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ABSTRACT Roadside perception is a challenging research area that presents even greater difficulties
than vehicle perception. Due to the different locations and angles of cameras, roadside objects exhibit
violent multi-scale variations, while the vast sensing field introduces more small-scale targets and complex
backgrounds, making target recognition more challenging. To address these problems, we focus on position
information encoding to achieve accurate roadside object detection by proposing the position enhancement
faster network (PEFNet). Based on YOLOv6, the FasterNet Block is introduced into Backbone and
Neck networks to provide efficient feature extraction while achieving model lightweight transformation.
To improve small target detection performance, a position-aware feature pyramid network (PA-PAN) is
proposed to enhance position information encoding, and the SPD-Conv is applied in the PA-PAN to further
enhance effective feature extraction. Finally, the TSCODE is integrated into the detection head to achieve
accurate target recognition and suppress background noise interference. Experiments on the Rope3D and
UA-DETRAC datasets show that our model outperforms advanced YOLOv6, YOLOX, and FCOS in
roadside object detection. Compared with YOLOv6, our method improves the mAP0.50 on the Rope3D
dataset from 78.18% to 82.39%, with the AP of small objects such as pedestrians increasing by 7.01%.
Furthermore, PEFNet reduces the weight of the network by 43.1% while maintaining detection speed at
75fps and achieving higher accuracy than previous algorithms for the same number of frames.

INDEX TERMS Feature extraction, position enhancement, feature aggregation, decoupled head, roadside
images, object detection.

I. INTRODUCTION
Roadside perception is an essential technology for intelligent
transportation systems to achieve vehicle-road collaborative
perception. Recent traffic accidents have highlighted the lim-
itations of vehicle-side perception algorithms, which have
restricted sensing range, and are subject to the influence of
obstacles, adverse weather, lighting, and the surface reflec-
tivity and motion state of the objects being sensed [1].
To improve driving safety, roadside perception can provide
real-time information about vehicles and pedestrians [2].
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Furthermore, with the development of edge intelligence,
roadside perception can further enhance safety by fusing
lidar, camera, and ultrasonic sensing technologies, and pro-
viding accurate and real-time information, while processing
data in real-time to improve the response speed of roadside
perception and better ensure driving safety [3], [4].

The main purpose of roadside perception is to improve
the beyond-line-of-sight perception capability of intelligent
vehicles, extend the perception range of intelligent networked
vehicles, and provide early warning [5], [6], [7]. Currently,
roadside perception technologies use visual, auditory, and
other sensors, as well as recognition and behavior recog-
nition technologies, to detect the environment and traffic
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participants around the road. This technology can help to
accurately measure the position, speed, and direction of mov-
ing targets (such as pedestrians, vehicles, etc.) and static
obstacles on the road to realize the automatic driving of
vehicles and the coordination of road traffic. Therefore, road-
side perception technologies not only improve the efficiency
of road traffic but also ensure the safety of drivers and
passengers.

Computer vision-based object detection algorithms are
essential for roadside perception, as they are tasked with
accurately locating and identifying targets in collected
images. However, compared with the object detection task
based on vehicle-side views, roadside object detection tends
to meet more challenges. First, differences in the location
and height of the roadside camera installation and the camera
shooting angle lead to violent object scale variance. Second,
roadside detection algorithms typically cover a larger area,
resulting in more detection targets and complex backgrounds
in the captured images. Third, the complex road environment
and the interference of natural factors such as lighting bring
great challenges to the generalizability of the object detection
model. Finally, the efficiency of the detection model is of
paramount importance, as it must quickly and accurately feed
information to the intelligent vehicle. The above problems
make it impossible to apply the vehicle-side object detection
algorithm directly to roadside object detection, so it is crucial
to design an object detection model with real-time detec-
tion and high generalization capability for roadside object
detection [8].

In recent years, object detection has been one of the most
active and challenging research fields in computer vision
due to its wide range of applications and complex scenarios.
Therefore, researchers have proposed and developed various
advanced object detection methods [9], [10], [11]. Partic-
ularly for industrial sectors that require high-performance
object detection methods with real-time constraints, one-
stage detectors [5], [12], [13] with efficient network archi-
tectures [14], [15], [16] and advanced training stages [17],
[18], [19] such as YOLOv3 [20], YOLOX [21] and YOLOv7
[22] have been developed. These methods achieve better
AP-Latency balance on the COCO dataset [23]. Network
architecture plays a vital role in object detection. Historically,
Darknet has been dominant [24], but other effective detec-
tion networks have been studied, such as YOLOv6 [25] and
DAMO-YOLO [26]. The YOLOv6 utilizes RepVGG [27]
to design a hardware-aware network architecture Efficien-
tRep, which effectively utilizes hardware computing power
and memory bandwidth. Feature Pyramid Network (FPN)
[28] has been demonstrated to be an effective way to fuse
multi-scale features, and recently Jiang et al. [29] proposed a
Generalized-FPN (GFPN), which further improves the FPN
performance through a novel queen-fusion method, but at
the cost of a large amount of computation. The ERepGFPN
is proposed in DAMO-YOLO for further decoupling and
optimizing GFPN. These advanced target detection methods
have achieved better results in various scenarios.

However, for roadside scenes with dramatic object scale
variations and dense small targets, the existing networks pay
less attention to fine-grained features and are prone to lose
the feature information of small targets during the network
model training iterations. Moreover, in the dense target envi-
ronment, the overlap and coverage of features pose a great
challenge to object distinction. We found that by aggregat-
ing shallow-level detail features across scales, the network’s
attention to fine-grained features can be enhanced. There-
fore, developing a method to explore the correlation between
multi-scale feature maps for better acquisition and aggrega-
tion of effective feature information is of great significance
in improving the performance of roadside object detection
algorithms.

As aforementioned, current object detection algorithms
are designed for natural scenes. However, in the roadside
object detection task, more challenging tasks such as violent
object scale variance, small objects, and dense objects make
the current algorithms not directly usable. Furthermore, the
increasing complexity of the model network makes it difficult
to deploy them on roadside edge devices. To address the
limitations of existing models, this paper investigates the
advanced detector YOLOv6, which combines the strengths
of YOLOv5 and YOLOX and outperforms other algorithms
of similar size in terms of both accuracy and speed. Based
on the characteristics of roadside object detection, this paper
optimizes YOLOv6 and proposes the position enhancement
faster network (PEFNet).

Our contributions are listed as follows:
1) To improve small target detection accuracy, the

position-aware feature pyramid network (PA-PAN) is
proposed to obtain more effective small-scale features
contained in roadside images by enhancing the position
information encoding.

2) The PEFNet structure combines FasterNet Block and
SPD-Conv, which can effectively capture roadside
image fine-grained features and enhance the position
correlation between features, and compress the model
volume at the same time.

3) For poor detection performance in complex roadside
background noise, the TSCODE is integrated into the
detection head to achieve accurate target recognition
and suppress background noise interference, by decou-
pling localization and classification tasks.

4) On the Rope3D and UA-DETRAC test datasets, the
proposed PEFNet and advanced detectors are evalu-
ated. Compared with current state-of-the-art detectors,
the proposed PEFNet shows great potential in terms of
model lightweight and detection performance.

This letter is organized as follows: In Section II, related
works on efficient convolutional strategies, multi-scale fea-
ture aggregation, and object detection models are introduced.
In Section III, the novel roadside object detection method is
proposed. In Section IV, details of experiments and compari-
son results are provided. Finally, conclusions and suggestions
are given in Section V.
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II. RELATED WORKS
Traditional YOLO models are designed for object detec-
tion tasks in natural scenes, and directly using these models
for object detection on roadside images has several major
issues [30], as shown in some cases in Figure 1. Firstly,
due to the difference in the position and height of the road-
side cameras and the angle of camera shooting, the scale of
objects varies violently, which may lead to false detection and
omission. Secondly, the captured images often contain more
low-resolution and blurred targets due to interference from
lighting and natural factors; especially under complex traffic
conditions, the overlapping and occlusion of dense objects
further increase the difficulty of detection. Thirdly, due to
the larger coverage of the roadside view, the images obtained
from roadside sensors contain complex backgrounds and a
large number of extremely small-sized objects, which are not
easily recognizable. These issues lead to poor performance of
traditional YOLO models in roadside scene images and thus
cannot be directly applied to roadside scene object detection
tasks.

FIGURE 1. Examples are given to illustrate the three main problems of
object detection on roadside images. The cases in the first, second, and
third rows show the problems of object size variation, tiny object sizes,
and natural factors interference that are difficult to detect, respectively.

With the development of deep neural networks, more and
more optimization strategies are proposed to address prob-
lems in specific environments. To improve the performance
of object detection and address the issues in roadside object
detection, we analyzed and studied the latest progress in deep
learning [24], [31]. We found that the current main detec-
tion algorithms for improvement are based on convolutional
neural networks (CNN) [32], [33], [34]. Despite its effec-
tiveness in extracting feature information, the limitation of
the convolution structure restricts its ability to obtain global
context information. To this end, many strategies to improve
convolution have been proposed [35], [36], [37], [38]. In addi-
tion, multi-scale feature fusion, as an effective method to

improve network performance, can improve the extraction of
effective features, but its complex structure tends to introduce
more computation, which brings challenges to edge devices
with limited computing resources. Therefore, we discuss and
analyze the current advanced convolutional strategies, multi-
scale feature fusion, and object detection models to design
a more efficient and accurate network model for roadside
object detection.

A. EFFICIENT CONVOLUTIONAL STRATEGIES
Convolutional neural networks (CNN) have achieved great
success in computer vision tasks such as image classifica-
tion and object detection. However, their performance drops
rapidly in more challenging tasks such as low-resolution
images and small objects. This is due to the inherent defects
of CNNs in feature learning, which originate from the inher-
ent geometry of the CNN module: the convolutional unit
samples the feature map at a fixed position; the pooling
layer pools with a fixed ratio. To this end, many advanced
convolutional strategies have been proposed. For instance,
to tackle the problem of losing fine-grained information in
the convolution process, Sunkara and Luo [35] proposed
SPD-Conv to improve the extraction of effective features
by replacing downsampling with space-to-depth (SPD) lay-
ers while preserving all channel information. It was applied
to both YOLOv5 and ResNet and showed impressive per-
formance. In addition, for objects with complex geometric
variations, Dai et al. [36] proposed a DCN module that
shifts the sampling points of the feature map by introducing
an offset to increase attention to the important information.
Recently, DCNv2 [37] was proposed to further optimize the
efficiency of key region feature extraction. Experiments on
the VOC [39] and COCO [23] datasets show that the models
improved by DCN have achieved better performance than
the original models. In conclusion, considering the unique-
ness of roadside images, introducing efficient convolutional
strategies is an effective way to improve the performance of
roadside object detection.

B. MULTISCALE FEATURE AGGREGATION
Recently, several works have been proposed to improve
the performance of small object detection for roadside per-
ception [5], [40], [41]. Among them, multi-scale feature
aggregation (MSFA) is a popular approach. MSFA effec-
tively improves the performance of small object detection
by exploiting multi-scale features from multiple layers of
a deep convolutional neural network (DCNN). In MSFA,
the features from each layer are combined with the features
from the other layers by using a specific fusion operation,
such as summation or con-catenation. The fused features
are then used to refine the detection results. For example,
Deng et al. [41] proposed an Extended Feature Pyramid Net-
work (EFPN) approach to combine the features from different
layers of a DCNN to improve the detection performance
on small objects. The authors applied their method to the
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Tsinghua-Tencent 100 K object detection dataset and
achieved a better performance than previous methods.
Wu et al. [40] proposed a multi-scale feature aggrega-
tion module to address the issue of scale variation and
established a cross-scale refinement module to obtain more
effective multi-scale features. Experiments demonstrate that
the model outperforms the latest state-of-the-art detectors
on five benchmark datasets. Chu et al. [42] proposed a
multi-layer convolution feature fusion (MCFF) to improve
multi-scale object detection performance, by fusing high-
level and low-level features. The testing results on the Kitti
dataset showed that the improved model exhibited better
performance and generalization ability. In conclusion, multi-
scale feature aggregation is an effective approach to improve
the performance of small object detection for roadside per-
ception. By combining the features from multiple layers of a
DCNN, this approach can effectively exploit the multi-scale
features to refine the detection results.

C. OBJECT DETECTION MODELS
Deep learning-based object detection has become a hot
spot in the field of computer vision, playing an important
role in object recognition and tracking. With the deepen-
ing of research, object detection based on deep learning
can be mainly divided into two basic paradigms: anchor-
based detection methods and an-chor-free detection methods.
Anchor-based detection methods, such as Faster R-CNN [43]
and YOLO [44], [20], [45] use predefined anchor boxes
to compare with the object positions in the input image,
which are defined by their center coordinates, width, height,
and aspect ratio. Then this model recognizes the objects
and their corresponding bounding boxes by optimizing the
joint objective function, which measures the overlap between
the ground truth and the predicted boxes. These models
have achieved impressive results on various datasets, such
as VOC and COCO. Anchor-free detection methods, such as
FCOS [12] and CenterNet [11], do not use predefined anchor
boxes. Instead, they directly predict the bounding boxes
without needing massive predefined anchor boxes, making
the model complexity lower and the detection performance
more stable, which is currently a cutting-edge approach in
object detection. In recent years, in order to further improve
the object detection performance in general scenes, novel
one-stage object detection networks such as YOLOX [21]
and YOLOv6 [25] have been proposed. They adopted the
advanced anchor-free paradigm and optimized the network
structure and performance. However, due to the use of large-
capacity feature extraction backbone networks and feature
extraction modules, the computational cost has significantly
increased, making it difficult to directly apply to real-time
detection tasks in roadside scenes with limited hardware
resources. At the same time, the performance of YOLOv6
and YOLOX for dense target and multi-type roadside envi-
ronment detection still needs to be verified.

III. METHODOLOGY
In this section, we present a detailed description of the com-
ponents of PEFNet, including the FasterNet Backbone, the
PA-PAN Neck, and the TSCODE Head. The whole frame-
work of PEFNet is illustrated in Figure 2.

A. PEFNET NETWORK ARCHITECTURE
To address the problem of limited feature extraction, complex
backgrounds, and small target, which makes it difficult to
simultaneously improve the detection speed and accuracy of
roadside objects, this paper proposes a position enhancement
faster network (PEFNet) based on YOLOv6 for roadside
object detection. The network architecture of the PEFNet is
shown in Figure 2.

According to the characteristics of roadside images,
in PEFNet, we integrate the current advanced improvement
strategies to design a more efficient and generalized network.
PEFNet consists of three parts: the Backbone network for
feature extraction, the Neck network for feature fusion, and
the Head network for detection result generation. Firstly,
FasterNet Block is introduced into the Backbone and Neck
networks to provide efficient feature extraction and achieve
model lightweight transformation. Subsequently, different
scale feature maps extracted from the Backbone network are
fed into the Neck network for feature fusion. Since previ-
ous works have not paid enough attention to fine-grained
features, we propose a novel PA-PAN to replace PANet for
feature aggregation, which improves the detection accuracy
of small targets. Specifically, based on the original top-down
and bottom-up information transmission paths, and to make
the model focus more on position information encoding,
the PEFA is introduced into PA-PAN to add an information
transmission path. The PEFA guides shallow features with
rich position information to flow back into the next layer
feature map, and it can compensate for the loss of detailed
information during the convolution process, improving the
multi-scale feature generalization ability. Furthermore, the
SPD module is introduced to retain more effective feature
information, and further enhance the model’s position infor-
mation encoding. Finally, the output of Neck network is
fed into the Head network for classification and localization
prediction, and to improve object recognition and localiza-
tion accuracy, TSCODE is added to the Head network. The
TSCODE is used to feed specific features to the respective
task branch, and it can further decouple the classification
and localization tasks, maximizing the performance of the
decoupled head.

B. POSITION-AWARE FEATURE PYRAMID NETWORK
Multiscale feature aggregation has been shown to be an effec-
tive component for object detection, and the representative
algorithms are the feature pyramid network (FPN) [28], path
aggregation network (PANet) [46], and bidirectional feature
pyramid network (BiFPN) [15]. Their excellent performance
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FIGURE 2. Illustration of the proposed PEFNet network architecture. 1) The FasterNet Block is introduced into Backbone and Neck networks for the model
lightweight transformation. 2) The PANet is replaced by PA-PAN to integrate semantic and detailed information, including enhanced position information.
3) The TSCODE is inserted into the Head to further decouple the classification and localization tasks. 4) The SPD-Conv is added to the network to enhance
effective feature extraction.

FIGURE 3. The feature aggregation module focuses on the position
information of shallow features. The PEFA1 module is used for feature
aggregation in the upsampling stage. The PEFA2 is used for feature
aggregation in the downsampling stage.

in object detection and target segmentation tasks has left a
deep impression on people [5], [13]. In recent years, many
novel FPN structures have been proposed to adapt to complex
scenarios in object detection tasks, such as GFPN [29] and
ERepGFPN [26].

Although the performance of advanced FPN structures on
many object detection tasks is impressive, they inevitably
introduce more computation and parameters to aggregate
more feature information, leading to a greatly increased com-
plexity of themodel. Furthermore, the performance of current
FPN structures has significantly decreased in scenarios of
small targets and complex backgrounds. This is mainly due
to the fact that the current network pays less attention to
fine-grained features, causing a large number of small target
features to be lost in the convolution process and aggregating
a large amount of redundant information [35]. Therefore, it is
of great significance to design an efficient and lightweight
FPN structure for roadside object detection.

Motivated by the fact that shallow features contain rich
position and detail information, it is intuitive to aggregate
shallow features to compensate for the loss of small target

features, and thus improve the network’s attention to fine-
grained targets. Based on the previous work, we designed
a position-aware feature pyramid network (PA-PAN) as the
Neck of our network, as shown in Figure 2. Compared to
the original structure, adding an extra path for aggregating
shallow features. In Figure 3, the position enhancement fea-
ture aggregation (PEFA) module, as the core of the PA-PAN
structure, can aggregate the feature maps of three adjacent
layers at the same time. The PEFAmodule consists of PEFA1
in the upsampling stage and PEFA2 in the downsampling
stage. It is worth mentioning that we also use the SPD mod-
ule to downsample the shallow features while preserving all
channel information, thus aggregating more effective details.

The PEFA1 is calculated as follows:

Pi = Concat(Conv(Ci), µ(Pi+1), ϕspd (Conv(Ci−1))) (1)

where Concat(·) represents channel concatenation operation;
Conv(·) represents a convolutional layer; µ(·) represents
upsampling; ϕspd (·) represents SPD module, and it can be
used for downsampling while preserving all channel features.
The output Pi is used in PEA2 of the next stage, and PEFA2
is calculated as follows:

Fi = Concat(Conv(Pi), ϕspd (Conv(Pi−1,Ni−1))) (2)

where, Pi−1 and Ni−1 are aggregated into the network after
feature enhancement by the SPD module, thus enhancing the
network position information encoding.

C. SPD-CONV MODULE
Compared to the object detection task based on the vehicular
view, the object detection task based on the roadside view
has more challenges. This is because the roadside view has a
larger perception field, resulting in images acquired through
roadside sensors containing more as well as complex infor-
mation. Therefore, the object detection model needs to face
more challenges, such as dense targets, target occlusion, and
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FIGURE 4. The improved Backbone structure by introducing FasterNet Block. The Bottleneck of the C3
module is replaced with FasterNet Block.

FIGURE 5. The overall architecture of PConv. Applying filters on only a
few input channels effectively reduces redundant calculations and
improves implementation efficiency.

natural scale variation. In addition, due to the interference
of natural factors, the complex and changeable road environ-
ment has also brought great difficulties to object detection.

Although the convolutional neural network models have
performed impressively in many computer vision tasks, their
performance quickly declines in image resolution low or
small target detection tasks. In short, this is a weakness of the
CNN structures, that using convolution for feature extraction
inevitably leads to the loss of fine-grained information and
low feature representation learning efficiency [36]. There-
fore, how to prevent or reduce the loss of small target feature
information in the process of feature extraction is the key to
improving small target detection.

In order to improve the performance of small target detec-
tion under the roadside view and alleviate the large loss
of fine-grained feature information during the convolution
process, we introduced a novel convolutional neural net-
work structure SPD-Conv [35] into the networks. SPD-Conv
consists of a space-to-depth (SPD) layer and a non-strided
convolution, which can completely replace the pooling and
strided convolution layers in the traditional CNN module.
Notably, the SPD layer downsamples the feature map X while

preserving all the information in the channel dimension, thus
avoiding the loss of information. As shown in Figure 6(a)-(c),
applying SPD to an intermediate feature map X of size
(S, S, C1) yields a sequence of sub-feature maps:

f0,0 = X [0 : S : scale, 0 : S : scale],

f1,0 = X [1 : S : scale, 0 : S : scale],
...

fscale−1,0 = X [scale− 1 : S : scale, 0 : S : scale];

f0,1 = X [0 : S : scale, 1 : S : scale],

f1,1 = X [1 : S : scale, 1 : S : scale],
...

fscale−1,1 = X [scale− 1 : S : scale, 1 : S : scale];
...

fscale−1,scale−1=X [scale−1 : S : scale, scale−1 : S : scale].
(3)

when scale = 2, four sub-feature maps f0,0, f0,1, f1,0 and f1,1
with size (S/2, S/2, C1) are obtained, by using downsampling
operation on the feature map X . Then, they are concatenated
to get a feature map X ′ with size (S/2, S/2, 4C1), and all the
information in the channel dimension is preserved, thus no
information is lost.

Finally, a non-strided convolution is added after the SPD
module to reduce the information loss indiscriminately by
increasing the use of learnable parameters in the convolution
layers, as shown in Figure 6(d). In summary, the SPD-
Conv module effectively reduces the loss of detailed features
by adopting SPD instead of the traditional convolution for
the downsampling operations. Therefore, the introduction of
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FIGURE 6. The overall framework of SPD-Conv. (a) Input feature map X. (b) Sub-feature maps f0,0, f0,1, f1,0 and f1,1 obtained by
downsampling. (c) Feature map X’ is generated by concatenating sub-feature maps. (d) The output result is obtained after the
convolutional dimensionality reduction operation.

SPD-Conv module can effectively improve the preservation
rate of key features in low-resolution images and small target
detection tasks, which is of great significance for improving
the performance of roadside small target detection.

D. LIGHTWEIGHT FAST NEURAL NETWORK
Recently, with the deepening of deep neural network
research, the development of computer vision technology has
been greatly accelerated. Despite its impressive performance
powering a range of applications, a major trend is to pursue
fast neural networks with low latency and high throughput
for better user experience, real-time responses, and security
reasons, among others. This idea has been further validated
recently on FasterNet [38].

Notably, the development of a fast neural network has
extremely important for enhancing roadside target detection
performance, improving driving safety, and developing intel-
ligent transportation systems. As the computational resource
of current roadside edge devices is limited, this demands a
higher requirement for model lightweight. Additionally, the
efficient collaboration of vehicle-road cooperative systems
is dependent on effective data processing and transmission,
thus the performance and efficiency of models are also of our
concern. Currently, advanced anchor-free detectors, such as
YOLOv6 and FCOS, have optimized the network architecture
and performance. However, due to the adoption of large-
capacity feature ex-traction backbones and feature extraction
modules, the computational cost is evidently increased, mak-
ing it difficult to directly apply to the real-time detection task
under the circumstance of limited hardware resources in the
roadside scenario.

In order to design a lightweight fast network model for
roadside object detection, we introduce FasterNet Block into
the YOLOv6 network to optimize the model performance.
Notably, after being modified by FasterNet, our network
has significantly reduced the number of parameters and

computations without sacrificing the detection performance.
Specifically, we mainly make improvements to the C3 mod-
ule, replacing the Bottleneck with FasterNet Block. As shown
in Figure 4, FasterNet Block consists of a PConv layer
followed by two 1 × 1 Conv layers, with BN and ReLU
applied after the intermediate Conv layer to achieve a balance
between performance and speed.

As the core of FasterNet Block, PConv can reduce com-
putation redundancy and memory access at the same time,
as shown in Figure 5. Its core idea is to only apply filters to
extract spatial features on a part of the input channels and
keep the remaining channels unchanged. For continuous or
regular memory access, the first or last continuous channels
are taken as representatives of the entire feature map to
calculate. Therefore, without sacrificing generality, assuming
that the input and output feature maps have the same number
of channels, the FLOPs of PConv is only h × w × k2 × c2p,
which is equivalent to 1/16 of the conventional convolution.
PConv also has a smaller amount of memory access, i.e.,
h× w× 2cp + k2 × c2p ≈ h× w× 2cp, only 1/4 of the con-
ventional convolution. In summary, we introduced FasterNet
Block to replace the Bottleneck of C3, which can improve
the efficiency of feature extraction while compressing the
network volume.

E. TSCODE DECOUPLED DETECTION HEAD
Classification and localization are two highly related yet
contradictory tasks in object detection. Classification is a
coarse-grained task that requires a richer semantic context,
whereas localization is a fine-grained task that requires more
detailed boundary information [47]. Therefore, advanced
detectors such as YOLOv6 and YOLOX have proposed a
decoupled head to handle this conflict. Specifically, the out-
put of the feature from the Neck is divided into two branches
for classification and localization, respectively, and specific
operations are performed in each task branch, as illustrated
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in the formula.

T = Tcls(Fc(Nl), C) + Tloc(Fr (Nl),R) (4)

where Fc() and Fr () are the classification branch and local-
ization branch, with the last layers C and R decoding the
feature into classification scores and bounding box positions.
Tcls and Tloc are the feature projection functions for classi-
fication and localization. In the common decoupling head
designs, Tcls and Tloc have the same structure, but different
parameters are provided for each task to provide different
feature contexts, i.e. parameter decoupling.

However, such a simple design cannot fundamentally solve
the problem. Because the semantics and spatial details infor-
mation covered by different input features are not the same.
Generally, low-level features have richer details but lack
semantics, while high-level features are the opposite, which
inevitably cannot maximize the advantages of the decoupled
head. In addition, this design is largely determined by the
input feature Nl , and the conflict between classification and
localization leads to an imperfect balance between the two
tasks.

FIGURE 7. The classification branch focuses on semantic context
encoding.

FIGURE 8. The localization branch focuses on detail-preserving encoding.

In order to maximize the performance of the decoupled
head, we replaced the YOLOv6 decoupled head with the
TSCODE head [47] to further improve the performance of
roadside object detection. As shown in Figure 7, the classi-
fication task requires richer contextual semantic information
and deep features can provide, so fusion from deep features
can embed rich semantic information into the current feature
map. On the other hand, the localization task needs richer spa-
tial detail information, which shallow features can provide.

Therefore, shallow features are guided back to the next layer
feature map to achieve more reliable detection, as shown in
Figure 8. It is worthmentioning that TSCODEdoes not useNl
as a common input, but provides task-specific input features
Gclsl and Glocl to the two branches, the principle of which is as
follows:

Gclsl = Concat(Conv(Nl),Nl+1) (5)

Glocl = Nl + µ(Nl+1) + Conv(µ(Nl) + Nl−1) (6)

T = Tcls(Fc(Gclsl ), C) + λTloc(Fr (Glocl ),R) (7)

where Concat(·) represents channel concatenation operation;
Conv(·) and µ(·) represent a downsampling convolutional
layer and upsampling.Gclsl andGlocl with specific characteris-
tics are fed to their respective task branches, thus maximizing
the performance of the decoupled head.

IV. EXPERIMENT AND RESULTS
In order to verify the effectiveness of the PEFNet for road-
side object detection, the model training and test experiment
was conducted under the following working conditions: an
Intel(R) Xeon(R) Platinum processor and 12GB running
memory with the highest frequency of 2.50GHz; NVIDIA
RTX 3080 GPU, 10GB graphics memory; Ubuntu operating
system, CUDA version 11.0, Python version 3.8; deep learn-
ing framework PyTorch was used to establish roadside object
detection model, and further improvement and optimization
strategies were adopted. Finally, it was compared with the lat-
est algorithms such as YOLOv6 and YOLOX on the Rope3D
dataset and UA-DETRAC datasets.

A. EVALUATION METRICS
Before training the model, the training parameters of all the
networks were set uniformly, with the sample batch size of
32, updating the weights once every 2 iterations, and the
weight decay coefficient set to 0.0005. The training lasted for
150 iterations, with the initial learning rate (lr0) set to 0.01,
the cycle learning rate (lrf) set to 0.1, and the learning rate
momentum (momentum) set to 0.937.

Four metrics are employed in this model to measure the
model’s ability to recognize roadside targets, including pre-
cision (P), recall (R), category average precision (AP), and
mean average precision (mAP). In addition, the model’s
detection speed is evaluated comprehensively by frames
per second (FPS), giga floating-point operations per second
(GFLOPs), and parameter count.

P =
TP

TP+ FP
× 100% (8)

R =
TP

TP+ FN
× 100% (9)

AP =

∫ 1

0
P(R)dR (10)

mAP =
1
N

∫ 1

0
P(R)dR (11)
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TABLE 1. Sample statistics of the Rope3D dataset based on size.

TABLE 2. Sample statistics of the UA-DETRAC dataset based on size.

FIGURE 9. The samples of the datasets. (a) the samples of UA-DETRAC
dataset (b) the samples of Rope3D dataset.

where true positives (TP) are the number of correctly pre-
dicted detection boxes of the roadside target category, false
positives (FP) are the number of incorrectly recognized
detection boxes of the roadside target category, false nega-
tives (FN) are the number of undetected detection boxes of

the roadside targets, i.e. the number of missed detections, and
N is the number of categories.

B. DATASET ANALYSIS
In this paper, we selected the Rope3D [48] and UA-
DETRAC [49] roadside view datasets for experiments,
considering all factors. The Rope3D dataset was collected
from various road scenes, including different lighting con-
ditions (e.g. daytime, nighttime, dusk), weather conditions
(e.g. rainy day, sunny day, cloudy day), and road environ-
ment. The UA-DETRAC is a public dataset from the field
of autonomous driving, which is sourced from roadside mon-
itoring videos and also includes different scenes and weather
conditions. Generally, targets occupying less than 0.12% of
the entire image are considered to be small targets, 0.12-0.5%
are medium targets, and more than 0.5% are large targets.
In the roadside object detection task, pedestrian targets are
mostly small in size. The targets of cars are mostly small or
medium. Targets of trucks and vans are mostly large. The
datasets also include different illumination conditions and
targets of different heights, and the shooting angle of the
targets is also different.

Tables 1 and 2 show the sample statistics of our roadside
dataset. It is evident that most targets are small or medium in
size, and the target distribution is dense, which increases the
difficulty of target detection. Figure 9 shows eight samples
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TABLE 3. Performance comparison of the original Head and TSCODE Head on the Rope3D dataset.

FIGURE 10. Loss-Curve comparison of the original and improved YOLOv6.

FIGURE 11. Accuracy comparison of original and improved YOLOv6 under
different sizes.

from our dataset, where the targets reside in complex back-
grounds. Further, after a series of convolution operations and
downsampling layers, the targets occupy fewer pixels, thus
making the detection more difficult.

C. PERFORMANCE COMPARISON ANALYSIS OF
DETECTION HEAD
TSCODE head maximizes the performance of decoupled
head by further subdividing classification and localiza-
tion tasks. In order to verify the effectiveness of the
improved detection head, loss function comparison exper-
iments are conducted. During the experimental training
process, we found that the loss curve tended to be stable when
the epoch reached 150, so we terminated the training, and the
loss results are shown in Figure 10.

From the comparison results of the above loss curves, it can
be seen that as training epochs increase, the loss value grad-
ually decreases and the loss curve tends to converge. When
the epoch reached 150, the loss value was basically stable.

Compared with the original YOLOv6, the improved
YOLOv6 regression is faster and more accurate, demonstrat-
ing the effectiveness of the TSCODE Head. Moreover, from
the training results in Table 3, the utilization of TSCODE
shows better performance. Although a certain amount of
computation is introduced, mAP0.50 are improved by 2.45%
and the inference speed is almost unaffected.

To further illustrate the effect of TSCODE Head, we tested
the detection performance of the model under different sizes,
as shown in Figure 11. It is noteworthy that the model
improved through TSCODE shows better performance in
object detection at multiple scales, with an improvement in
detection accuracy for small and medium-sized objects even
exceeding 2%. Overall, the TSCODE Head proposed in this
paper is effective for algorithm improvement.

D. EFFECTIVENESS OF THE PA-PAN STRUCTURE
To validate the effectiveness of the proposed PA-PAN struc-
ture, we built multiple object detection models with the same
backbone network and detection head under the same condi-
tions as the current advanced FPN structure. The results were
verified on the Rope3D roadside dataset, as shown in Table 4.
The PANet achieved mAP0.50 of 78.18% for roadside

object detection by integrating high-level semantics and low-
level details through two feature transfer paths. Building upon
PANet, GFPN added a cross-scale aggregation pathway that
strengthened feature interactions and significantly improved
model performance with a mAP0.50 of 81.29%. To decou-
ple GFPN’s complex structure, a more efficient ERepGFPN
structure was proposed, which achieved nearly identical
detection performance while greatly reducing model com-
plexity and computational cost. Subsequently, RepBi-PAN
was proposed, which further optimized model performance
by fusing and preserving high-quality features, resulting in
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TABLE 4. Performance comparison of the proposed FPN structure on the Rope3D dataset.

FIGURE 12. PR-Curve comparison of models composed of different FPN
structures.

a mAP0.50 of 81.39%, higher than the previously proposed
FPN structure, but with added computation.

Building upon the aforementioned research, and tak-
ing into account the practical environment at the roadside,
we propose a novel PA-PAN that combines the advantages
of ERep-GFPN and RepBi-PAN structures. In simple terms,
we introduce a PEFA structure that enhances and aggregates
shallow features with rich position information, making the
network more focused on position information encoding.
As shown in Table 4, the proposed PA-PAN structure achieves
mAP0.50 of 81.73%, higher than the previously proposed
FPN structure, proving the effectiveness of the PA-PANarchi-
tecture.

Although PA-PAN achieves better performance, its com-
putational and parameter costs are not ideal, and even far
exceed the previous FPN structure. Therefore, we introduce
the FasterNet Block for lightweight optimization based on
this, ultimately achieving the best performance. Furthermore,
the PA-PANwith FasterNet Block (PA-PANwith FB) obtains
the best AP value in detecting small objects, which further

confirms that focusing on position information encoding can
improve the detection performance of small objects.

To further validate the effectiveness of our proposed FPN
structure, the PR-Curve comparison of models composed of
different FPN structures is introduced. As shown in Figure 12,
the PA-PAN with FasterNet Block achieves the best balance
of accuracy and recall, which can be seen from the larger
area under the curve. Based on the experimental results and
analysis presented above, the proposed FPN structure can
effectively improve the detection accuracy of small objects
while maintaining model lightweight. These findings provide
evidence that PA-PAN is an effective method for improving
the performance of object detection models.

E. ABLATION STUDY AND ANALYSIS
In order to further validate the effectiveness of the pro-
posed components, ablation experiments are conducted on
the Rope3D dataset. In this paper, the ablation experiments
are designed in two directions: (1) based on the original
baseline algorithm, adding only one improvement strategy to
verify the improvement effect of each strategy; (2) based on
the final PEFNet algorithm, removing only one improvement
strategy at a time to verify the effect of each strategy on the
final algorithm.

In this experiment, only three improvement compo-
nents were considered for the ablation experiments, as the
SPD-Conv module has been integrated into the Faster-
Net Block and PA-PAN. The experimental results are
shown in Table 5. Experiment 1 is the original YOLOv6
with mAP0.50 at 78.18%, FPS at 76.5, and Weight at
32.99MB. In Experiment 2, based on the original YOLOv6,
a lightweight network architecture was constructed using
the FasterNet Block. The Params and GFLOPs increased by
63.1% and 50.3%, respectively, indicating that the FasterNet
Block can effectively reduce the model volume and com-
plexity. In Experiment 3, PA-PAN was adopted to replace
the original PANet for feature fusion. Although the model
introduced additional calculations, it effectively improved
the accuracy of small object detection. The mAP0.50 value
increased by 3.55%. In Experiment 4, the TSCODE module
was aggregated into the Head, demonstrating that decoupling
the classification and localization tasks can further improve
the performance of the detection head.

Up to this point, all the improved modules have achieved
better improvement based on the original YOLOv6 model,
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TABLE 5. Comparison of ablation experiment results.

FIGURE 13. Confusion Matrix representation of PEFNet on Rope3D
dataset.

but there is still great potential for improvement. Therefore,
we further integrate multiple improved modules to achieve
better performance. In Experiment 5, FasterNet Block and
PA-PAN were integrated into the original YOLOv6 model,
compared with Experiment 3 which only introduced PA-
PAN, the mAP0.5 was improved by 0.54%. Meanwhile, the
Params and GFLOPs were decreased significantly, and the
model size compression effect was obvious. In Experiment 6,
based on the lightweight model improved by FasterNet
Block, TSCODE was added to enhance the performance of
the detection head. mAP0.5 increased by 0.27%. Similarly,
in experiment 7, TSCODE was integrated into the model
improved by PA-PAN. mAP0.5 increased by 0.38%. This
further demonstrates that the improved detection head can
provide better performance.

Finally, all the improved modules are combined to achieve
the best performance of the detection model and named
the model PEFNet. Compared with the original YOLOv6
model, the mAP0.50 value increased by 4.21% and the model
weight decreased by 43.1%, while the detection speed can be
maintained at 75.4fps. This shows that the detection perfor-
mance of PEFNet is better than YOLOv6, further confirming

the effectiveness of the three improvement methods men-
tioned above. The confusion matrix of PEFNet is shown in
Figure 13. It can be observed that PEFNet exhibits significant
improvements in both accuracy and recall, along with a clear
reduction in error rates, indicating that our improved model
is effective.

F. EXPERIMENT RESULTS AND ANALYSIS ON ROPE3D
AND UA-DETRAC DATASETS
In order to further verify the effectiveness of the proposed
algorithm, mAP, and FPS metrics are chosen to evaluate
the accuracy and real-time performance, respectively. Our
algorithm is compared with the advanced object detection
models on the Rope3D dataset, and the comparison results
are shown in Table 6. The results of different sizes are shown
in Table 7.
As shown in Table 6, the proposed PEFNet achieved

82.39% and 58.34% in mAP0.50 and mAP0.95, respectively,
which is significantly better than FCOS, YOLOX, YOLOv3,
and YOLOv6. In comparison, YOLOv6v3.0 and YOLOv7s
can provide detection results close to PEFNet. However, com-
pared with the well-performing YOLOv6v3.0, our proposed
PEFNet reduces Params and GFLOPs by 45.6% and 14.7%,
respectively. In particular, the weight of PEFNet decreased
by 51.3%, the model complexity decreased significantly.
In addition, as shown in the detection results of different-sized
targets in Table 7, for small-scale targets primarily consisting
of pedestrians and cyclists, our proposed method outperforms
all over algorithms in terms of detection accuracy, with a
lower leak detection rate. Overall, compared to the original
YOLOv6, our algorithm has achieved significant improve-
ments in model performance and lightweight characteristics,
particularly with its significant advantages in small object
detection.

In order to ensure the generalizability of the algorithm,
we conducted experiments on the UA-DETRAC dataset. The
comparison results are shown in Table 8. Compared with
other network models, PEFNet shows more powerful per-
formance in both detection accuracy and model lightweight,
especially in small target detection, PEFNet significantly
outperforms other networks, which further proves the effec-
tiveness of our proposed PA-PAN feature fusion structure.
Furthermore, it can be seen from Table 8 that the leak detec-
tion rate of the algorithm is lower than that of the advanced
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FIGURE 14. The detection results of the PEFNet on UA-DETRAC and Rope3D datasets.

TABLE 6. Comparison among PEFNet and current advanced detectors in terms of detection accuracy and efficiency on the Rope3D dataset.

TABLE 7. Experimental comparisons of accuracy measured by size on the Rope3D dataset.

algorithms. Therefore, it can be concluded that the proposed
PEFNet can provide better roadside detection results.

Finally, under different backgrounds, our model is tested
on partial images of the UA-DETRAC and Rope3D datasets
to obtain visualization results. As shown in Figure 14, the
visualization results show that PEFNet can accurately detect
targets under different illumination, distribution, and size
conditions, and it exhibits superior detection performance for
multi-scale roadside targets. Overall, PEFNet demonstrated
good performance in roadside object detection tasks, as it
almost detected all targets and classified them correctly in

various road scenarios, showing its robust generalization
ability.

G. VISUALIZATION RESULTS AND ANALYSIS ON ROPE3D
AND UA-DETRAC DATASETS
To validate the performance of the proposed network in cross-
scene detection tasks, we further explore a dataset of roadside
environments with various complex scenarios to evaluate the
network’s robustness to scenario changes. Figure 15 shows
the qualitative test results of FCOS, YOLOX, YOLOv6, and
PEFNet for roadside targets under different scenarios and
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TABLE 8. Comparison among PEFNet and current advanced detectors in terms of accuracy and speed on the UA-DETRAC dataset.

FIGURE 15. Comparison of roadside detection in different scenarios captured by roadside visual sensors (Rope3D dataset). Cases of missed detection
and false detection are highlighted in red.

weather conditions based on the Rope3D dataset. Column a
shows roadside images taken in cloudy environments, col-
umn b shows roadside images taken in night environments,
column c shows roadside images taken in rainy environments,
and column d shows roadside images taken in sunny envi-
ronments. These images contain a large number of small and
blurred targets, making them more difficult to detect. Under
the influence of illumination and background noise, targets
with less obvious features such as pedestrians are more likely
to be missed or falsely detected.

Based on the analysis of the graph, PEFNet shows better
detection performance compared to other network algo-
rithms, with fewer missed and false detections. Especially in
well-lit environments, the improvements in roadside object
detection are more evident. As shown in column a and
column c of Figure 15, YOLOv6, YOLOX, and FCOS

performed poorly in detecting small targets, whereas PEFNet
was able to detect these small targets more effectively and
classify them correctly. It’s worth noting that our model also
impressed in scenarios with high background noise interfer-
ence. As shown in column d of Figure 15, YOLOv6, YOLOX,
and FCOS all exhibited false detections and missed detec-
tions for targets that were difficult to identify in shadows.
However, PEFNet not only accurately detected the targets but
also correctly classified them. This indicates that PEFNet can
effectively reduce the interference of background noise, thus
identifying the target more accurately. Additionally, column b
of Figure 15 displays detection results in low-light scenes that
contain more blurry and small-scale targets. Compared with
other models, PEFNet can better recognize low-light targets
and locate small-scale targets far away. Overall, compared
to the original YOLOv6, PEFNet has significantly improved
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FIGURE 16. Comparison of roadside detection in different scenarios captured by roadside visual sensors (UA-DETRAC dataset). Cases of missed
detection and false detection are highlighted in blue.

the detection capability, with both false negative and false
positive rates greatly reduced.

To further verify the generalization performance of our
proposed algorithm, we extracted multiple sets of complex
scene roadside images from the UA-DETRAC dataset for
validation. As shown in column a and column b of Figure 16
in well-lit environments, YOLOv6, YOLOX, and FCOS all
exhibited missed and false detections, whereas PEFNet accu-
rately detected all targets and categorized them correctly.
Additionally, as shown in the detection results of column
c and column d of Figure 16 in low-light environments,
our proposed model achieved higher accuracy compared to
YOLOv6, YOLOX, and FCOS and was more sensitive to
small targets. In summary, PEFNet showed lower false pos-
itives and false negatives in dense object environments and
complex scenes (such as dimly lit nights).

In conclusion, due to the effective design and novel struc-
ture of the network, PEFNet has sufficient accuracy and
robustness improvement to perform cross-scene detection
efficiently and accurately. Furthermore, PEFNet can also
achieve good results on different datasets, which not only
verifies its generalization ability but also brings potential
promotion to future intelligent transportation development.

V. CONCLUSION
This paper proposes a novel roadside image target detection
algorithm PEFNet based on YOLOv6. It aims to address
the challenge of balancing detection speed and accuracy

in roadside object detection due to small target size, com-
plex background, and limited feature extraction capabilities.
To achieve this, the position-aware feature pyramid network
is proposed to improve small object detection performance
and multi-scale feature generalization ability. The FasterNet
Block is introduced into the Backbone and Neck networks to
provide efficient feature extraction while achieving network
lightweight transformation. The SDP-Conv is inserted in the
network to enhance effective feature extraction. Furthermore,
the TSCODE is aggregated into the detection head to achieve
accurate target recognition and suppress background noise
interference. The experimental results on the Rope3D and
UA-DETRAC datasets show that PEFNet achieves 4.21%
and 2.77% mAP improvements, respectively, compared to
the original YOLOv6. By focusing on position information
coding, PEFNet improves the detection of small targets, with
the AP of small objects increasing by 7.01% on the Rope3D
dataset and 2.87% on the UA-DETRAC dataset. In addition,
by introducing FasterNet Block lightweight structure, the
model volume is reduced by 43.1%. Meanwhile, our method
maintains a detection speed of 75fps and obtains higher accu-
racy than current advanced detection algorithms. Overall, our
method achieves satisfactory performance in roadside object
detection while maintaining real-time capability.

Compared with anchor-based detectors, anchor-free detec-
tors still have great potential for optimization in terms of
accuracy and performance. However, in the field of roadside
object detection, accuracy improvement is still restricted by
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the complex environment, large-scale variance, and rotation
change. In the future, we need to focus not only on model
structure and paradigm but also on improving the robustness
and stability of models to achieve more reliable detection.
We will continue to adjust the hyperparameters, optimize
the model, and further improve the speed and accuracy of
roadside object detection.
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