will not necessarily be scheduled exactly 15 minutes apart.
JobServices run by the Job Scheduler API are also not
subjected to Oreo’s background service limitations. From
here onwards, we will use the term job instance to refer to
a single run of the aforementioned job.

We also took into consideration the Doze feature intro-
duced in Android Marshmallow. Doze may defer the trig-
gering of scheduled jobs when the device has remained
stationary after a given amount of time if it has the screen
off and is not currently plugged into a power source. From
Android Nougat onwards, an extended Doze mechanism
may cause job deferrals even when the device is not sta-
tionary. We wanted to minimize the impact of Doze in our
experiments. Therefore we asked our participants to add our
application to their devices’ Doze whitelist to prevent this
behavior.

E. PARTICIPANTS, DEVICES AND APK DISTRIBUTION
Our experiment involved a total of 18 volunteers, each with a
mobile device. Participants device specifications are available
in Table 3. We contacted each participant via email to dis-
tribute the corresponding mobile APK application containing
our benchmarks through the Play Store Beta functionality,
as well as instructions on how to use it. The research team
had no physical access to our participants’ devices or face-
to-face contact with most of them. In particular, no additional
special configuration was applied to their devices.

We then asked our users to always carry their smartphones
with them as we wanted to evaluate MobiCOP’s behavior
under a wide variety of real-world situations. We wanted
to avoid the case in which users would simply leave their
devices lying on a flat surface for the entire duration of the
experiment. Each volunteer was required to collect at least
seven days of data, although some kept the benchmarking
application running for longer. Since we experienced a high
degree of unreliability using FCM upstream messaging in the

69270 VOLUME 11, 2023

S. Pablo et al.: Empirical Study of Mobile Code Offloading in Unpredictable Environments

long run, we configuredMobiCOP’s control message channel
to use HTTP.

Amongst our participants, we also had owners of devices
with Android Oreo or greater. Since we did not want Oreo’s
background limitations to interfere with our results, our
benchmark app was configured to launch MobiCOP in intru-
sive mode on devices with Android Oreo, and on light mode
on devices with Nougat and below. While running our appli-
cation, each of our volunteers generated between 100 and
1000 job instance records. Additionally, the architecture used
for our application is the same base architecture used for any
MobiCOP application (Figure 1). We distributed the load to
three AWS instances with the same configuration to conduct
this experiment. Our server’s middleware was deployed on an
AWS t2.micromachine, while our Android execution environ-
ment was deployed on a t2.small instance. Finally, we would
like to mention that although more powerful machines are
available on AWS, we had to exclude them from this exper-
iment due to financial constraints. Therefore, better results
are expected if this experiment is reproduced on the most
powerful AWS machines.

F. METRICS & DATA MODEL
Let tx be a job instance that performs a benchmark x either
in the cloud or on the mobile device, where x ∈ (n −

queens, transcoding,machine− learning).

1) PROFILING METRICS
For each time a job tx is executed, we collected the following
metrics:

• location(tx): it is a tuple {longitude, latitude} that repre-
sent where the tx was performed.

• network_latency(tx): it is the estimated network latency
at the moment that tx was performed.

• network_speed(tx): it is the estimated network through-
put speed at the moment that tx was performed.

• network_king(tx): it is the type of network con-
nectivity at the moment that tx was performed.
network_king(tx) ∈ {WIFI ,MOBILE}

• power_source(tx) ∈ {YES,NO}: it indicates if the
device was connected or not to a power source (for this,
we used an API only available on AndroidMarshmallow
or above). power_source(tx) ∈ {YES,NO}

• decision(tx): it represents the decision made by the
MobiCOP engine. The decision could be LOCAL,
CLOUD or CONCURRENT; the latter only happens
when no data is available. In this particular case, two
concurrent jobs are excluded from the analysis.

• Plocal(tx): it is the predicted local execution time for
task tx . This prediction is done by the MobiCOP’s cost
model.

• Pcloud (tx): it is the predicted cloud execution time for
task tx . It includes the time that MobiCOP takes to
transfer the input and output to the cloud.

• Alocal(tx): actual completion time that task tx takes when
running locally.

• Acloud (tx): actual completion time that task tx takes when
the task is offloaded. It may be equal to infinity if tx
fails to offload, or if the result is never retrieved due to
network problems.

2) ACCURACY
We also computed the accuracy of the decision engine.
We refer to accuracy regarding the number of times that
MobiCOP’s decision was correct. We consider that a decision
was correct in two cases:

• Local Accuracy: when MobiCOP decides to compute
the benchmark locally decision(tx) = LOCAL, and the
time for executing the benchmark locally is shorter than
the time for executing the same benchmark in the cloud
Alocal(tx) < Acloud (tx).

• Cloud Accuracy: when MobiCOP decides to compute
the benchmark in the cloud decision(tx) = CLOUD,
and the execution time is shorter than executing it locally
Acloud (tx) < Alocal(tx).

Note that regardless of whether MobiCOP decides to run
the benchmark locally or in the cloud, we run the benchmark
both locally and in the cloud, in order to measure the exe-
cution time and determine if the decision is correct. Energy
measurements are beyond the scope of this study as precise
energy readings require physical access to the device and
connecting it to a power monitor.

3) TOTAL COMPLETION TIME(TCT)
To understand the benefits of MobiCOP’s decision-engine,
we contrast the time that MobiCOP requires to resolve
a given task versus the time of executing all the tasks
locally or in the cloud. We define the total completion time
as the amount of time a user would have been required
to wait from the moment he or she dispatches a task to
the moment its result is available for consumption. There-
fore, the completion time TCT for a task tx is defined as
follows:

TCT (tx) =

{
Alocal(tx) if DE(Tx) = LOCAL
min(Acloud (tx),Pcloud (Tx) + Alocal(Tx)) if DE(Tx) = CLOUD

(4)

Note that for local executions, this is simply the time it
takes the client device to complete its computation. When
offloading, on the other hand, the completion time depends
on the output of the decision engine and the fallback policies
when erroneous decisions to offload are made. Consider that
MobiCOP falls back to a local execution whenever the result
of an offloaded task Tx fails to be retrieved before Pcloud (Tx)
has transpired. Since Pcloud is slightly overestimated in our
model, instances where a cloud result is retrieved after a local
fallback has been triggered but before it has completed should
be rare. When that does happen, though, the cloud result is
reported back to the client, and an event is triggered to abort
the local execution.

VOLUME 11, 2023 69271

S. Pablo et al.: Empirical Study of Mobile Code Offloading in Unpredictable Environments

TABLE 3. Description of devices used during experiments.

4) SERVICE AVAILABILITY
Service availability, on the other hand, is simply the per-
centage of instances where the user would have been able
to actually run the task in the cloud. For cloud execution,
this is analogous to the number of instances where a network
connectionwas available to the client. It makes themost sense
to compare average task completion between an offloading
framework and full local execution and to compare service
availability between an offloading framework and full cloud
execution. The corresponding results for MobiCOP were that
we always had 100% of service availability because when the
connection failed, we used the local environment to complete
the task.

G. BENCHMARK EXECUTION AND DATA COLLECTION
Each of the 18 participants, once the benchmark APK was
installed, started to execute the benchmarks every 15minutes.
We asked each participant to keep the application running
for at least seven days. As a consequence, on average, each
benchmark was executed around 670 times. The number of
executions varies between devices due to different situations
during the experiment. Among the most common situations
are that the mobile device turns off or experiences problems
with the network connectivity. For each job execution, we col-
lect all previously mentioned metrics and save them in the
cloud for further data analysis.

To ensure our users have used their devices in different
conditions and places, we recorded the geographic coordi-
nates of the place where each job instance started. Since
each job instance took place in 15-minute intervals, we do
not see a continuous trail of executions across a map, but
rather clusters centered around our users’ frequently vis-
ited locations. Figure 2 shows the locations where the job
instances were triggered. Note that we have participants
from four different countries that transported their devices
around different parts of the cities with different connection
conditions.

TABLE 4. CLOUD: means and standard deviations of predicted and actual
offloading executions (in milliseconds).

V. RESULTS
A. EXECUTION TIME (RQ.1.)
In order to answer our first research question, each time a
benchmark is executed, we compute the estimated execution
time and actual execution time for executing the benchmark
in the cloud and locally. Table 4 and Table 5 summarize the
estimated and the actual execution times for performing the
benchmarks in the cloud and locally, respectively.

1) BENCHMARKS EXECUTION TIME
Our results show that 13 of 16 devices execute the N-queens
benchmark faster in the cloud than locally, on average. Our

69272 VOLUME 11, 2023

S. Pablo et al.: Empirical Study of Mobile Code Offloading in Unpredictable Environments

FIGURE 2. Geographic distribution of job instances for different users in different city contexts. Clusters around the users’ frequently visited places are
clearly noticeable.

AWS machine managed to complete the N-Queens bench-
mark in between 9 and 25 seconds, while our mobile devices
would require up to 80 seconds. For the transcoding bench-
mark, it took about 100 seconds on average to finish the task
in the cloud, while mobile devices could take from 160 to
513 seconds. The only exceptions worth mentioning are
devices E, P, and R. All are high-end devices with Octa-
core processors. Although the server performs N-Queens
benchmark faster than most devices, device P managed to
consistently outperform our server, while devices E and R

were only slightly slower (not enough to make offloading
recommendable). This happened because our deployed server
has lower computing capabilities than a number of devices,
in addition, there is a considerable time spent on sending and
receiving the information from the server.

Regarding the machine learning benchmark, our results
indicate that the cloud performs this benchmark slower than
all devices. As we mentioned before, this is due mainly to
the lower capacity of the server we used for the experi-
ment. In this particular benchmark, participants’ devices had

VOLUME 11, 2023 69273

S. Pablo et al.: Empirical Study of Mobile Code Offloading in Unpredictable Environments

TABLE 5. LOCAL: means and standard deviations of predicted and actual
local executions (in milliseconds).

better performance than the server in the cloud. Nevertheless,
we decided to include these results in this study as they allow
us to analyze our chosen engine’s behavior (situations that
should always be contemplated in code offloading frame-
works).

2) MEASUREMENTS VARIABILITY
Another matter of interest for all benchmarks is that we
noticed a great amount of variability in the amount of time
needed to execute the same tasks throughout the duration of
the experiment. As it has been shown in the past, diverse
factors may affect execution timemeasurement, among them,
the other tasks executed in parallel by the mobile users, the
restrictions put in place by the OS on the processor’s speed
for background tasks, and the network connection.

For the cloud execution time, measurement variability is
much more prevalent, and it presented itself on all users.
One reason is that MobiCOP receives offloaded tasks’ results
through push notifications. And occasionally, devices would
fail to receive these notifications immediately and instead
would suffer a delay of several minutes. Because of this, there
were various cases where an offloaded task’s result would
be retrieved up to 15 minutes late. This is mostly due to
intermittent disconnections and the fact that the Android OS
has to wait for a ‘heartbeat’ duration to attempt to reconnect
the push notification service. As such, mean and standard
deviation values seem particularly inflated. Therefore, in this
case, we assumed that the offloading task failed when it
surpassed a threshold of time. In Figure 3 and Figure 4 it is

FIGURE 3. Example of estimated and actual execution times for local
tasks (user A).

FIGURE 4. Example of estimated and actual execution times for offloaded
tasks (user A). Due to the massive dispersion introduced by failed tasks
that arrived too late, results are presented on a logarithmic scale.

illustrated how the dispersion is present in both cases in the
case of user A.

For the transcoding and machine-learning benchmarks,
much more dispersion is noticeable for offloaded tasks.
This is explained by the fact that the execution time for
an offloaded task is strongly dependent on the quality of
the network connection. On slow networks, the transferal of
the necessary input and output files can delay overall task
completion time by several dozen seconds. Because of that,
the standard deviation remains above 10 seconds for some of
our users.

RQ.1. What is the impact of real-life environment
on MobiCOP’s execution time measurements? As
expected, the network and device’s real-life conditions
introduce a greater degree of variation in the time mea-
surement across our three benchmarks, in both, local
and cloud computation. One reason is that the cloud
execution time measurements are highly dependent on
the network connection to receive and send the input
and output, and the local execution time depends on the

69274 VOLUME 11, 2023

S. Pablo et al.: Empirical Study of Mobile Code Offloading in Unpredictable Environments

other additional tasks/applications executed on the same
device. Despite these variations, our results show that
N-queens and video transcoding benchmarks execute
faster in the cloud than locally on the mobile device (on
average), with the exception of high-end devices which
perform faster than our modest AWS server in the cloud.
However, the machine learning benchmark is a heavy
task even for our server in the cloud. Due to this, most
mobile devices perform this benchmark faster.

B. ACCURACY (RQ.2.)
This section describes the factors that affect MobiCOP’s
decision-engine, and whether said decision is correct or not.
MobiCOP’s decision-engine, first, estimated the potential
benchmark execution time of performing the benchmark
locally and in the cloud, then it decided whether or not it is
more convenient to execute the benchmark locally or in the
cloud. Table 6 summarizes the number of correct predictions
that MobiCOP realized during our experiment, as well as the
accuracy ofMobiCOPwhen it decided to execute a given task
locally or in the cloud.

1) PREDICTED EXECUTION TIME
MobiCOP uses an execution time estimation (predicted) of
executing a given task locally and in the cloud, then uses
these predictions to decide whether or not to offload the
task. By contrasting the average time predictions and the real
execution time, we found that predictions for local execution
time are much closer Plocal(tx) to the actual execution time
Alocal(tX) than the cloud execution time predictions. As we
mentioned before, this is reasonable considering the multiple
factors that can alter actual execution time when connecting
to the cloud. Additionally, we have to consider that in our
particular model, estimates for remote execution are inflated
by a factor of 0.5. This is to ensure that only those tasks
where benefits will be substantial are offloaded. Our results
are concordant with this heuristic as the mean error rate
between predicted and actual execution times, after excluding
failed tasks, varies between 10% and 50%. Predictions for
local tasks were much more reliable, with error rates below
the 10% threshold for most cases. Unfortunately, for those
same users where we observed a large dispersion in local
task execution times, predictions were rather poor. This is
especially the case for users K and L during the N-queens
benchmark. Regarding users O and N during the transcoding
benchmark, while predictions showed slightly worse results
than when compared with the rest of the users, they remained
overall solid. For user K, the reason for this behavior was
a large number of failed tasks throughout the experiment
which caused the decision-making engine to overestimate
local execution times.

In the case of theMachine Learning benchmark, cloud exe-
cution time predictions Pcloud (tx) were unrealistic compared
to the actual execution time Acloud(tx), except for the case of

FIGURE 5. Distribution of predicted vs real-time obtained in the local and
offloading case for the N-queens experiment.

FIGURE 6. Distribution of predicted vs real-time obtained in the local and
offloading case for the Transcoding experiment.

user B. In this case, our engine always underestimated the
offloading case, making an incorrect prediction preferring
offloading over local, when the real situation shows that it
is preferable to keep the task on the local side. This can
be explained probably because the engine assumes that both
environments have the same hardware optimizations, when in
reality, the cloud server, due to the environmental restrictions,
does not have GPU capabilities to use in machine learning.
Because of the restrictions of Genymotion’s Android version
vs. those on the local side, the device has enabled GPU
capabilities for machine learning tasks. In the case of user B
for this experiment, the accuracy is better due to the absence
of specialized hardware to do this kind of task (this is the
only device that did not report a compatible GPU for machine
learning tasks), so even with the sub estimation of the offload-
ing task, the real times for local environment were almost
always worse, making that, in this case, better predictions.
In the other two experiments, however, in some cases, due to
the changing conditions, the decision-making engine failed to
adapt to new settings properly, provoking our engine’s failure
to predict the correct environment.

Figures 5, 6, and 7 show the similitude and distribution
of the real-time and predicted time in both environments for
N-Queens, Transcoding, and Machine Learning experiments
respectively. These graphics also show that the engine, even

VOLUME 11, 2023 69275

S. Pablo et al.: Empirical Study of Mobile Code Offloading in Unpredictable Environments

TABLE 6. Accuracy of prediction for experiments.

FIGURE 7. Distribution of predicted vs real-time obtained in the local and
offloading case for the Machine Learning experiment.

when the environmental conditions are unstable, maintains
consistency in the predictions.

2) LOCAL AND CLOUD ACCURACY
Table 6 shows the overall accuracy of the predictions
of our engine and the number of executions where our
decision-making engine made the correct decision (that is,
the engine’s output is equal to the environment where the
execution would be optimal). Overall, we can see an accuracy

of about 70% or more amongst most of our users (users G,
I, J, and P even experienced an accuracy of 100% in the
N-Queens experiment). Additionally, we can see that our
decision-making engine works rather well when recommend-
ing offloading to the cloud, as comparatively speaking, fewer
mistakes are made whenmaking this decision. However, even
when the predicted times for local environments are relatively
precise, it does show some weaknesses when recommending
a local environment (with an error rate of up to 60% when
recommending a local environment). A common cause for
this phenomenon is an incorrect diagnosis of network avail-
ability. We have noticed this trend among users that often
move through areas with intermittent connectivity, such as
when making long journeys between cities.

RQ.2. What is the impact of real-life environment
on MobiCOP’s decision-engine accuracy?

Overall, the decision accuracy of offloading a given
task varies from 84.3% to 100%. However, the decision
of performing the task locally has a very low accuracy
(below 20% in almost all the cases). This last result
is related to the execution time predictions. Although,
with N-queens and transcoding benchmarks, local time
predictions are close to really having error rates below
10% in most of the cases, cloud time predictions have a

69276 VOLUME 11, 2023

S. Pablo et al.: Empirical Study of Mobile Code Offloading in Unpredictable Environments

TABLE 7. Performance gains comparing the obtained local time vs.
offloading time.

greater error rate (between 10% and 50%). In particu-
lar, machine-learning benchmark cloud execution time
predictions are weighted far differently for the actual
execution time. This error rate is related to a number of
factors including the low GPU capabilities of our server
in the cloud, the high-end technology of a number of
devices, and the high measurement variability due to the
network connection.

C. OVERALL MobiCOP PERFORMANCE (RQ.3.)
To analyze the benefits of MobiCOP, we contrast the total
completion time TCT (tx) thatMobiCOP requires to perform a
task (either locally or in the cloud) against the execution time
of executing a task only locally Alocal(tx). Table 7 illustrates
a detailed performance comparison between using offload-
ing and running in a local environment. Note that network
latency averages vary, which affects response time. These
situations occur because the experiment was conducted in
real-life conditions and not in a laboratory where the variables
are controlled. Therefore, the latency varies due to diverse
situations, such as the fact that the participants and their
devices moved around their cities and the type of connection
is too heterogeneous (e.g., 3G, 4G). Figures 8, 9 and 10 show
in a graphical view, MobiCOP’s average total execution time
(in blue) and the average local execution time of executing
the three benchmarks.

Figure 8 reveals that our code offloading framework does
a relatively good job of determining if it is more convenient,
in terms of performance, to offload the n-queens benchmark
task. On average, in all but two devices (E and R)MobiCOP’s
completion time is shorter than always running the task

FIGURE 8. Performance gains comparing the obtained local time vs.
offloading time for N-queens experiment.

FIGURE 9. Performance gains comparing the obtained local time vs
offloading time for the Transcoding experiment.

FIGURE 10. Performance gains comparing the obtained local time vs
offloading time for Machine Learning experiment.

locally. We can see that average task completion times show a
significant improvement when using MobiCOP. Even though
our decision-making engine is far from perfect, overall, our
end-users would have experienced between 30% to 420%
increased wait times had they relied on a completely local
implementation.

VOLUME 11, 2023 69277

S. Pablo et al.: Empirical Study of Mobile Code Offloading in Unpredictable Environments

Figure 9 and Figure 10 show the result for the benchmark
transcoding and machine learning, respectively. Both figures
show that MobiCOP spends more time resolving the task
than simply executing benchmarks locally. This is due to the
restricted capabilities of our server and the mobile internet
service availability. Service availability always depends on
a user’s location and access to a mobile network. While
some users were unaffected by this (they always had network
access), the rest of our users would have been unable to use
the application up to one-third of the time had they relied on
a local-only implementation.

RQ.3.What is the impact of a real-life environment
on the overall code offloading performance? The low
accuracy of the decision-making engine for benchmarks
transcoding and machine-learning has a negative impact
on total execution time that MobiCOP requires to per-
form these benchmarks, being more convenient in these
cases to perform all the tasks locally. In the case of
N-queens benchmark, we can observe a performance
improvement between 30% and 420%, depending on the
device.

VI. DISCUSSION AND LESSONS LEARNED
There were many insights we gained throughout the course
of this experiment.

A. NETWORK AVAILABILITY
Much of the related work we have observed in the literature
puts a great amount of emphasis on the description of their
code profiler’s algorithm and the many parameters collected
in order to make a good prediction. The most advanced
implementations include very low-level characteristics, such
as CPU instruction cycles, per-thread instruction cycles, allo-
cated RAM, and garbage collector calls. These parameters
are usually not available through the standard SDKs and
require hacking the OS to get access. While, indeed, this
information may yield much more accurate predictions than
the algorithm we have presented so far, we noticed that in
many cases, the differences between execution in the cloud
and on a mobile device are so great that minor inaccuracies
on the exact amount of time a task takes to complete do not
affect the decision-making engine’s output in a significant
way. Our estimates when offloading a code are usually off by
about 30% to 50%; our estimates for local code execution are
usually much better, yet we still noticed some cases where
most of them were off by more than 100%. However, even
in these extreme situations, the decision-making engine can
correctly guess the fastest context for running the task on
most occasions. Ironically, we have noticed in previous works
that very little focus, if any, is given to the network profilers.
We believe this is a mistake and that this area deserves more
attention.

A closer look at the data reveals that for those cases where
the decision-making engine makes a mistake, the most com-
mon cause of error is a network interruption that prevented
the push notification containing the result to arrive on time.
Keeping a socket open with the server throughout the entire
remote execution may aid in solving this problem, but its cost
on battery life can be excessive. Ideally, more work should
be done to improve network profilers to predict when these
network outages are most likely to occur. This is not to say,
however, that code profilers are irrelevant. Boosting their
accuracy may play an integral part for the decision-making
engine for tasks where the differences between local and
remote execution are smaller (however, in this case, the ben-
efits of code offloading will be far less substantial) and for
reducing the task completion time when a task is wrongly
offloaded to the cloud.

Furthermore, researchers should consider that under real-
life conditions, users and their devices commonly move
between different places around their cities and there-
fore have different connection conditions (see Figure 2).
As a result, the bandwidth is heterogeneous and the net-
work latency varies, impacting the performance of the code
offloading models.

Lesson 1. The network profiler accuracy has a high
impact on the estimated execution time and, on the accu-
racy of the decision-engine. Therefore, we recommend
considering evaluating code offloading approaches keep-
ing in mind real-life network conditions.

B. STRESS TESTING
Originally, MobiCOP has always performed exceptionally
well in laboratory experiments. Nevertheless, when mov-
ing into the field, we noticed that our Android execution
environment was prone to various errors that would only
surface after various days of constant operation. This would
mostly occur when a single server instance received far too
many offloading requests to handle. Even though our server
is able to automatically scale horizontally, spawning new
machines takes some time, and sudden spikes in the num-
ber of offloading requests can produce this situation. It is,
therefore strongly recommended for future code offloading
solutions to ensure a mechanism is put in place to constantly
verify the status of the running server instances and repair
them when necessary. Luckily, AWS Auto Scaling took care
of most of this work for us.

Lesson 2. Android server execution environments can
be very brittle, therefore, we recommend performing
stress testing to evaluate the code offloading implemen-
tation in the server to avoid potential issues with multiple
concurrent users.

69278 VOLUME 11, 2023

S. Pablo et al.: Empirical Study of Mobile Code Offloading in Unpredictable Environments

C. NETWORK SIGNAL DIAGNOSIS
It is a well-known fact that all mobile devices offer an API
that returns an estimate of the network’s signal strength. Orig-
inally, we tried to take advantage of this metric to improve
the predictions of our decision-making engine. Unfortunately,
we found this data to be extremely unreliable to be of use.
In our original work, our decision engine defined a threshold
below which tasks would never be offloaded due to the risk of
disconnections. However, practical testing revealed that this
constraint introduced an intolerable number of false negatives
(the decision-making engine would refuse to offload a task,
even though there would have been no issues in attempting
to do so). Ignoring this parameter altogether significantly
improved the accuracy of our decision-making engine as the
cases when the offloaded tasks would fail to complete in
time when under a poor network connection ended up being
rather low. If a future mobile code offloading framework
seeks to incorporate this metric, at the very least, it should
be combined with something else if an improvement is to
be made. Otherwise, simply testing for server reachability is
enough.

Lesson 3.Network signal quality indicator onAndroid
is extremely unreliable. Therefore, we believe that we
need to further investigate and understand the factors
that influence the network signal indicator in a separate
experiment.

D. EXECUTION TIME MEASUREMENTS
Against our expectations, we found out that in some cases,
running the same task on the same mobile hardware with
exactly the same input data can take very different amounts
of time to complete. Although some variation was expected,
data recorded for several users showed differences in local
execution time between the fastest and slowest run of the
same task of up to a factor of nine. This behavior seems
more prevalent on older models with less computing power at
their disposal. Because of this, more advanced code profilers
should take into consideration the dynamics of the system
environment of the mobile device.

Lesson 4. During our experiment, we computed the
cloud execution time as the sum of the time the server
needs to execute the benchmark plus the time spent to
send and receive the input/output. In the future, we rec-
ommend measuring both execution times separately to
better quantify the impact of the network on the offload-
ing performance.

E. HIGH DEVICE CAPABILITIES
It was interesting to find out that in the case of the experi-
mentation of machine learning when all the environment and
the machine learning model are optimized to run on mobile

devices, we must prefer to run in the local environment rather
than doing it in the cloud with offloading. This is mainly
due to the networking part, where we must send the input to
a remote server, causing some bottleneck in that workflow.
In addition to this, the cloud Android device used to run the
offloaded code, does not have GPU capabilities due to the
restrictions of Genymotion accessing a GPU-capable device.
In these cases, the older devices with reduced performance
are better candidates to do offloading, when even with the
optimizations, the devices cannot get better results due to
hardware constraints. Even with this situation, offloading
becomes attractive when the app must deal with a hetero-
geneous user base that older devices will probably have.
This will be true even when the hardware improves over
time, mainly because the machine learning models are also
growing in size over time, adapting to the new hardware but
deprecating older ones. Also, we believe that by using code
offloading, even when the performance indication tells us to
do it on mobile, we can gain energy savings for the user
in some cases, making offloading still a valid and attractive
option to use.

Lesson 5. In the majority of situations, using offload-
ing can help to obtain better results than a local
environment, but in some cases, local execution is better
than offloading when the task is optimized for running
on mobile devices. Anyway, using offloading when it is
necessary can help to run some difficult applications on
older devices, and even if local execution can perform
better in terms of execution time, offloading can help to
save devices’ energy.

VII. CONCLUSION
Mobile code offloading has been around in academia for
over a decade, yet practical implementation difficulties have
prevented this technology from actually being tested in the
wild until now. In this work, we presented an extensive test-
ing framework with various new metrics for evaluating the
performance of such solutions when making the move to the
field.

In these situations, the decision-making engine is critical
for the success of the mobile code offloading framework,
but details on how this component may be evaluated have
not been published in the literature so far. Although one
may think its accuracy when estimating the execution time
when running locally or remotely is the most important
factor, we have shown our code offloading framework can
actually be fairly tolerant to prediction inaccuracies and still
deliver good recommendations on where it would be more
convenient to run a particular piece of code. As such, code
offloading framework quality metrics should be focused on
the actual benefits perceived by the end-user.

Determining the percentage of cases where the decision-
making engine guesses the fastest execution environment is

VOLUME 11, 2023 69279

S. Pablo et al.: Empirical Study of Mobile Code Offloading in Unpredictable Environments

a good first approach but comparing against an exclusively
local implementation through average task completion time
can also not be ignored to properly weight the impact of
wrong predictions. Additionally, special care should be taken
by researchers and engineers to ensure their code offloading
solutions operate well in areas with no Internet access (even if
the device is connected to a network), and on a wide variety of
device models, especially those that might be faster than their
server environment. The latter is even more important in the
Android ecosystem, where fragmentation is particularly more
significant than, for example, iOS.

MobiCOP’s decision-making engine is not without its lim-
itations though, and a substantial engineering effort is needed
to improve its performance. For instance, it currently assumes
the server environment is homogenous, which might not nec-
essarily be the case. Also, it fails to properly filter out outliers
when predicting task execution time, which might have a
strong incidence on averages due to the massive dispersion
detected in our results. Future work will involve figuring out
a way to overcome these limitations.

We hope this work will serve as a guideline for the devel-
opment of future offloading platforms that might be used
in practice, and that developers and researchers can use this
work’s results as a baseline to improve upon.

ACKNOWLEDGMENT
The authors thank Christian Eilers for his support and con-
tribution during the experimentation along with the different
volunteers.

REFERENCES
[1] N. Fernando, S. W. Loke, and W. Rahayu, ‘‘Mobile cloud computing:

A survey,’’ Future Generat. Comput. Syst., vol. 29, no. 1, pp. 84–106,
2013. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S0167739X12001318

[2] S. Abolfazli, Z. Sanaei, E. Ahmed, A. Gani, and R. Buyya, ‘‘Cloud-
based augmentation for mobile devices: Motivation, taxonomies, and open
challenges,’’ IEEE Commun. Surveys Tuts., vol. 16, no. 1, pp. 337–368,
1st Quart., 2014.

[3] K. Sekar, ‘‘Power and thermal challenges in mobile devices,’’ in Proc. 19th
Annu. Int. Conf. Mobile Comput. Netw. (MobiCom), 2013, pp. 363–368,
doi: 10.1145/2500423.2505320.

[4] J. I. Benedetto, A. Neyem, J. Navon, and G. Valenzuela, ‘‘Rethinking
the mobile code offloading paradigm: From concept to practice,’’ in
Proc. IEEE/ACM 4th Int. Conf. Mobile Softw. Eng. Syst. (MOBILESoft),
May 2017, pp. 63–67.

[5] J. I. Benedetto, G. Valenzuela, P. Sanabria, A. Neyem, J. Navón, and
C. Poellabauer, ‘‘MobiCOP: A scalable and reliable mobile code offload-
ing solution,’’ Wireless Commun. Mobile Comput., vol. 2018, pp. 1–18,
Jan. 2018, doi: 10.1155/2018/8715294.

[6] E. Cuervo, A. Balasubramanian, D.-K. Cho, A. Wolman, S. Saroiu,
R. Chandra, and P. Bahl, ‘‘MAUI: Making smartphones last longer with
code offload,’’ in Proc. 8th Int. Conf. Mobile Syst., Appl., Services,
Jun. 2010, pp. 49–62, doi: 10.1145/1814433.1814441.

[7] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti, ‘‘Clonecloud:
Elastic execution between mobile device and cloud,’’ in Proc. 6th Conf.
Comput. Syst., Apr. 2011, pp. 301–314, doi: 10.1145/1966445.1966473.

[8] M. S. Gordon, D. A. Jamshidi, S. Mahlke, Z. M. Mao, and X. Chen,
‘‘$COMET$: Code offload by migrating execution transparently,’’ in
Proc. 10th USENIX Symp. Operating Syst. Design Implement. (OSDI).
Hollywood, CA, USA: USENIX Association, Oct. 2012, pp. 93–106.
[Online]. Available: https://www.usenix.org/conference/osdi12/technical-
sessions/presentation/gordon

[9] Y. Li andW. Gao, ‘‘Minimizing context migration in mobile code offload,’’
IEEE Trans. Mobile Comput., vol. 16, no. 4, pp. 1005–1018, Apr. 2017.

[10] H. Flores and S. Srirama, ‘‘Adaptive code offloading for mobile cloud
applications: Exploiting fuzzy sets and evidence-based learning,’’ in Proc.
4th ACM Workshop Mobile Cloud Comput. Services, Jun. 2013, pp. 9–16,
doi: 10.1145/2497306.2482984.

[11] M. S. Gordon, D. K. Hong, P. M. Chen, J. Flinn, S. Mahlke, and
Z. M. Mao, ‘‘Accelerating mobile applications through flip-flop repli-
cation,’’ in Proc. 13th Annu. Int. Conf. Mobile Syst., Appl., Services,
May 2015, pp. 137–150, doi: 10.1145/2742647.2742649.

[12] S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X. Zhang, ‘‘ThinkAir:
Dynamic resource allocation and parallel execution in the cloud for mobile
code offloading,’’ in Proc. IEEE INFOCOM, Mar. 2012, pp. 945–953.

[13] H. Qian and D. Andresen, ‘‘Jade: An efficient energy-aware computation
offloading system with heterogeneous network interface bonding for ad-
hoc networked mobile devices,’’ in Proc. 15th IEEE/ACIS Int. Conf. Softw.
Eng., Artif. Intell., Netw. Parallel/Distrib. Comput. (SNPD), Jun. 2014,
pp. 1–8.

[14] R. Friedman and N. Hauser, ‘‘COARA: Code offloading on Android with
AspectJ,’’ 2016, arXiv:1604.00641.

[15] R. Montella, S. Kosta, D. Oro, J. Vera, C. Fernández, C. Palmieri,
D. Di Luccio, G. Giunta, M. Lapegna, and G. Laccetti, ‘‘Accelerating
Linux and Android applications on low-power devices through remote
GPGPU offloading,’’ Concurrency Comput., Pract. Exper., vol. 29, no. 24,
Dec. 2017, Art. no. e4286, doi: 10.1002/cpe.4286.

[16] F. Armand, M. Gien, G. Maigné, and G. Mardinian, ‘‘Shared
device driver model for virtualized mobile handsets,’’ in Proc. 1st
Workshop Virtualization Mobile Comput., Jun. 2008, pp. 12–16, doi:
10.1145/1622103.1622104.

[17] R. Balan, J. Flinn, M. Satyanarayanan, S. Sinnamohideen, and
H.-I. Yang, ‘‘The case for cyber foraging,’’ in Proc. 10th Workshop
ACM SIGOPS Eur. Workshop, Beyond PC (EW), 2002, pp. 87–92, doi:
10.1145/1133373.1133390.

[18] M. R. Rahimi, N. Venkatasubramanian, and A. V. Vasilakos, ‘‘MuSIC:
Mobility-aware optimal service allocation in mobile cloud computing,’’ in
Proc. IEEE 6th Int. Conf. Cloud Comput., Jun. 2013, pp. 75–82.

[19] M. R. Rahimi, N. Venkatasubramanian, S. Mehrotra, and A. V. Vasilakos,
‘‘On optimal and fair service allocation in mobile cloud computing,’’ IEEE
Trans. Cloud Comput., vol. 6, no. 3, pp. 815–828, Jul. 2018.

[20] B. Zhou, A. V. Dastjerdi, R. N. Calheiros, S. N. Srirama, and R. Buyya,
‘‘A context sensitive offloading scheme for mobile cloud computing ser-
vice,’’ inProc. IEEE 8th Int. Conf. CloudComput., Jun. 2015, pp. 869–876.

[21] K. Lee and I. Shin, ‘‘User mobility-aware decision making for mobile
computation offloading,’’ in Proc. IEEE 1st Int. Conf. Cyber-Physical
Syst., Netw., Appl. (CPSNA), Aug. 2013, pp. 116–119.

[22] J. L. D. Neto, D. F. Macedo, and J. M. S. Nogueira, ‘‘Location aware
decision engine to offload mobile computation to the cloud,’’ in Proc.
NOMS - IEEE/IFIP Netw. Oper. Manage. Symp., Apr. 2016, pp. 543–549.

[23] A. Ravi and S. K. Peddoju, ‘‘Mobile computation bursting: An application
partitioning and offloading decision engine,’’ in Proc. 19th Int. Conf. Dis-
trib. Comput. Netw., Jan. 2018, pp. 1–10, doi: 10.1145/3154273.3154299.

[24] Y. Ballan, A. Ahmed, and N. Baghaei, ‘‘LAMCO: A layered approach to
mobile application computation offloading,’’ in Proc. Int. Wireless Com-
mun. Mobile Comput. (IWCMC), Jun. 2020, pp. 1336–1341.

[25] P. A. L. Rego, F. A.M. Trinta,M. Z. Hasan, and J. N. de Souza, ‘‘Enhancing
offloading systems with smart decisions, adaptive monitoring, and mobil-
ity support,’’ Wireless Commun. Mobile Comput., vol. 2019, pp. 1–18,
Apr. 2019, doi: 10.1155/2019/1975312.

[26] T.-Y. Lin, T.-A. Lin, C.-H. Hsu, and C.-T. King, ‘‘Context-aware decision
engine for mobile cloud offloading,’’ in Proc. IEEE Wireless Commun.
Netw. Conf. Workshops (WCNCW), Apr. 2013, pp. 111–116.

[27] Google. Background Execution Limits: Android Developers.
Accessed: May 26, 2023. [Online]. Available: https://bit.ly/33RVJcD

[28] Y. Zhang, H. Liu, L. Jiao, and X. Fu, ‘‘To offload or not to offload: An
efficient code partition algorithm for mobile cloud computing,’’ in Proc.
IEEE 1st Int. Conf. Cloud Netw. (CLOUDNET), Nov. 2012, pp. 80–86.

[29] R. Newton, S. Toledo, L. Girod, H. Balakrishnan, and S. Madden, ‘‘Wish-
bone: Profile-based partitioning for sensornet applications,’’ in Proc.
NSDI, vol. 9, 2009, pp. 395–408.

[30] H. Flores, P. Hui, S. Tarkoma, Y. Li, S. Srirama, and R. Buyya, ‘‘Mobile
code offloading: From concept to practice and beyond,’’ IEEE Commun.
Mag., vol. 53, no. 3, pp. 80–88, Mar. 2015.

69280 VOLUME 11, 2023

http://dx.doi.org/10.1145/2500423.2505320
http://dx.doi.org/10.1155/2018/8715294
http://dx.doi.org/10.1145/1814433.1814441
http://dx.doi.org/10.1145/1966445.1966473
http://dx.doi.org/10.1145/2497306.2482984
http://dx.doi.org/10.1145/2742647.2742649
http://dx.doi.org/10.1002/cpe.4286
http://dx.doi.org/10.1145/1622103.1622104
http://dx.doi.org/10.1145/1133373.1133390
http://dx.doi.org/10.1145/3154273.3154299
http://dx.doi.org/10.1155/2019/1975312

S. Pablo et al.: Empirical Study of Mobile Code Offloading in Unpredictable Environments

[31] Y. Zhang, G. Huang, X. Liu, W. Zhang, H. Mei, and S. Yang, ‘‘Refac-
toring Android Java code for on-demand computation offloading,’’
ACM SIGPLAN Notices, vol. 47, no. 10, pp. 233–248, Oct. 2012, doi:
10.1145/2398857.2384634.

[32] R. Kemp, N. Palmer, T. Kielmann, and H. Bal, ‘‘Cuckoo: A computation
offloading framework for smartphones,’’ in Mobile Computing, Applica-
tions, and Services: Second International ICST Conference, MobiCASE
2010, Santa Clara, CA, USA, October 25–28, 2010, Revised Selected
Papers 2. Berlin, Germany: Springer, 2012, pp. 59–79.

[33] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, and H. Adam, ‘‘MobileNets: Efficient convolutional neural
networks for mobile vision applications,’’ 2017, arXiv:1704.04861.

SANABRIA PABLO is currently pursuing the
Ph.D. degree in computer science with Pontificia
Universidad Católica de Chile. He has worked
in several projects related to mobile applications
and web applications in private software devel-
opment companies. He is a part of the Software
Engineering and Intelligent Systems Laboratory
(SEIS Lab). His research interests include mobile
applications, edge computing, virtual reality, and
machine learning.

NEYEM ANDRES received the Ph.D. degree in
computer science from the Universidad de Chile.
He is a Professor with the Computer Science
Department, Pontificia Universidad Católica de
Chile. His research interests include software engi-
neering, mobile and cloud computing, machine
learning for intelligent systems, engineering and
medical education, and extended reality. In these
research areas, on the one hand, he has authored or
coauthored a wide range of papers in conferences

proceedings and journals, and, on the other hand, he has developed several
software products of these types of cloud-based mobile systems.

SANDOVAL ALCOCER JUAN PABLO received
the Ph.D. degree in computer science from the
University of Chile, Chile, in 2016. He is an
Assistant Professor at theDepartment of Computer
Science, School of Engineering, Pontificia Univer-
sidadCatólica deChile. He is a part of the Software
Engineering and Intelligent Systems Laboratory
(SEIS Lab). His research interests include software
engineering, more specifically in the fields of soft-
ware maintenance, mining software repositories,

software performance, software visualization, and search-based software
testing. He participated as a reviewer expert in various prestigious confer-
ences and journals in the field including: EMSE, IEEE VIS, VISSOFT, JSS,
and IST. He is also a member of the Pharo Community.

FERNANDEZ BLANCO ALISON is currently
pursuing the Ph.D. degree in computer science
with the University of Chile, Chile. She is a
part-time Lecturer of software engineering at the
Department of Computer Science, School of Engi-
neering, Pontificia Universidad Católica de Chile.
She is a part of the Software Engineering and
Intelligent Systems Laboratory (SEIS Lab). Her
research interests include software visualization,
software performance, software maintenance, data

mining, and search-based software testing.

VOLUME 11, 2023 69281

http://dx.doi.org/10.1145/2398857.2384634

