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ABSTRACT Eye tracking is a technology that is in high demand, especially for next-generation virtual reality
(VR), because it enables foveated rendering, which significantly reduces computational costs by rendering
only the area at which a user is gazing at a high resolution and the rest at a lower resolution. However,
the conventional eye-tracking technique requires per-eye camera hardware attached near the eyes within a
VR headset. Moreover, the detected eye gaze follows the actual eye gaze with a finite delay because of the
camera latency, the need for image processing, and the VR system’s native latency. This paper proposes an
eye-tracking solution that predicts a user’s future eye gaze using only the inertial sensors that are already
built into VR headsets for head tracking. To this end, we formulate three time-series regression problems
to predict (1) the current eye gaze using past head orientation data, (2) the future eye gaze using past head
orientation and eye gaze data, and (3) the future eye gaze using past head orientation data only. We solve the
first and second problems using machine learning models and develop two solutions for the final problem:
two-stage and single-stage approaches. The two-stage approach for the final problem relies on two machine
learning models connected in series, one for the first problem and the other for the second problem. The
single-stage approach uses a single model to predict the future eye gaze directly from past head orientation
data. We evaluate the proposed solutions based on real eye-tracking traces captured from a VR headset
for multiple test players, considering various combinations of machine learning models. The experimental
results show that the proposed solutions for the final problem reduce the error for a center-fixed gaze by up
to 50% and 20% for anticipation times of 50 and 150 ms, respectively.

INDEX TERMS Eye tracking, gaze prediction, virtual reality.

I. INTRODUCTION
Eye tracking technology tracks the point of gaze or the
position of the pupil of each eye [1]. It has mostly been
considered as the basis of input devices for human–computer
interaction. At present, it has become a technology that is in
high demand for next-generation virtual reality (VR) systems
in order to realize foveated rendering to reduce computational
overhead [2]. For high-quality VR services, realizing an ideal
image resolution (e.g., 4K for each eye) at an ideal frame rate
(e.g., 120 frames per second) is essential, but this comes at the
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expense of significant computing power. Foveated rendering
refers to applying a high resolution only in the area that the
user is paying attention to and a lower resolution for the rest
of the display, which is less perceivable due to the nature of
the human visual system [2]. However, to enable foveated
rendering, a VR system needs to be able to identify the user’s
eye gaze in real time.

The conventional implementation of eye tracking for VR
is a video-based system using dual cameras attached near
the eyes within the headset to detect eye movements via
real-time analysis of corneal reflection images [3]. This need
for additional hardware increases the cost of the VR headset
and limits its form factor. Moreover, due to the latency of the
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TABLE 1. Specifications of the target problems.

cameras, the image processing procedure, and the VR system
itself, the detected eye gaze follows the actual eye gaze with
a finite delay. The cost increase and the latency problem are
both significant, especially for standalone VR headsets with
limited cost, computing, and battery budgets. If such delayed
eye tracking is used for foveated rendering, areas rendered
at low resolution may appear in the user’s region of interest,
and the user’s perception and experience may be degraded.
Moreover, in the scenario of VR offloading to a cloud/edge
computing entity [4], [5], the conventional approach to eye
tracking may make the latency problem more severe while
also giving rise to a network bandwidth problem since the
dual eye images must be continuously sent at a high frame
rate over a wireless connection.

Recent attempts at eye gaze prediction have been made
using various alternative methods. In some approaches, the
conventional per-eye camera system is replaced with cheaper
hardware, such as infrared LEDs paired with photodiodes [6],
[7], [8], [9], [10], [11], a smartphone camera [12], [13], [14],
[15], or ultrasound sensors [16]. There have also been some
attempts to implement eye gaze prediction with no extra
hardware using a mathematical model [17], image process-
ing [18] or machine learning (ML) [19], [20]. However, all of
the existing works have addressed only the prediction of the
user’s current eye gaze; no attempt has been made to predict
the future eye gaze without extra hardware. Therefore, the
existing approaches to eye gaze prediction are unable to solve
the abovementioned latency problem faced by eye tracking in
various VR systems.

In this paper, we develop a predictive eye-tracking solution
that predicts a user’s future eye gaze using inertial sensors
only, with no need for additional hardware dedicated to eye
tracking. Therefore, it is applicable in current VR headsets
at no extra hardware cost. Moreover, its ability to predict the
user’s future eye gaze offsets the VR system’s latency and
enables responsive eye tracking with a possible additional
latency budget. To achieve the prediction task, we formulate
three prediction problems, as summarized in Table 1:

• Problem 1: Predict the current eye gaze from the past
head orientation.

• Problem 2: Predict the future eye gaze from the past eye
gaze and head orientation.

• Problem 3: Predict the future eye gaze from the past head
orientation.

Problem 3 is our ultimate goal. That is, when prediction
is conducted at time t0, the goal is to predict the eye gaze
at times ≥ t0 using the available sensor data extracted at
times ≤ t0.

First, we observe the relationship between eye gaze and
head orientation for different latency cases. These observa-
tions show strong correlations, implying that the eye gaze
can be predicted from the head orientation. However, our
observations also reveal that as the latency increases, a single
head orientation sample will become insufficient to predict
the eye gaze; instead, the motion path (i.e., time-series data)
of the head orientation becomes necessary for prediction.

Then, we solve the first and second problems using various
ML models and ultimately develop two solutions for the
final (third) problem: a two-stage approach and a single-
stage approach. The two-stage approach to the final problem
relies on two ML models combined in series, one for the
first problem and the other for the second problem. That is,
the first-stage model predicts the current eye gaze from the
head orientation data, and the second-stage model predicts
the future eye gaze from the predicted current eye gaze data.
In contrast, the single-stage approach uses a single model to
predict the future eye gaze directly from past head orienta-
tion data. We evaluate the proposed solutions based on real
eye-tracking traces captured from a VR headset for multiple
test players, considering various combinations ofMLmodels.
The experimental results show that the proposed solutions for
the final problem reduce the error for a center-fixed gaze by
up to 50% and 20% for anticipation times of 50 and 150 ms,
respectively, and that the single-stage approach outperforms
the two-stage approach.

The rest of this paper is organized as follows. Recent stud-
ies related to eye tracking for VR are reviewed and discussed
in Section II. Section III presents our experimental obser-
vations on eye movement predictability. We describe the
proposed solutions in Section IV and discuss their evaluation
results in Section V. Finally, Section VI concludes the paper.

II. RELATED WORKS
The modern method of eye tracking that is most commonly
used in current commercial products is video-oculography.
In this method, a camera is placed in front of each of the user’s
eyes and continuously acquires images of the retina. The
resulting images are then processed using image-processing
techniques to obtain the user’s eye position. This technique is
expensive because it requires at least two built-in cameras and
visual processing of stereo images. To reduce the cost, some
researchers have proposed using the front-facing camera of
the smartphone in a smartphone-attached VR headset as the
tool to acquire the images of the user’s eyes. Ahuja et al. [12]
and Drakopoulos et al. [13] proposed using the front-facing
smartphone camera in such a VR headset to capture the user’s
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TABLE 2. Summary of related works on eye gaze prediction.

left eye region. The resulting image is then processed using
image preprocessing methods and a trained convolutional
neural network (CNN) for user identification as well as blink
and gaze detection. Yang et al. [14] proposed using a com-
bination of the image from the VR screen and a captured
image of the reflection from the eye to obtain a rough gaze
estimate. These rough estimates are then calibrated to obtain
a more accurate estimate using the head motion data sup-
plied by the headset’s inertial sensors. Greenwald et al. [15]
also proposed using the front-facing smartphone camera in

a VR headset to capture images of the corneal reflection
of on-screen content. As the eye moves, the location and
features change. These changes are used to estimate the user’s
gaze position. However, these approaches are applicable only
for the limited set of VR headsets that attach to a smart-
phone. Another drawback is that they capture only one eye.
Some users may have asymmetric coordination of the left
and right eye gazes, making these approaches less able to
predict the eye gaze of both eyes. Research has also been
conducted on three-dimensional eye gaze estimation, which
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FIGURE 1. Scatter plots of head orientation vs. eye gaze for different users and various anticipation times.

includes estimating gaze depth [23]. A recent advancement
in this field is appearance-based gaze estimation, which
employs distributed cameras in less-constrained or uncon-
strained environments for various monitoring applications,
such as monitoring drivers [24], retail customers [25], and
patients [26], among others.

To reduce the hardware cost and form factor of video-
oculography-based eye tracking, some research works have

focused on photosensor oculography, in which photodiodes
are used instead of video cameras [27], [28], [29]. In this
method, an infrared light source illuminates the eyes, and
the nature of the reflection difference between the cornea
and the sclera is utilized to estimate the eyes’ position. The
infrared sources and sensors can be integrated into spherical
glasses of a reasonable size. Thus, some researchers [30], [31]
have suggested that this method is suitable for embedding
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into VR headsets. Li et al. [6] proposed using infrared LEDs
and photodiodes as the illumination sources and reflection
detectors, respectively, and utilized a CNN to obtain the eye
gaze position. They additionally proposed a design variant
in which infrared LEDs are used as both the illumination
sources and reflection sensors, thus eliminating the need for
photodiodes. Li et al. [9], [10], [11] also proposed using the
existing light from the VR screen as the source of illumina-
tion. Sixteen photodiodes were installed around the VR lens
to measure the screen light reflected in different directions.
However, this solution has the drawback that ambient light
(fluorescent light, direct and indirect sunlight) can affect
its performance. Massin et al. [8] proposed a device using
infrared LEDs and photodetectors placed on contact lenses
worn by the user. The photoreceptors are illuminated by
infrared LEDs placed in front of the eye on a glasses frame.
This solution carries the burden of requiring the user to wear
contact lenses. Sun et al. [16] used acoustic ultrasound sen-
sors instead of optical sensors and made use of time-of-flight
information, still applying a basic principle similar to that
of photosensor oculography. However, ultrasound waves are
susceptible to interference from both ambient noise and each
other.

Approaches using other biosignals and corresponding
sensors to detect them have also been proposed. Elec-
trooculography (EOG) measures the corneoretinal standing
potential around the eyes. This method requires placing
several electrodes near the eyes of the user and thus is
more suitable for recording eye movements for medical pur-
poses [32]. Magnetooculography relies on the scleral search
coil method, in which a small coil in a specialized contact
lens is placed in the eye. When the eyes are moving, the
sclera and the muscles around the eyes create a magnetic
field that is picked up by the coil. The magnetic field sig-
nal is then processed to determine the position of the eyes.
This method is also unsuitable for everyday use because
putting on the device requires professional medical help
and often requires a local anesthetic [33]. Zhang and Kan
[22] demonstrated that radiooculography (ROG) can serve as
an alternative to EOG. ROG employs radio-frequency (RF)
signals to noninvasively monitor the activity of the internal
eye muscles, regardless of whether the eyes are open or
closed.

Eye tracking using inertial sensors alone is the cheapest
method of all and is also suitable for VR since all VR headsets
have built-in inertial sensors for head orientation tracking.
Sitzmann et al. [18] proposed deriving a saliency map indi-
cating the region where the user’s eyes will tend to focus
first using the longitudinal head velocity alone. However, the
proposed prediction is valid only for slow head speeds (below
19.6 degrees per second). Murakami andMitsugami [19] col-
lected eye-tracking data from a specialized device and head
inertial data from VR headset sensors and then trained an
MLmodel using amethod called gradient boosting regression
(GBR). Emery et al. [20] also employed an ML approach,
using head and hand motion data together with the expected

saliency maps of the VR scene. A mathematical model was
proposed by Mitsugami et al. [17] in which the relationship
between the eye and the head is modeled as a dynamic
system of two balls connected by a spring. A system of
differential equations can then be derived based on this model
and solved using the random sampling consensus (RANSAC)
algorithm.

A comparative summary of the related research works and
our work is given in Table 2. In particular, previous research
works that have used only inertial sensors for eye tracking
have addressed only the limited problem of predicting the
current eye gaze of the user. There has yet been no attempt
in the literature to predict the future eye gaze without extra
hardware. The distinctive feature of our work is that it consid-
ers a wide range of problems, including the ultimate problem
of future eye gaze prediction, and presents corresponding
solution designs and performance evaluations based on com-
prehensive combinations of ML models for the considered
problems.

III. OBSERVATIONS ON THE PREDICTABILITY OF EYE
MOVEMENTS
We observe the correlation between eye gaze and head orien-
tation from the following two perspectives:

• Current head orientation vs. current eye gaze.
• Current head orientation vs. future eye gaze.

To this end, we draw scatter plots between the recorded head
orientation at t (the horizontal axis) and the recorded eye gaze
at t + T (the vertical axis) for each user in Fig. 1, where
T is the anticipation time for future eye gaze prediction.
We consider T = 0, 100, 200, and 300 ms, where T =

0 ms corresponds to the case of current head orientation vs.
current eye gaze, while T > 0 corresponds to the case of
current head orientation vs. future eye gaze. The experimental
setup for data collection was the same as that described
in Section V-A.

First, the plots for T = 0 (the first subfigure in each
row) suggest that the two variables are linearly correlated.
This observation is made for all five users. That is, a strong
correlation between the variables is observed, thus implying
that eye gaze can be predicted from head orientation. Previous
studies also support this preliminary conclusion [34], [35].

For T > 0, the two variables still show a relationship, but it
is no longer linear, instead forming a lemniscate shape. This
shape becomes more noticeable as T increases. A similar pat-
tern is observed for all users, but their shapes at a specific T
are all different from each other. This lemniscate relationship
is caused by the fact that a user may rotate his/her head either
left or right, so the future eye gaze can lie on either side of
the current head orientation. Our observations reveal that as
the latency increases, it becomes impossible to predict the
eye gaze from a single head orientation sample; instead, the
motion path (i.e., time-series data) of the head orientation
becomes necessary for prediction. In addition, the plots show
that user-specific identification of the relationship between
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FIGURE 2. Data flow of a prediction model for solving Problem 1 in the
training phase.

FIGURE 3. MLP, CNN, and RNN models for Problem 1.

the two variables is needed due to the user-dependent nature
of the correlation pattern.

IV. PROBLEM DEFINITION AND SOLUTIONS
We formulate each problem in detail and develop prediction
models for each. Regarding notation, we denote the value of
the variable x at time t by x[t]. To denote a time series of x at
times t1, t2, · · · , we use x[t1, t2, · · · ].

A. DEFINITION OF THE GENERAL PREDICTION PROBLEM
We assume that the head orientation captured at time t by
the inertial sensor unit is given by h[t] = ⟨hx[t], hy[t], hz[t]⟩,
where hx , hy and hz are the azimuthal (yaw), polar (pitch),
and banking (roll) angles, respectively, in an Euler-angle
rotational coordinate system. The eye gaze is defined as
the direction along which the user is looking in the field
of view (FOV), which is the sum of the head orientation
and the eye direction angle. We denote the eye gaze at t by
g[t] = ⟨gx[t], gy[t]⟩. The horizontal eye gaze gx is the sum of
the head’s yaw orientation and the eye’s horizontal direction
angle. Similarly, the vertical eye gaze gy is the sum of the
pitch orientation of the head and the vertical angle of the eye
direction.

Wewish to predict the user’s eye gaze at t+T (T ≥ 0) from
the information available at t . Accordingly, the predicted eye
gaze, denoted by ĝ[t + T ] = ⟨ĝx[t + T ], ĝy[t + T ]⟩, can be
defined as a function of a window of sensor data samples for
head orientation, angular velocity, acceleration, and prior eye
gaze. Thus, we have

ĝ[t + T ] = fθ,T (h[t1, t2, · · · , tW ];

ḣ[t1, t2, · · · , tW ];

ḧ[t1, t2, · · · , tW ];

g[t1, t2, · · · , tW ]) (1)

and

tk = t − (k − 1)τ, k = 1, 2, · · · ,W , (2)

where θ represents the model parameters of the function f ; ḣ
and ḧ are the angular velocity and acceleration, respectively,
of the head orientation as captured by the gyroscope and
accelerometer, respectively; τ is the time interval between
consecutive data samples; andW is the window length of the
input data samples. Then, the prediction error is defined as

e[t + T ] = ĝ[t + T ] − g[t + T ]. (3)

For the prediction of N samples, we calculate the mean
absolute error (MAE) of prediction as

ē =
1
N

N∑
k=1

|e[kτ ]|. (4)

The function (model) f and its parameter set θ need to be
found so as to minimize the MAE ē.

B. SOLUTIONS FOR PROBLEM 1: PREDICT THE CURRENT
EYE GAZE FROM PAST HEAD MOTION DATA
The objective of Problem 1 is to find the model fθ for T = 0,
without input data for g, such that

ĝ[t] = fθ,T=0(h[t1, t2, · · · , tW ];

ḣ[t1, t2, · · · , tW ];

ḧ[t1, t2, · · · , tW ]). (5)

A model architecture for solving Problem 1 is illustrated in
Fig. 2.
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FIGURE 4. Relationship between the past data samples and predictions
over time for Problem 3.

The simplest approach to solve this problem is to assume
that the eye gaze is always in the center of the FOV, i.e.,
ĝ[t] = ⟨hx[t], hy[t]⟩; this is the approach adopted for
foveated rendering without eye tracking in current headset
devices [36]. We call this approach Center in the evaluation
section. Another simple approach is to assume that f is a lin-
ear function. This is based on studies [34], [35], whose results
indicate a linear relationship when a human is stationary.
Okada et al. [37] also reported that this linear relationship
tends to hold for humans who are walking. With this linear
approach, which we call linear fit (LF) regression, we obtain
ĝ[t] = α⟨hx[t], hy[t]⟩, where the coefficient α is found using
least-squares linear regression. Another approach is to model
the head–eye relationship as an nth-order dynamic system:

ĝ[t] = α3⟨ḧx[t], ḧy[t]⟩ + α2⟨ḣx[t], ḣy[t]⟩

+ α1⟨hx[t], hy[t]⟩ + α0, (6)

where the coefficients are sought using RANSAC [17].
For ML-based approaches, we consider multilayer percep-

tron (MLP), GBR, CNN, recurrent neural network (RNN) and
long short-term memory (LSTM) models. Fig. 3 illustrates
the MLP, CNN, and RNN models. For the MLP model,
we flatten all of the time-series input data h, ḣ, ḧ, and g
into a single array. The input data, once flattened, are passed
through multiple hidden layers within the MLP model, ulti-
mately yielding two distinct output values, one corresponding
to ĝx and the other to ĝy. GBR-based prediction was pro-
posed in [19] for finding the model parameters of the system
dynamics model in Eq. (6). For the CNN, the time series
from the various inertial sensors are separately input into
the model without flattening. These input data series are
filtered in the convolutional layers to extract the features
of the data. After the data features are obtained from the
convolutional layers, they are input into a subsequent fully
connected network. In the RNN model, W cells are utilized,
with each cell receiving input data from a specific time point
and the preceding cell. The output from this chain of cells,
which has the same dimensions as the initial input, is then
fed into a fully connected network that produces ĝx and ĝy.
The structure of the LSTM model also closely resembles this
configuration. For all these models, the loss function is the
MAE ē, as given in Eq. (4), where N is the number of training
samples.

FIGURE 5. Training and inference phases of the two-stage approach.

FIGURE 6. Training and inference phases of the single-stage approach.

C. SOLUTIONS FOR PROBLEM 2: PREDICT THE FUTURE
EYE GAZE FROM PAST EYE GAZE AND HEAD MOTION DATA
The objective of Problem 2 is to find the model fθ for T > 0,
with input data for g, such that

ĝ[t + T ] = fθ,T (h[t1, t2, · · · , tW ];

ḣ[t1, t2, · · · , tW ];

ḧ[t1, t2, · · · , tW ];

g[t1, t2, · · · , tW ]). (7)

We first consider three approaches that do not make use
of ML:

• No prediction (NOP): In this approach, the future eye
gaze is simply assumed to be the same as the current eye
gaze, i.e., ĝ[t + T ] = g[t], which is true when the user’s
eye gaze is stationary. We consider this approach as a
baseline to evaluate the gains of other solutions.

• Constant rate prediction (CRP): This approach assumes
that the angular velocity of the user’s head (ḣ) and
the relative eye gaze both remain unchanged for the
anticipation time T . Accordingly, the head shift during
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FIGURE 7. MAE performance of the prediction models for Problem 1.

FIGURE 8. Normalized MAE performance of the prediction models for Problem 2.

T is obtained as ḣ[t]T , and we have ĝ[t + T ] = g[t] +

⟨ḣx[t], ḣy[t]⟩T .
• Constant acceleration prediction (CAP): This approach
assumes that the angular acceleration of the user’s head
(ḧ) and the relative eye gaze both remain unchanged
for the anticipation time T . Accordingly, the head shift
during T is obtained as ḣ[t]T +

1
2 ḧ[t]T

2, and we have
ĝ[t + T ] = g[t] + ⟨ḣx[t], ḣy[t]⟩T +

1
2 ⟨ḧx[t], ḧy[t]⟩T

2.

For ML-based approaches, an architecture similar to that
for Problem 1 is considered, with the addition of the current
eye gaze as an input to the model. Moreover, the output is
not for the current time but rather for a future time advanced
by the anticipation time T , i.e., the future eye gaze at time
t + T is predicted at time t . The remaining components
of the model structures remain unchanged from those for
Problem 1. We also employ ensemble methods by combining
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FIGURE 9. Normalized MAE performance of the two-stage models for
Problem 3 with varying anticipation times.

FIGURE 10. Normalized MAE performance of the single-stage models for
Problem 3 with varying anticipation times.

FIGURE 11. Normalized MAE performance of the top three models with
and without roll input data for Problem 3 with varying anticipation times.

all of the methods described above to determine the best
model output to use.

D. SOLUTIONS FOR PROBLEM 3: PREDICT THE FUTURE
EYE GAZE FROM PAST HEAD MOTION DATA
We define Problem 3 as the problem of predicting the future
gaze from past inertial sensor data. That is, the objective of

Problem 3 is to find the model fθ for T > 0, without input
data for g, such that

ĝ[t + T ] = fθ,T (h[t1, t2, · · · , tW ];

ḣ[t1, t2, · · · , tW ];

ḧ[t1, t2, · · · , tW ]). (8)

Fig. 4 illustrates the relationship between the past data sam-
ples and the predictions over time.

The first approach illustrated in Fig. 5 is to serially com-
bine the solutions for Problems 1 and 2, which we call
the two-stage approach. At time t and before, the first
submodel (a solution for Problem 1), which we denote
by f 1θ1,T=0, yields predicted eye gaze samples for t and
before, i.e., ĝ[t1 = t], ĝ[t2], · · · . Then, to predict the final
output ĝ[t + T ], the second submodel (a solution for Prob-
lem 2), which is denoted by f 2θ1,T , uses the predicted eye
gaze samples instead of actual eye gaze samples. θ1 and
θ2 are the parameter sets of the first and second submod-
els, respectively. Thus, we rewrite Eq. (8) for the two-stage
approach as

ĝ[t + T ] = f 2θ2,T ◦ f 1θ1,T=0(h[t1, t2, · · · , tW ];

ḣ[t1, t2, · · · , tW ];

ḧ[t1, t2, · · · , tW ])

= f 2θ2,T (h[t1, t2, · · · , tW ];

ḣ[t1, t2, · · · , tW ];

ḧ[t1, t2, · · · , tW ];

ĝ[t1, t2, · · · , tW ]), (9)

where ĝ is obtained from the first submodel f 1θ1,T=0. In
the training procedure for the two-stage approach, the
initial step involves training the first submodel. Follow-
ing this, the second submodel is trained, utilizing the
inertial data and the output data produced by the first
submodel.

The second approach, which we call the single-stage
approach, uses only a single ML model, which is trained
to directly find θ in Eq. (8). The data flows of the
single-stage approach in the training and inference phases
are illustrated in Fig. 6. The input data for the single-stage
approach are the same as those for the first submodel
in the two-stage approach. In contrast to the two-stage
approach, which requires eye gaze data as input for the
second model, the single-stage approach requires only head
orientation data as input, based on which the single-stage
approach directly outputs the predicted eye gaze. The training
and inference processes for the single-stage approach are
more computationally efficient than those for the two-stage
approach. This is because a single-stage model requires only
one step during training and propagation of the input data
through only a single model during inference, whereas for
a two-stage model, both submodels must be involved in both
processes.
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FIGURE 12. CDFs of absolute prediction error samples for the top five prediction methods for Problem 3.

V. PERFORMANCE EVALUATION, ANALYSIS, AND
DISCUSSION
A. EXPERIMENTAL SETUP
We used an HTC VIVE headset [38] and an aGlass (DK II)
eye-tracking device [39] installed in the headset. While users
played a VR program in which they looked at paintings on
the walls of an art gallery (a modified version of a sample

program provided with the aGlass device), both head motion
and eye gaze data were recorded at 60 Hz into trace files so
that all algorithms could be run with the same input data to
ensure fair comparisons. We used W = 20 samples, corre-
sponding to a period of 1/3 s. Throughout the experiments,
the parameters of the models were configured as follows. For
the LF model, we used regular least-squares linear regression
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TABLE 3. Prediction performance ranking.

FIGURE 13. Intersection performance of foveated rendering under the
two-stage models for Problem 3 with varying anticipation times.

with intercept calculation and no normalization. For the GBR
model, we used one thousand estimators and a learning rate of
0.01. For the MLP model, we used five hidden layers of 100,
80, 40, 30, and 20 neurons in sequence. For the CNN model,
we used 27×1 convolutional layers and a fully connected net-
work with two hidden layers consisting of 18 and 9 neurons
in the first and second layers, respectively. For both the MLP
and CNN, the activation function was ReLU, the optimizer
was the Adam optimizer, and the learning rate was set to 0.01.
In the RANSAC model [19], a future sample is calculated
as the product of the current sample and a coefficient that is
derived from the RANSAC estimator. To construct a hidden
Markov model (HMM) [40], the range of variation between
consecutive samples was divided into 40 intervals, each rep-
resenting a state within the HMM. When a change is forecast

FIGURE 14. Intersection performance of foveated rendering under the
single-stage models for Problem 3 with varying anticipation times.

by the HMM, the future sample is determined by adding the
predicted change to the current sample.

B. EVALUATION RESULTS FOR PROBLEM 1
In addition to the models previously discussed in Section IV
(Center, CNN, LF, MLP, and GBR), we also consider the
stacking and voting ensemble methods [41], [42]. A stacked
ensemble model [43] takes the outputs of multiple models
as the inputs to a meta-regressor, which then gives the final
prediction result. The meta-regressors considered here are
ridge regression [44], the least absolute shrinkage and selec-
tion operator (LASSO) [45], and least angle regression and
shrinkage (LARS) [46], [47].

Fig. 7 shows the MAE comparison results for each user in
panels (a)–(e) and the average result for all users normalized
with respect to the MAE of Center in panel (f). In each panel
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of this figure, the bar corresponding to the best-performing
method is colored red. We observe that the stacked ensemble
model with the LASSO regressor consistently shows the
smallest MAE for all users. For User 4, the other models
achieve MAEs similar to those of the stacked ensemble and
CNN models, but for the other users, the performance gap
between the models is not negligible. Fig. 7(f) shows that the
stacked ensemble model with the LASSO regressor achieves
an MAE reduction of 50% compared to the Center model.
We also see that the stacked ensemble models with different
regressors all achieve MAE performance similar to that of
the CNN model. This is because each stacked ensemble
model uses the output of the CNN model as one of the
inputs to its meta-regressor. However, the stacking ensemble
approach can achieve a slightly lower MAE than the CNN
model due to its collective utilization of the other models
as well.

For each method, we also show the cumulative distribution
functions (CDFs) of the error samples for each user and the
single CDF curve for all user samples in Appendix A.

C. EVALUATION RESULTS FOR PROBLEM 2
Similar to Problem 1, the stacking ensemble approach with
the LASSO regressor is also considered for Problem 2.
We compare two stacked ensemble models: one that includes
all of the base models and one that does not include the worst
model, namely, CAP. The MAE results are compared for
each user in Fig. 8(a)–(e), and Fig. 8(f) shows the average
result for all users normalized with respect to NOP. The
CNN, RNN, and ensemble models show similar gains for all
users. For an anticipation time of 50 ms, the reduction gains
of the CNN, RNN and ensemble models over NOP are as
high as 50%. As the anticipation time increases, however,
the gain decreases and becomes as small as approximately
10% on average for an anticipation time of 200 ms. This is
because older data samples are less correlated with the future
status and thus fail to provide a model with sufficient infor-
mation for prediction. The LSTM model attains marginally
lower gains compared to the CNN, RNN and ensemble
models. On average, there is no meaningful performance
difference between the two ensemble models. The CRP and
CAP models show small gains only for short anticipation
times and become worse than NOP for longer anticipation
times, implying that their assumptions of constant velocity
and acceleration are not valid, especially for long anticipation
times.

The CDFs of the error samples for each user and for
different anticipation times are also given in Appendix B.

D. EVALUATION RESULTS FOR PROBLEM 3
Fig. 9 shows the comparison of the MAE results for the
two-stage models normalized with respect to the MAE of
Center+NOP. We construct the name of each two-stage
model as the name of the first-stage model followed by
the name of the second-stage model after a plus sign.
We combined all of the prediction models for Problem 1 and

Problem 2 into corresponding two-stage models and then
sorted them based on their MAE performance. Finally, only
the top five models among all combinations are shown in
this figure. They achieve anMAE reduction of approximately
40% compared to Center+NOP for an anticipation time of
50 ms. This reduction decreases to approximately 20% for
an anticipation time of 150 ms. For an anticipation time of
200 ms, all methods except LF+Ensemble perform similarly
to Center+NOP. For an anticipation time of 250 ms, even
LF+Ensemble is similar to Center+NOP. For anticipation
times of 350 and 450 ms, all methods become worse than
Center+NOP because predicting the future gaze becomes
harder over longer anticipation times, as observed from the
results for Problem 2.

The normalized MAE results for the single-stage mod-
els are compared in Fig. 10. This figure shows that the
single-stage models achieve lower MAEs than the two-
stage models. The CNN model and the ensemble model
constructed from all base models both achieve an MAE
reduction of approximately 50% compared to Center+NOP
for an anticipation time of 50 ms, while the two-stage
models achieve reductions of only up to 40%. For an
anticipation time of 100 ms, the single-stage models still
outperform the two-stage models, achieving MAE reductions
of approximately 30% while the two-stage models show
reductions of approximately 20%. However, the single-stage
models suffer a decrease in their reduction gain with an
increasing anticipation time and become similar to or worse
than Center+NOP at an anticipation time of 250 ms. The
ensemble approach with all base models is always better
than the ensemble approach without CAP. This indicates that
although CAP alone shows poor performance for Problem 2,
including it in the ensemble model for Problem 3 is beneficial
for MAE reduction.

We also conducted an investigation to determine the impact
of roll input data on the prediction performance. The nor-
malized MAE results for the top three single-stage models
with and without roll input data are compared in Fig. 11. The
models without roll data as input slightly outperform their
counterparts with roll input data at an anticipation time of
50ms. This may be because the yaw and pitch input data have
a robust correlation with the eye gaze, providing sufficient
information for prediction, whereas roll data functionmore as
noise rather than contributing valuable information. However,
as the anticipation time increases beyond 50 ms, the models
without roll data begin to perform worse than those with
roll data, with an increasing performance gap between the
two model types. This implies that roll data can provide
meaningful information for prediction as the correlation of
the yaw and pitch data with the eye gaze becomes weaker.

Fig. 12 shows the CDFs of the absolute prediction
error samples for each user. This figure includes the five
best-performing models for Problem 3 and Center+NOP
as a baseline. For an anticipation time of 100 ms, the
single-stage models outperform the two-stage models for
Users 1, 3, and 5 while showing similar performance for
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FIGURE 15. CDFs of the absolute prediction errors for Problem 1.

Users 2 and 4. All the models achieve MAE reductions
compared to Center+NOP for all error samples. For an antic-
ipation time of 200 ms, however, the prediction methods do
not achieve significant gains over Center+NOP, especially
for Users 1 and 5. For Users 2, 3, and 4, even the best method
outperformsCenter+NOP for only some of the error samples.
For an anticipation time of 300 ms, prediction is still bene-
ficial for Users 2 and 4, but for the other users, prediction
performs similarly to Center+NOP (User 1) or even worse
(Users 3 and 5).

Table 3 presents the rank assigned to each method.
We summarize the conclusions drawn from our experimental
results as follows:

• For Problem 1, the CNN model generally delivers the
best performance among all single models, while the
ensemble approach, especially with LASSO regression,
outperforms all other methods.

• For Problem 2, the CNN and RNN models, along with
the ensemble approach, generally exhibit strong perfor-
mance, with gains over NOP that decrease as the antici-
pation time increases. The other models underperform
compared to NOP except at a short anticipation time
of 50 ms.

• For Problem 3, the single-stage approach slightly out-
paces the two-stage approach for a short anticipation
time, but the two-stage approach becomes superior
for longer anticipation times. Among the single-stage
methods, the CNN model and the ensemble mod-
els generally demonstrate the best performance, with
gains over NOP that again decrease as the anticipa-
tion time increases. The other models underperform
compared to NOP except at a short anticipation time
of 50 ms.

E. EVALUATION RESULTS FOR FOVEATED RENDERING
We conducted experiments on foveated rendering to assess
the effectiveness of the proposed eye gaze prediction
solutions in terms of VR service quality. The region of interest
(ROI) in the user viewport, which provides the most visual
information to the human visual system, should be displayed
at high resolution. In foveated rendering, the region around
the predicted eye gaze point, rather than the central region,
is rendered at high resolution, with the expectation that the
ROI will be filled with high-resolution pixels when the ren-
dered VR image is displayed to the user. As the error of
eye gaze prediction increases, the difference between the
high-resolution area produced through foveated rendering
and the ROI also increases, resulting in more low-resolution
pixels being visible to the user in the ROI. The degree of
this difference can be quantified by computing the inter-
section area between the high-resolution region produced
through foveated rendering and the ROI, which reflects
the percentage of high-resolution pixels within the ROI.
In these experiments, the ROI was defined as a circular
area centered around the true eye gaze, occupying 18% of
the viewport. The high-resolution region produced through
foveated rendering was designed as an equally sized circular
area, in accordance with NVIDIA’s basic default settings for
foveated rendering [48]. This region was centered on the
predicted eye gaze. Therefore, perfect eye gaze prediction
should result in an intersection area of 100%.

The intersection areas achieved under the two-stage
and single-stage models are shown in Figs. 13 and 14,
respectively, for varying anticipation times. For an
anticipation time of 50 ms, the two-stage models achieve
intersection areas of 64% to 68%, which is approximately
20% higher than that of Center+NOP. The maximum gain

67494 VOLUME 11, 2023



A. Satriawan et al.: Predicting Future Eye Gaze Using Inertial Sensors

FIGURE 16. CDFs of the absolute prediction errors for Problem 2.

of the single-stage models, achieved by the CNN model and
the ensemble model including all methods, is even higher,
reaching an intersection area of up to 72%, although some
methods (RANSAC, HMM, and LSTM) show only marginal

gains. As the anticipation time increases, the gains of all
prediction methods decrease due to increasing prediction
error. Both the two-stage and single-stage methods begin to
achieve intersection areas similar to that of Center+NOP at
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an anticipation time of 200 ms (although LF+Ensemble still
achieves a 6% gain over Center+NOP). For an anticipation
time longer than 300 ms, all prediction methods achieve a
worse intersection area than Center+NOP due to excessive
prediction error.

VI. CONCLUSION
We developed eye-tracking solutions using only inertial
sensors for the three time-series regression problems of pre-
dicting (1) the current eye gaze using past head orientation
data, (2) the future eye gaze using past head orientation and
eye gaze data, and (3) the future eye gaze using past head
orientation data only.We solved the first and second problems
using various ML models and developed two approaches to
solutions for the final problem: two-stage and single-stage
approaches. In the two-stage approach, two ML models are
combined in series, one for the first problem and the other for
the second problem. In contrast, the single-stage solutions use
a singlemodel to predict the future eye gaze directly from past
head orientation data. We evaluated the proposed solutions
based on real eye-tracking traces captured from a VR headset
for multiple test players, considering various combinations
of ML models. The results showed that prediction models
are effective for anticipation times of up to a few hundred
milliseconds and that the single-stage approach outperforms
the two-stage approach.

APPENDIX A
CDFs OF THE ABSOLUTE PREDICTION ERRORS FOR
PROBLEM 1
For each method, we show the cumulative distribution
functions (CDFs) of the error samples for each user in
Fig. 15(a)–(e) and the single CDF curve for all user samples
in Fig. 15(f). Similar to the results presented in the main
text, the CDFs also show that the stacked ensemble and CNN
models outperform all other models for all samples. In Fig. 7,
LF achieves a lower MAE than Center, but Fig. 15 reveals
that LF has higher errors than Center for a large number of
samples, i.e., approximately 15% of the samples in Fig. 15(f).

APPENDIX B
CDFs OF THE ABSOLUTE PREDICTION ERRORS FOR
PROBLEM 2
For each user, Fig. 16 shows the CDFs of the error sam-
ples for anticipation times T of 100, 200, and 300 ms. For
T = 100 ms, all models outperform NOP except for User 4.
In particular, the CNN model significantly outperforms NOP
for all samples and all users. The ensemble approach yields
curves similar to those for the CNN model except for User 1.
For T = 200 ms, the gap between the prediction models and
NOP becomes much smaller. The CNN and ensemble models
still outperform NOP, but the CNN actually results in worse
error samples than NOP for User 1. CRP and CAP begin to be
outperformed by NOP, consistent with our observations in the
main text. For T = 300 ms, the performance ranking of the
methods differs for different users. For User 1, the ensemble

approach still outperforms NOP for over 80% of samples,
but the CNN is worse than NOP for approximately 70% of
samples. For Users 2, 3, and 4, the CNN and ensemblemodels
outperform NOP for the majority of samples, but for User 5,
all methods are worse than NOP, which means that prediction
is actually detrimental.
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