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ABSTRACT The echo state network (ESN) is a cutting-edge reservoir computing technique designed to
handle time-dependent data, making it highly effective for addressing time series prediction tasks. ESN
inherits the more precise design of standard neural networks and the relatively simple learning process
and has a strong computing capacity for solving nonlinear problems. It can disseminate low-dimensional
information cues to high-dimensional areas enabling extracting data. However, this study has proven that
not all reservoir output dimensions directly impact model generalization. This study desires to enhance the
ESN model’s generalization abilities by decreasing the redundant reservoir output feature. A remarkable
hybrid model is proposed that optimizes the ESN output association through feature selection. This model
is called the binary improved gravitational search algorithm (BIGSA) echo state network (BIGSA-ESN).
BIGSA’s feature selection approach complements the ESN output connection architecture. In this study,
evaluation was performed using root mean square error (RMSE). The experimental findings on the Lorenz
and Mackey-Glass benchmark time-series datasets demonstrate that the proposed technique outperforms
conventional evolutionary methods. Moreover, empirical findings on predicting a significant water quality
parameter from the wastewater treatment process (WWTP) dataset demonstrate that the proposed ensemble
of BIGSA models performs very well in real-world scenarios.

INDEX TERMS Network optimization, time series forecasting, binary gravitational search algorithm, root
mean square error, echo state network.

I. INTRODUCTION
Time series prediction has attracted numerous scholars in
recent decades [1]. This field creates holistic algorithms
based on traditional research to predict future values. Time-
series estimates exhibit the ability to predict the future by
analyzing the history [2]. The economics [3], energy [4],
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approving it for publication was Alireza Sadeghian.

electromechanical systems [5], and engineering [6], [7] are
largely depend on predicting. Also, time series estimation
is a complex problem since it is a nonlinear dynamic issue.
A superior model of functional prediction competencies
should be established to boost time series forecasting [8].
Appropriate computer methods were developed to enhance
prediction accuracy [9]. However, no universal standards
exist for determining the optimal solution to a specific con-
cern [10]. Artificial neural networks (ANNs) have emerged
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as a highly effective and successful methodology in the
realm of time series prediction. ANNs’ key refinements are
data-driven and self-adaptive computational simulation com-
petence. ANNs are intelligent predictors [11] that suggest an
ample nonlinear enabling the development of linear series
for diverse models and extensively employed forecasting
systems [4], [12]. The identical approximation feature that
allows ANN to create time-series facts significantly confuses
the benchmark formulation. Thus, developing a significant
design is vital for neural network application [13], [14].
Recurrent neural networks (RNNs), including Hopfield,
Elman, and ESN, propose extensive memory by developing
internal network parameters that prompt the system to display
intricate temporal patterns. Sophisticated systems relying on
complicated rational behavior have proved superior efficacy
to standard feed-forward neural networks (FNNs) for model-
ing nonlinear dynamic systems [15].

Researchers have employed RNNs in a variety of domains,
including clustering [16], pattern detection [17], classifi-
cation [18], and prediction [19]. ESN is among the most
prevalent RNNs [20]. The reservoir is ESN’s random-
initialized hidden layer. The ESN is a recursive design famous
for its simple form and accurate predictions. ESN is unique
among other recursive networks in two key ways: first, its
hidden layer consists of a vast, loosely coupled reservoir,
and second, only the weights connecting the reservoir to
the system output must be learned [21]. The ESN reser-
voir plays a crucial role in transforming low-dimensional
input into a higher-dimensional space, thereby facilitating
the representation of dynamic systems that incorporate a
feedback relation within the reservoir and output layer [20].
Despite their extraordinary learning potential, ESN models’
complicated and dynamic weight structure remains poorly
studied, making reservoir optimization difficult. So, solv-
ing this problem is a crucial study. The fruit fly model,
particle swarm optimization (PSO), and the hybrid gravita-
tional search approaches have been adopted by researchers
to boost crucial ESN parameters and increase overall effi-
ciency as part of the hyper-parameter tuning optimization
technique [22], [23], [24].

Network topology is generally intended to improve the
competitiveness of ESN further [25]. Identifying the optimal
ESN output connection is typically necessary for achieving
the best performance. However, it can be challenging as the
output layer is fully connected, which may seem incongru-
ous [26]. Investigations have indicated that loosely coupling
the ESN output layer increases network efficiency [27], com-
parable to the sparse links among brain neurons [28]. Yet,
optimizing connections is still an issue that must be tackled.
Improving the connectivity amongst neurons in the ESN
reservoirs and output layer is a feature selection challenge.
Frequently, data representation has extra components that
may be eradicated [29], [30]. The primary objective of feature
selection is to enhance a system’s interpretation by downsiz-
ing the chosen features’ dimensionality.

Recent studies have focused on optimizing the ESN output
link. Conventional feature selection techniques, including
least angle regression and backward selection, aim to improve
network generalization by removing superfluous connections
within the ESN reservoir and output layer [27], [31]. More-
over, the greedy feature engineering approach is employed
to decrease the high computational cost of the feedback
provided [28]. Several feature selection methods are unsuit-
able for addressing ESN output connections’ optimization
issues. However, evolutionary computation (EC) algorithms
can potentially overwhelm these restrictions. Using a dis-
tinct feature selection scheme, Liu et al. [29] presented the
binary grey wolf ESN algorithm to enhance the ESN output
link. The EC algorithm is inspired by the realistic evalua-
tion process, and a range of global optimization techniques
based on the study of biological behavior are provided [32].
A commonly used evolutionary computing method is the
genetic algorithm (GA) [33]. It solves discrete issues like
feature selection faster than enumeration, heuristic, and other
optimization approaches. Genetic algorithm (GA) durability,
scalability, programming, parameter tweaking, and deliberate
search speed make it challenging to use [34]. Besides, the
particle swarm optimization (PSO) approach’s quick estimate
speed in determining the best configurationmay also improve
the system’s parameter settings [23]. The PSO method func-
tions by iteratively updating the location of each particle
using current, global, and specific extremum information.
The PSO approach can tackle optimization problems involv-
ing continuous functions. PSO can more readily converge in
advance, while the potential for local optimization isminimal.
Also, it cannot be implemented for arbitrary feature selec-
tion challenges. So, a discrete binary PSO method with zero
or one trajectory coordinates is created [35]. Gravitational
Search Algorithm is among the most recent EC algorithms
exploited by Newton’s theories of gravity and motion [36].
The search agents in this technique are a swarm of molecular
interactions. It has been proven that GSA provides numerous
benefits over conventional heuristic optimization techniques.
However, the GSA’s search feature is very flawed. Due to
a quick loss of variation, the first method is susceptible to
early convergence [37]. Finding a balance between exploring
new options and exploiting known information is challeng-
ing. Several measures have been developed to overcome
these obstacles. Zandevakili et al. [38] suggested a new
gravitational search approach incorporating uniform circular
motion and centripetal force to create an attractive-repulsive
approach. A chaotic optimization technique is employed,
causing the algorithm’s parameters to fluctuate in a chaotic
fashion [39].

A fused PSO and gravitational search algorithm are used to
solve binary optimization concerns [40]. Due to the paucity
of memory in the original method, its exploitation step con-
verges slowly. The study presents a novel gravitational search
algorithm (GSA) that utilizes global memory to improve
exploitation capabilities in the final iterations, achieving
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a balance between exploration and exploitation [41], [42].
Also, a binary version of IGSA is developed, referencing
the original. The binary GSA [43] is utilized to pick the
optimal characteristic subset for grading purposes. BIGSA is
proposed in this study to enhance the output connectivity of
the ESN. To assess the efficacy of the suggested method, two
benchmark time series datasets, namely theMackey glass and
Lorenz time series, were utilized, as well as data from a crit-
ical water quality parameter prognostication investigation in
the WWTP. The empirical finding reveals that the suggested
BIGSA-ESN model exhibits superior performance, reducing
the generalization error of the traditional ESN algorithm.
These findings suggest the BIGSA algorithm’s efficacy in
enhancing ESN models’ performance. The proposed work’s
significant intent is as follows:

• This study introduces IGSA, an improved version of
GSA that addresses its limitations by balancing explo-
ration and exploitation and using global memory to
boost outcome quality.

• To select the optimum feature subset for classification
to optimize the ESN output connection and improve
its generalization capabilities using novel BIGSA-ESN
algorithms

• To evaluate the proposed algorithms on the Lorenz and
Mackey-Glass benchmark time series datasets proven
the superiority over conventional evolutionary methods

• To forecast the effluent NH4-N concentration in the
WWTP, a soft-computing approach based on the BIGSA
ESN is developed. Initially, data preprocessing and data
preparation methods were used to select auxiliary vari-
ables as input variables for the soft computing model.
Second, the suggested BIGSA- ESN is used to develop a
soft-computing model of effluent NH4-N that can fulfill
actual predictive situations.

• Finally, the empirical consequences reveal that the con-
structed predictive model achieves more promising than
other ESN standards regarding prediction accuracy.

This paper’s organization is as follows. A concise study
of the methods, including the standard ESN, the principle of
GSA, the proposed IGSA, and the binary interpretation of
IGSA, is provided in Section II. The approach for ESN opti-
mization that makes use of BIGSA is provided in Section III.
Section IV explain the experimentation that was carried out
using the benchmark datasets. It leads the interpretations of
the findings of the investigation, and Section V wraps up the
finding of the study.

II. MATERIALS AND METHODOLOGY
A. THE STANDARD ECHO STATE NETWORK
The ESN is a class of recurrent neural networks (RNN)
consisting of three layers as input, hidden, and output layer.
Contrary to a conventional RNN, the input-to-hidden layer
and ESN reservoir link weights are randomly initialized. In an
ESN, the links between the hidden and output layers are fixed,
and their weights are not taught during training. In general,

the training process of ESNs is rapid, particularly in regres-
sion tasks in which the network is taught to predict a constant
output value. The proposed design of the ESN benchmark is
presented in Figure 1. The reservoir in the proposed design
is similar to the typical neural network’s hidden layer. The
connection implications for the reservoir-to-output layer are
W out , the weights for the reservoir-to-input layer are W in,
and the weights for the reservoir-to-neurons are W . In addi-
tion, a link exists from the output to the reservoir layer
represented by W back . This connectivity (shown by the
dashed arrow in Figure 1 is optional. The ESN can cre-
ate multi-step projections while W back exists. Otherwise,
the prognosis is confined to a single step. Figure 1 depicts
the configuration of the ESN without feedback connections,
which comprises three components: 1) K input units acquir-
ing external inputs; 2)N core units with associated states; and
3) L result units feeding the results required by the use. ESN
training only involves the calculation of the output weights
W out , while all other weights are kept fixed.
If f = [f 1, f 2, . . . ,f N ]T and f out= [f out1 , f out2 , . . . ,

f outL ]T are activation functions of internal and output units,
respectively. The internal states x(t) and output y(t) are
depicted as:

x(t) = dsymbolf (Wx(t − 1)) +W inu(t) (1)

y(t) = f out
(
Wout x(t)

)
(2)

In Eqs.1 and 2, W is a weight matrix of ESN’s reservoir.

S= [x (1) , x (2) , . . . , x(t)]T and D= [d (1) , d (2) , . . . ,

d(t)]T are inner state vector and selected output, accordingly.
The output weightsWout can be computed in Eq.2.

Wout
=

((
STS

)−1
STD

)T

(3)

In contrast to gradient-based methods, ESN solely uses
linear regression to determine its output weights, whereas all
other weights stay fixed. Additionally, ESN is advantageous
while analyzing one-dimensional time series. To enable the
functionality of the ESN, several factors must be considered.
For instance, the input from the previous moment rever-
berates in the ESN reservoir, making it crucial to prevent
the reservoir state from exploding. The eigenvalues of the
matrixW should ideally be smaller than or equivalent to one
to prevent the reservoir from becoming unstable or exploding.
Wout is the only parameter in the ESN that must be adjusted
during learning, and W should be chosen to allow for the
incorporation of as multiple relevant data patterns as con-
ceivable. The sparsity of W should be appropriately chosen,
usually between 1% and 5%, to ensure optimal performance.

B. THE STANDARD GRAVITATIONAL SEARCH
ALGORITHM (GSA)
The GSA is based on optimization strategies boosted by
the law of gravity. In this approach, particles are assumed
to represent the objects, whereas masses are used to gauge
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FIGURE 1. The step-wise architecture of Echo State Network comprises varying numbers of input units,
reservoirs neurons,s, and output units.

performance. The particles communicate by employing New-
ton’s theory of gravity and the laws of action. Considering
a solution contains N particles (masses). Eq.4 calculates the
i particle’s position.

xi = (x1i , . . . ..x
d
i . . . . . . xDi ) for i = 1, 2, 3 . . . .n (4)

Here, xdi depicts the location of particle i in dimension d ,
and the total number of dimensions is denoted by D. Each
particle’s performance is determined by its mass and assessed
by a vigor process. In this approach, the gravity and inertial
masses of all particles are equalized and modernized with
each iteration by using Eqs.5, 6, and 7

Mai = Mpi = Mii = Mi (5)

mi =
fit i − worst
best − worst

(6)

Mi =
mi∑N
j=1 mj

(7)

where, fit i indicates the particle i fitness value. best andworst
represent all particles’ highest and lowest fitness scores.

Maximization challenges are characterised as in
Eqs.8, and 9

best = max
j∈{1,.....N }

fit j (8)

worst = min
j∈{1,.......N }

fit j (9)

Considering reducing issues, they are completely different
and are calculated as in Eqs.10, and 11

best = min
j∈{1,.....N }

fit j (10)

worst = max
j∈{1,.......N }

fit j (11)

The gravity Fdij exerted on particle i from particle j is
calculated as in Eq.12

Fdij = G
Mpi×Maj

Rij + ε
×(xdj − xdi ) (12)

where Mpi sedentary gravity potential of the particles i.
Maj is kinetic gravity energy of particle j,. Rij represents
the Euclidean space within two particles, while ε is a teeny
invariant. G is designated the gravity acceleration, although
it is a sequence of rounds in Eq.13.

G = G0e−α t
T (13)

G0 and α are adjusted at the beginning and reduced gradually
to regulate the search precision, while T denotes the max
iterations. The force exerted operating on particle i in size d
is an arbitrary weight matrix of other particles’ gravitational
forces.

Fdi =

∑
j∈Kbest,j̸=i

rand jFdij (14)

In Eq.14, rand j is a constant arbitrary variable between
0 and 1. Keeping equilibrium is essential to prevent being
stuck in local optima and strike a symmetry within explo-
ration and exploitation during the search process. Solely
particles Kbest with the most significant fitness weights
are used to wield gravitational attraction on other particles.
Kbest is initially set to the overall inhabitants and is progres-
sively lowered to 1 with each iteration.

Kbest = N ×
per+(1 − t

T ) × (100 − per)
100

(15)

In Eq.15, per indicates particles’ proportion that
effectively contributes to distinct particles in the final anal-
ysis. Using the equation of motion, the rate of particle i in
size d at iteration t is determined by the following equation,
as shown in Eq.16.

adi = Fdi /Mii (16)

HereM ii represents particle’s i inertial mass.
The particle’s velocity at the next dimension d is the pro-

portion of the present speed and velocity.

vdi = rand i ×vdi + adi (17)
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FIGURE 2. Global memory.

In Eq.17, rand i an invariant arbitrary variable inside an
interval [0, 1] is used to give the search an arbitrary char-
acteristic. Additionally, Eq.18 computes the particle’s next
location in dimension d .

xdi = xdi + vdi (18)

C. IMPROVED GRAVITATIONAL SEARCH ALGORITHM
This section presented the enhanced exploitation capabili-
ties of the updated version of the robust GSA architecture.
The primary goal of heuristic algorithms is to locate the
approximate optimal solution within a tolerable time frame.
A strategy for attaining this aim is to balance exploitation and
exploration.

D. GLOBAL MEMORY
The particles explore the search space in the initial itera-
tions in the proposed approach. During subsequent rounds,
particles choose the optimal global solution among viable
alternatives. Particles get denser and move more slowly
as iterations rise as they approach viable solutions. As a
result, the algorithm’s convergence rate declines during the
exploitation phase. Furthermore, the original method lacks
the memory to retain the best solution thus far. Consequently,
it may be destroyed if the most solemn molecule with the
most significant fitness value attracts additional particles.
To address these shortcomings, the proposedmethod includes
a global memory gbest, which retains the best solution
achieved thus far. All particles are conscious of their location
and may move toward it. The introduced technique is illus-
trated in Figure 2.
It illustrates a straightforward 1-D devaluation issue, where

fit represents a fitness process with a threshold level of 0.
According to the Figure 2, particle i attracts particles j and k.
During the same period, these two particles attracted parti-
cle i, causing it to diverge slightly from the global optimum.
If weighty particles are near the optimal global solution but
unable to move toward it, they will drift toward the centroid
of surrounding particles. Consequently, the global memory
gbest is implemented to avert particles from becoming immo-
bile under inadequate conditions. This enhances the mobility

of heavy particles and the algorithm’s capacity to exploit
resources. As an instance of intellectual capability, gbest
yields each particle an extra velocity feature that moves it
toward the position of the particle with the most mass. Thus,
the formula for updating velocity is adjusted in Eq.19

.vdi = rand i × vdi + c1 × adi + (2 − c1) ×

(
xdgbest − xdi

)
(19)

where c1 is accelerating factor, and xdgbest(t) is the location
of gbest in dimension d . The equation’s front is comparable
to the original method to preserve the program’s capacity
for exploration. Additionally, the bottom of the equation is
introduced to aid particles in pursuing optimal overall devel-
opment throughout the exploitation phase. Due to the lack of
obvious distinction between the exploration and exploitation
phases in heuristic approaches, c1 is required to achieve a
balance between them [24]. It decreases with each repetition,
as seen by Eq.20.

c1 = 2 − 2 ×
t3

T 3 (20)

here t depicts the current iteration, and symbolizes the entire
iterations performed. The influence of gbest on particles
is irrespective of their masses and is unrestricted by the
rule of sobriety, prohibiting particles from collecting and
traveling gradually. This update preserves exploration capa-
bilities in earlier iterations, enriches exploitation capabilities
in later iterations, and feeds a seamless transition between the
two.

Algorithm 1 Improved GSA
Input : Initialize the algorithm’s relevant

parameters (N ,G0, α, tmax)
Output: Optimal solution

1 Develop the initial population erratically.

2 while i = 1 to max iterations do
3 Assess the fitness weight of all particles applying

the fitness function.
4 Compute the Worst and Best.
5 Compute the masses of all particle using Eq. 7

Reconfigure the global memory.
6 Compute the strength and acceleration of every

particle in various proportions as per the
specified Eqs. 14 and 16.

7 Update velocity V d
i using Eq. 19

8 Update position xdi using Eq. 18
9 end
10 return S

E. BINARY IGSA
In contrast, this study proposes a binary IGSA related to the
original BGSA [43]. The position of each particle represents a
subset with potential solutions, as in the PSOmethod context.
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The outcome is that it is a binary vector. Each dimension’s
outcome is either 1 or 0, indicating the existence or absence
of the corresponding characteristic. Each particle’s orienta-
tion is initialized with a sequence of binary numbers at the
start of BIGSA. During a dimension transformation, its value
transitions between 1 and 0. In BIGSA, the particle velocity
is updated using IGSA, and a probability process is employed
to convert the velocity to likelihood is described in Eq.21:

S
(
vdi

)
= |tanh(vdi )| (21)

where S
(
vdi

)
is restricted within the interval [0, 1]. As the

velocity rises, the probability will increase. Fluctuations in
probability determine the trajectory of a particle in BIGSA.
To update the location of each particle, the computed likeli-
hood is taken into account, along with a specific rule.

if rand < S(vdi ) then

xdi = complement
(
xdi

)
else

xdi = xdi (22)

In Eq.22 rand is a uniformly dispersed arbitrary integer
between 0 and 1.

III. BIGSA-ESN
This study employs the BIGSA technique to enhance the
output connection framework of ESN by eliminating repe-
titious links within the reservoir and output layer. This is
achieved by setting certain network weights inWout to zero,
in addition to the standard calculation of connection weights.
The output connectivity of ESN can be represented using
1 and 0, where disconnection and connection are indicated by
1 and 0, respectively. By optimizing the parameter, a binary
matrix can be constructed that corresponds to the ESN output
connection state. This matrix’s dimensions typically equal the
numeral of neurons in the reservoir, denoted as I. BIGSA
particles provide output weights in the Wout matrix. RMSE
measures each particle’s efficacy.

RMSE =
1
N

√√√√ N∑
i=1

(y (i) − yo(i))2 (23)

Eq.23 y (i), yo(i) The predicted and target output are
denoted as well asN , which represents the size of the training
samples. A smaller RMSE corresponds to higher network
training or testing accuracy. Since RMSE is an objective func-
tion, a smaller RMSE solution offers the optimal solution.

The procedure for designing BIGSA-ESN is outlined as
follows:

1) The BIGSA optimization algorithm is initialized using
G0 and α. Here,N denotes the number of exploring par-
ticles, and T denotes the highest number of iterations.

2) Initialize the ESN by specifying the reservoir size to
M and randomly generating the Input weightsW in and
internal weightsW , which will not change throughout

further training. The reservoir construction is per-
formed with an appropriately sized architecture, where
the tanh function is utilized as the internal activa-
tion process. The sparsity of the reservoir is retained
between 1% and 5%. To maintain the ESN model’s
stability, the weight matrix’s spectral radius should be
less than or equal to 1.

3) Determine the objective function for every searching
particle. This study utilizes the ESN result association
to define the particle’s position. The RMSE, as shown
in Eq.23, is utilized as the objective process for each
projected and target value, and the goal of the search is
to minimize this value.

4) Calculate the mass of each particle using Equation Eq.7
5) Calculate the gravity coefficient G using equation

Eq.13.
6) Determine each particle’s force using the equation

Eq.14; determine each particle’s accelerate rate using
the equation Eq.16.

7) Update the global memory
8) Using BINARY IGSA, update the position and velocity

according to Eq.22.
9) Perform iterative optimization. BIGSA continually

updates and modifies the particle’s location until
achieving the highest number of iterations or the
desired level of precision, such as when the optimal
connection weight vector has been determined.

10) Once the link weight is optimized, it is adapted to the
ESN, and the efficacy of the improved ESN is then
assessed.

IV. RESULT ANALYSIS BASED ON BENCHMARK
DATABASE
A. ENVIRONMENT CONFIGURATION
The experiments conducted in this study are conducted on a
machine integratedwith Intel(R) Core(TM)i7-9750H, operat-
ing at 2.70 GHz, and a GTX2160Ti GPU. All approaches are
developed using Matlab version 2016a and MySQL database
devices to ensure standardized training and testing perfor-
mance.

B. PREPARATION AND PREPROCESSING OF THE DATA
The experimental data for this study were acquired from
a short-scale wastewater treatment plant located in Beijing,
China. The data set consists of 1,000 input-output samples
extracted from the treatment plant’s operating report spanning
from June 2016 to July 2022. The first 900 instances are
utilized for training, while the remaining 100 are for valida-
tion. Themodel uses water temperature (T), dissolved oxygen
(DO) concentration, effluent pH, effluent oxidation-reduction
potential (ORP), and effluent nitrate nitrogen (NO3-N) con-
centration as auxiliary variables of the BIGSA-ESN to
signify the WWTP effluent NH4-N. Since the order of mag-
nitude of wastewater data varies significantly, the ESNmodel
is susceptible to data scaling. To address potential issues such
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Algorithm 2 BIGSA-ESN Algorithm
Input: M , The number of reservoir nodes; T :

Maximum number of iterations; N : Population
size; any other relevant parameters;

Output: Trained BIGSA-ESN;
1 Randomly initialize T and the population of N search

particle’s positions from the interval [0, 1];
2 Randomly initialize an ESN, including setting the

value ofM and generating the input weight matrix
W in, the reservoir weight matrixW and the feedback
weight matrixW back ;

3 while the stopping criterion is not met do
4 for each search particle i in population do
5 Set the output connection of the ESN to the

position of search particle i;
6 Compute the output weight matrix,W out ;
7 Estimate the objective function for search

particle i
8 Predict the output of ESN for the given input;
9 Compute the root mean square error and the

mean absolute error between the predicted
and actual values;

10 Use the minimum value of the objective
function as the search target;

11 end
12 Calculate the mass of each search particleMi

using Eq.7;
13 Compute the gravitational force Fdi and

acceleration adi of every particle in various
proportions as per the specified Eq.14; and
Eq.16;

14 Update global memory;
15 Update the velocity V d

i and position xdi of each
search particle using Eq.19; and Eq.18;

16 Using BINARY IGSA, update the position and
velocity according to Eq.22;

17 end
18 Obtain the optimalW out weight matrix based on the

best search particle position found during the search;

as slower convergence of the model caused by variations
in the magnitude of the data, the wastewater data must be
normalized using a suitable scaling method, as in Eq.24.

x́i = (xi − xi, min)/(xi, max − xi, min) (24)

where x́i, xi,min, xi,max are the normalized wastewater data
value, value, minimum value, and maximum value of each
dimensional data xi. Each data sample is placed into the
range [0, 1].

C. SETTING THE MODEL PARAMETER
The appropriate configuration of the reservoir size (N ) and
connectivity rate is crucial in the network architecture of
BIGSA-ESN during the training method. It depends on the

specific tasks being performed. The remaining parameters,
including reservoir sparseness (SP) and spectral radius (SR)
of the inner link matrix, are set according to the methodology
proposed by [20]. They are explicitly specified as sparseness.
They are explicitly specified as follows: the SP of W is
selected as 5%, and the SR is set to 0.8. The weight matrices
W and W in are not modified and initialized with random
values before training. The weights of all elements in W and
W in are assigned randomly within the range of -1 to 1.
The efficacy of the offered strategy is highly dependent on

the parameters used in the BIGSA method. These parame-
ters are determined through a sequence of investigations or
following current literature. The inhabitant’s dimension is
adjusted to 20, the maximum iterations are set to 200, G0 is
fixed to 100, and α is fixed to 20. Each study is carried out ten
times to reduce the influence of arbitrary initialization of cer-
tain system parameters, and the overall average is recorded.

D. THE CUTTING-EDGE APPROACHES
This section provides an overview of the relevant method-
ologies employed in this study. It encompasses the ARIMA
model, the extreme learning machine (ELM), the Classical
Radial Basis Function (RBF) model, and the Simple Recur-
rent Deep Neural Networks (SRDNNs) model. Additionally,
it delves into a comprehensive explanation of the proposed
ESN optimized by an improved BGSA algorithm.

1) ARIMA MODEL
TheARIMAmethod is a widely-adopted time series forecast-
ing method that integrates three key elements: autoregressive,
integrated, and moving average. The autoregressive compo-
nent estimates current values based on a linear combination
of previous values. The integrated part makes the time series
stationary by differencing data points, which is essential for
dealingwith trends or seasonality. Themoving average aspect
utilizes a weighted average of past errors to enhance accuracy.
In water waste forecasting, ARIMA is instrumental in making
predictions by using historical data, identifying trends, and
accounting for errors. This enables effective planning and
policy-making for water management by anticipating sea-
sonal changes or the impact of events on water waste.

2) ELM MODEL
The ELM algorithm is a variant of single-layer feed-forward
neural networks known for its unique and efficient training
process. It randomly assigns weights to the input layer, and
in the second phase, employs the Moore-Penrose inversion
technique to calculate weights for the output layer using the
hidden layer’s output matrix. This two-stage process enables
ELM to efficiently handle non-linear problems and produce
accurate models. In water waste forecasting, ELM’s speed
and accuracy make it invaluable for modeling intricate rela-
tionships between historical data, weather conditions, and
infrastructure, thereby facilitating more informed water man-
agement strategies.
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3) CLASSICAL RBF MODEL
The conventional RBFmodel represents a neural network that
employs radial basis functions as activation functions Radial
Basis Function Neural Networks (RBFNNs) employ radial
basis functions, usually Gaussian, as activation functions
and are particularly effective in learning and approximating
non-linear relationships. With a three-layer structure (input,
hidden, and output), RBFNNs are similar to other neural
networks in architecture. What distinguishes RBFNNs is the
way the hidden layer processes input data by transforming it
into a higher-dimensional space, facilitating linear separabil-
ity, which is advantageous for classification and regression
tasks. In the hidden layer, radial basis functions calculate
the ‘‘distance’’ between input data and certain reference
points, generally cluster centers. The network’s final output
is generated by weighting and summing the outputs from
these functions. For water waste forecasting, which involves
complex, non-linear relationships, RBFNNs are valuable due
to their ability to capture intricate patterns and associations
in data, such as historical water consumption, weather condi-
tions, and infrastructure status.

4) SIMPLE RECURRENT DEEP NEURAL NETWORKS
(SRDNNs) MODEL
Short-term Recurrent Dynamic Neural Networks (SRDNNs)
are particularly effective for predicting water waste due to
their dynamic architecture and ability to recognize time-
based patterns. SRDNNs consist of three layers: input,
hidden, and output. The network’s neurons are interconnected
within and across layers, imparting short-term memory to
the network by retaining past information. The input layer
collects data such as historical water usage, sensor readings,
and weather conditions. The hidden layer is central to the
network’s ability to identify temporal patterns, which is vital
for water waste prediction. The output layer then converts this
information into predictions, such as the estimated amount
of water waste over time. Utilizing SRDNNs enables util-
ity companies and authorities to effectively manage water
resources through informed planning and monitoring, con-
tributing to more sustainable practices.

E. PERFORMANCE ESTIMATION
This research used RMSE and the Mean Absolute Percentage
Error (MAPE) among the anticipated and actual weights to
evaluate the efficacy of the time series prediction approach.
The formula for RMSE has been discussed in Eq.23 and the
MAPE computational formula is depicted in Eq.25.

MAPE =
1
N

√√√√ N∑
i=1

|y(i) − yo(i))|
|y(i)

× 100% (25)

where N refers to the size of the training dataset. The efficacy
of the suggested BIGSA-ESN approach will be assessed
through the prognosis of two-time series problems: the fore-
cast of the Lorenz system and the Mackey-Glass time series,
as well as the forecast of the effluent NH4-N concentration in

a WWTP. Also, several other algorithms are compared with
our proposed model.

F. LORENZ TIME SERIES PREDICTION
The Lorenz system, which is an extensively employed bench-
mark task in time series forecasting, is described by a set
of equations known as the Lorenz equations, as shown
in Eq.26. 

dx
di

= a(−x + y)

dy
di

= bx − xz− y

dz
di

= xy− c

(26)

The model parameters for the Lorenz system, a clas-
sic benchmark task for time series prediction, are fixed to
a = 10, b = 28, and c = 8/3. The Kutta-Runge strat-
egy with a degree of 0.01 yields the Lorenz time series
to calculate values. The model is trained using y(k − 3),
y(k − 2), and y(k − 1) to forecast y(k) for all learning
parameters. The initial 2000 values are excluded to elimi-
nate the starting point’s impact. The samples of y-dimension
with i ∈ [2001, 4000] are elected as the learning dataset.
The subsequent 1000 instances, with i = 4001 to 5000, are
classified as the testing instances. The reservoir size (N ) used
in the Lorenz system forecast was set to 300. The rate of
connection was set at 5%. To demonstrate the significance of
BIGSA-ESN, the benchmark’s output and the corresponding
targets are plotted on the exact figure, showcasing the degree
of overlap over them for a sequential structure from the
Lorenz standard. Figure 3a–b illustrates these two signals
for testing data samples. The RMSE evolution was tracked
from the first pattern to the last one to assess the signifi-
cance of the presented BIGSA-ESN approach. The resulting
predicted RMSE signal for the testing samples was plotted
in Figure 3a–b.
It is clearly illustrated that the margin of most test-

ing errors for BIGSA-ESN is limited into the range
[-0.02, 0.06], which implies the proposed method has bet-
ter testing performance. Comparison based on RMSE with
other methods including GA-ESN [33], BPSO-ESN [35],
LAR-ESN [44], Extreme Learning Machine (ELM) [45],
simple recurrent deep artificial neural network based PSO
algorithm (SRDNN-PSO) [46], Classical RBF [47], ARIMA
model [48], and the standard ESN applied for the Lorenz
attractor. Based on the consequences presented in Table 1,
it can be figured that the suggested BIGSA-ESN algorithm is
highly competitive, achieving accurate predictions compared
to other existing models. Although BPSO-ESN and GA-ESN
outperformed ESN in the tests, they had a slower average
runtime compared to BIGSA-ESN.

G. MACKAY GLASS (MG) TIME-SERIES PROGNOSIS
The benchmark for this time series, as described by
Yang et al. [49], employs a time-delay differential structure
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FIGURE 3. a-b). Prediction outcomes during the testing process.

FIGURE 4. a) Projection outcomes during the testing method, b). Prognosis results during the testing method.

TABLE 1. Comparison of numerous approaches of 50 trails for (Lorenz time series).

similar to the one represented in Eq.27. This refers to a
specific time series analysis approach incorporating time lags
and differential equations to model complex dynamic sys-
tems. The reference to Eq.27 suggests that the article includes

a specific equation or formula related to this approach.

dx(t)
dt

=
∝ . x (t − τ)

1 + xc (t − τ)
− β. x(t) (27)
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FIGURE 5. a). The prediction results of BIGSA-ESN for the testing samples are shown. b) The prediction errors of BIGSA-ESN for the testing samples
are also presented.

The weights of the parameters α = 0.2, β = 0.1, and
c = 10 have been chosen for this system. Addition-
ally, the parameter τ , a crucial factor in the MG sys-
tem, has been extensively examined in prior work by
Nezamabadi et al. [35]. This describes the specific parameter
values used for the system in question and references a prior
work that delves into a related parameter. The parameter τ ,
which controls the time delay in the system, can be adjusted
and is typically set to values such as 17 or 30, as discussed in
an analysis by Cherif et al. [16]. For the current study, a value
of 17 was chosen to achieve optimal system performance.
The data sets were generated using the Runge-second order
Kutta method with a step size of 0.1. This analysis used one
thousand instances, with 500 instances reserved for model
training and 500 for testing. The reservoir size was adjusted to
200. We aim to demonstrate the significance of BIGSA-ESN
by visualizing the relationship between the network results
and their affiliated targets on a single graph. This graph will
enable us to measure the similarity between predicted and
actual values for a particular sequence structure from the MG
time series standard.

Figure 5a displays a graphical representation of the two
signals, namely the network results and the affiliated targets.
In addition, we analyzed the evolution of the RMSE across all
patterns in the test set. This analysis is shown in Figure 5b.
The results demonstrate that most of the testing errors for
BIGSA-ESN fall within the range of [-0.02, 0.02], indicat-
ing the superior testing execution of the suggested strategy.
The empirical determination is presented in Table 2, which
illustrates the effect of the training process on the errors
within the network and target output. The Table 2 demon-
strates that the optimization of weights considerably impacts
test errors. Additionally, we compared the interpretation of
the presented strategy with other existing methods to assess
its efficacy. These methods have used different techniques,

such as GA-ESN [33], BPSO-ESN [35], LAR-ESN [44],
ELM [45], SRDNN-PSO [46], Classical RBF [47], ARIMA
model [48], and the standard ESN. The outcomes presented
in Table 2 exhibit that the presented method surpasses the
cutting-edge methods in terms of testing RMSE and testing
MAPE. Moreover, GA-ESN has a longer runtime compared
to BIGSA-ESN and BPSO-ESN due to the GA algorithm’s
requirement for a larger population and a greater number of
iterations.

H. TESTED USING REAL-WORLD EFFLUENT NH4 − N
PREDICTION IN WWTP DATASET
Effluent NH4 − N , the most critical water differentia param-
eters in the WWTP, is usually used to evaluate treatment
efficiency. Excessive effluent NH4 − N will cause deteriora-
tion of the water environment, resulting in the eutrophication
of water bodies. Therefore, seeing flowing NH4 − N in the
WWTP helps take necessary measures in time to ensure
treatment efficiency. Measuring the effluent NH4 −N can be
challenging because of the biological properties of the acti-
vated sludge reaction approach. The existing instrumentation
is expensive, problematic to maintain, and tedious to operate.
It is challenging to meet the demand for online detection of
effluent NH4 − N in the WWTP.
This study used the presented BIGSA-ESN to signify

the effluent NH4 − N in WWTPs. The soft-sensing system
designed for this purpose is illustrated in Figure 6, where the
infusion variables are easily measurable, while the outcome
variable is the effluent NH4−N . In this experiment, the input
variables for predicting the effluent NH4 − N in WWTPs
are the water temperature (T), dissolved oxygen (DO) con-
centration, effluent pH, effluent oxidation-reduction potential
(ORP), and effluent nitrate nitrogen (NO3 − N ) concentra-
tion. Out of the 750 input-output data samples available,
600 instances are utilized for training, and 150 instances are
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FIGURE 6. Representation of the BIGSA-ESN based prediction model of effluent NH4 − N .

TABLE 2. Comparison of numerous approaches of 50 trails for (Mackey-Glass time-series).

kept aside for testing. The reservoir size has been adjusted
to 200, and the connection rate is specified at 5%. The testing
RMSE and testing accuracy are used tomeasure performance.
Themathematical formula for testing accuracy is described as
in Eq. 28.

Accuracy =
1
N

√√√√ N∑
i=1

1 −
|y(i) − yo(i))|

|y(i)
× 100% (28)

The modeling curves for testing data samples 0-150 of
BIGSA-ESN, BPSO-ESN, and GA-ESN are compared in
Figure 7a–b, while the corresponding modeling error for
testing data samples is compared in Figure 7c–d. It can
be found that all methods can fit the output well, but

BIGSA-ESN has a better fitting effect at some infection
points. As a remark, it is clearly illustrated that the margin
of most testing errors for BIGSA-ESN is limited to the range
[-0.2, 0.6] mg/L, the margin of most testing errors for
BPSO-ESN is limited to the range [-0.1] mg/L, and the
margin of most testing error for GA-ESN is limited to the
range [-1, 1.5] mg/L, which implies the proposed method
BIGSA-ESN has better prediction effect than other evolu-
tionary strategies. The relation between BIGSA-ESN with
other existing methods ESN along with the testing and train-
ing RMSE values is shown in Table 3. All BIGSA-ESN
training and testing RMSE weights are lower than GA-
ESN [33], BPSO-ESN [35], HPSO-ESN [50], Mathematical
Method [51] and the standard ESN, suggesting that the
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FIGURE 7. a-b). Prediction results and of GA-ESN for the testing samples, c-d) Prediction results and errors of BPSO-ESN for the
testing samples.

TABLE 3. Comparison of numerous approaches of 50 trials for (effluent NH4-N concentration prediction in WWTP.

proposed system has improved predictive efficiency. The
results obtained from the experiments confirm that BIGSA-
ESN can efficiently forecast the effluentNH4−N inWWTPs,
providing a precise, trustworthy, and online soft comput-
ing approach to detect critical variables. The efficacy of
the presented approach outperformed other current models,
demonstrating its capability of online prediction in real-time
applications.

V. CONCLUSION
The proposed strategy seeks to solve the problem of duplicate
connectivity between the reservoir and output layer in ESNs.
To do so, a combination of ESN andBIGSA is used, where the

data is first used to train the ESN reservoir, and then BIGSA
optimizes the output connection. The presented scheme pre-
dicts two-time series models and a key parameter in the
wastewater treatment strategy dataset. The interpretation of
BIGSA-ESN has corresponded to GA and BPSO, and the
results indicate that it reduces generalization error compared
to conventional ESNs. Future work could explore testing the
proposed method on other benchmarks to test its robustness
and apply it to Deep ESN, a network incorporating multiple
smaller ESNs.
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