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ABSTRACT For effective battery management, accurate prediction of battery state-of-health (SOH) and
timely detection of anomalies is required. Despite recent advances, real-world battery management has yet
to overcome such difficult issues as life-cycle SOH prediction and anomaly detection for early warning
and fault tracing under realistic operational conditions. In this study, we present an approach for online
real-time SOH prediction and anomaly detection for rechargeable batteries throughout their life cycles
with a focus on real-world applicability. First, we present a model-based prediction of battery states under
normal aging, which serves as a reference for detecting an anomaly. To that end, we propose a method for
updating model parameters and their uncertainties cyclically and temporally based on the predicted SOH.
In particular, we develop a method for SOH prediction under realistic conditions such as inter- and intracycle
variations in load current as well as nonstandard charging and discharging practices. Finally, by fusing the
model-predicted state with the measured terminal voltage and current, we achieve a statistically well-defined
decision on an anomaly. Experiments using CALCE and custom-collected datasets validate the effectiveness
of the proposed method in terms of accuracy and sensitivity for detecting abrupt and slowmodes of anomaly.

INDEX TERMS Anomaly detection, covariance projection filter, equivalent circuit model, rechargeable
battery, state of health.

I. INTRODUCTION
Rechargeable batteries play an important role in smart cities
and transportation as energy storage and distribution solu-
tions. This creates an ever-increasing demand for an effective
and efficient method of battery management, particularly,
to ensure safety. In addition, for battery management, online
real-time SOH prediction and anomaly detection represent
a key enabler for warning, tracing, and diagnosing faults,
as well as avoiding potentially hazardous situations such
as abnormal charge depletion, thermal runaway, and fire.
Other than manufacturing defects and sensor failures, battery
anomalies can occur due to over-charging, over-discharging,
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battery imbalance, overheating, external or internal short-
circuit, and electrolyte leaks [1]. For real-world applicability,
online real-time anomaly detection should be performed
during any of their charging and discharging cycles while
the batteries are in use. Furthermore, it is preferable for
anomaly detection to deal with both abrupt and slow
modes of anomalies so that the anomalies can be traced
and maintained with early warning. For an online real-
time setting, anomaly detection is preferred to being based
on such quantities as terminal voltages and currents that
are readily measurable under actual battery operations.
Measuring anomaly indicators such as internal resistance,
Coulomb count, diffusivity, and electrochemical impedance
spectrum (EIS) using an offline arrangement or a specialized
apparatus [2] is considered impractical.
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Battery anomaly detection has advanced toward a more
reliable and informative anomaly decision for effective
battery management. The many approaches developed to
date for anomaly detection can generally be grouped into
1) the identification of abnormal behavior of batteries as an
outlier from the cluster representing the distribution of normal
behaviors of batteries or a pack of family cells [3], [4], [5],
[6], [7], [8], [9], [10] and 2) the deviation of the observed
behavior of a battery from the reference behavior predicted
as normal [11], [12], [13], [20], [21], [22], [23], [24]. Various
data-driven and model-based approaches have been proposed
as the methodologies for implementing the two groups of
anomaly detection described above, as introduced in the
following.

Data-driven approaches to identifying an abnormal cell in
a battery pack have been developed based on thresholding the
distance between the representative state of the pack and the
observed state of the cell. To ensure robustness in anomaly
decisions, there have been explored more reliable distance
metrics [3], such as themedian absolute deviation (MAD) [4],
as well as more comprehensive threshold settings [5].
Bhaskar et al. [3] proposed the evaluation of mean-based
residuals of cells by the principal component analysis (PCA)
for the detection of an abnormal cell in a pack as an outlier.
They also found the importance of including temperature as
battery state, besides terminal voltage, in anomaly detection.
Liu et al. [6] proposed a convolutional neural network (CNN)
classification of faulty cells in a battery pack as those cells
having their discharge voltage curves different from the
majority of cells in the pack. Yao et al. [7] proposed a general
regression neural network with the voltage difference and
covariance between cells as input features to diagnose a fault.
Haider et al. [8] proposed the K shape-based hierarchical
clustering of time series data with the cross-correlation
distance metrics to identify a faulty battery from a pack
when the battery changes its initial membership and ranks
among the charge-cycle mean voltage clusters. Due to the
difficulty of collecting anomaly data from various fault
sources as well as over a battery life cycle, most data-driven
approaches resort to the data representing the distribution
of normal behaviors while anomalies are detected based on
the statistical inconsistency existing in the behavior of a
battery under examination. To this end, autoencoder (AE) and
variational autoencoder (VAE) frameworks are commonly
adopted to encode the distribution of normal behaviors in
their latent space by learning. Sun et al. [9] proposed a VAE
framework with a gated recurrent unit (GRU) to learn the
multivariate time series data of a battery pack and detected
potential anomalies of a cell based on a large reconstruction
error for the input data from the cell. Data-driven approaches
can also be applied to identifying the deviation of the
observed behavior of a battery from the reference behavior
predicted as normal. Shin et al. [10] proposed to learn the
correlation existing between terminal voltage and current
by using a sequence-to-sequence deep learning model with
the training data representing battery normal behaviors.

Anomalies are detected by comparing the measured voltage
with the reference voltage predicted by the learned model
with the measured current as input.

On the other hand, model-based approaches detect anoma-
lies in the process of filtering the predicted battery normal
states from the model with the measured terminal states.
Gadsden and Habibi [11] used a smooth variable structure
filter to detect resistor and capacitor faults by calculating how
close the filtered model is to the true model in an interacting
multiple-model framework. Liu and He [12] proposed a
method for detecting sensor faults based on the residual
between estimated and measured output voltages, where the
output voltage is estimated using a state observer applied
to the second-order RC network model. Tunga et al. [13]
proposed a windowed Chi-square detector for sensor fault
detection based on a moving sum of residuals over a
sliding window, making the approach more adaptive than
a static detector with a one-shot observation. For model-
based approaches, the quality of the model used to predict the
battery states under normal aging is key for robust anomaly
detection. There are three basic approaches to modeling
batteries. They are the physics-based model [14], [15], the
equivalent circuit (EC) model [16], [17], and the empirical
state-space model [18]. Refer to [19] for the details of
battery models available to date and the comparative analysis
of their strengths and weaknesses. For anomaly detection,
a model should be precise enough for representing the
actual operational dynamics of a battery, yet uncomplicated
and general enough for real-time battery management with
cell sampling. In particular, a model should accurately
represent the life-cycle aging behavior of batteries, which
is considered normal, under a wide variation of operational
conditions. There have been proposed approaches to the real-
time fitting of model parameters to actual measurements
for the online real-time update of a model so as to follow
battery aging while handling discrepancies among individual
batteries [20], [21], [22], [23], [24]. However, the real-
time fitting of a model to measurements may result in an
undesirable side-effect for anomaly detection by allowing the
model to adapt to abnormal behaviors.

Data-driven approaches rely on their performance largely
on the quality of collected training data, as statistically
biased andmisrepresented data results in erroneous decisions.
Whereas model-based approaches rely their performance
on the quality of the model used to predict the battery
states under normal aging. However, collecting a sufficient
size of statistically well-represented training data as well
as modeling the true aging behavior of batteries under
complex nonlinear electrochemical battery dynamics [25]
have remained a real challenge. The challenge becomes espe-
cially keen, should we take into account wide variations in
operational conditions, including variations in dynamic load
conditions, charging and discharging practices, operational
temperatures, etc., over long battery life cycles.

In this study, we propose an approach to online real-time
anomaly detection for rechargeable batteries in consideration
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of such realistic operational conditions as variations in
dynamic load conditions, non-standard charging and dis-
charging practices, as well as variations in operational
temperatures. Furthermore, the proposed approach also
allows anomaly detection to be executed any at time during
the battery life cycles. The proposed approach is based on
the cyclic iteration of the following processes, 1) the data-
driven deep prediction of battery SOH under normal aging,
2) the temporal update of model parameters based on the
predicted SOH, 3) the model-based real-time prediction of
battery normal states, and 4) the decision on an anomaly in the
process of fusing the predicted state and measured terminal
voltage. The novel contributions of this study are summarized
as follows: 1) A hybrid approach to any-cycle and any-time
prediction of normal battery states under aging is established
for use in anomaly decisions. To this end, a method for
cyclically and temporally updating model parameters and
their uncertainties based on the predicted SOH as well as
operational temperature is presented. 2) Furthermore, the
proposed SOH prediction fully accounts for such realistic
operational conditions as dynamic load current variations
and nonstandard practices in charging and discharging.
To this end, the minimum charging and discharging voltage
ranges required for sufficient accuracy in SOH prediction
under nonstandard practices are established for the first
time. 3) To alleviate a possible combinatorial explosion in
standard and non-standard mixtures in LSTM-based SOH
prediction, a novel method for transforming the LSTM input
indices from nonstandard practices equivalently to those
corresponding to standard practices is proposed. 4) The
covariance projection filter (CPF) [26], [27] is introduced not
only to obtain statistically well-defined anomaly decisions
but also to provide a probabilistic distance metric to indicate
the deviation from normalcy, especially, for monitoring a
slow mode of anomalies.

This paper is organized as follows: Section II introduces
the battery EC model used for representing a battery aging
behavior and the CPF used for probabilistic decisions on
the anomaly. Section III discusses the overall flow of the
proposed anomaly detection process. Section IV introduces
a stacked LSTM and its four input indices used for SOH
prediction under realistic conditions. Section V presents
the SOH-based estimation of time-varying battery model
parameters. Section VI describes the CPF-based fusion of
the model-predicted state and the measured terminal voltage
for anomaly decisions. Finally, Section VII presents the
experimental validation of the proposed method based on the
CALCE [28] and custom-collected datasets.

II. BACKGROUND
A. MODELING BATTERY STATE EQUATION UNDER
NORMAL AGING
Fig. 1 depicts the first-order RC network EC model of a
lithium-ion battery with cyclically and temporally varying
model parameters to represent a battery’s normal aging

FIGURE 1. The first-order RC network model of a lithium-ion battery,
where p and t denote, respectively, the pth cycle and the time lapse from
the start of discharging.

behavior. From Fig. 1, the battery state equation at the pth

cycle can be expressed as follows:[
dSOCp (t) /dt
dV p

cs (t) /dt

]
=

[
Ip (t) /kp (t)Cp

cb
−V p

cs (t) /Rpt C
p
cs + Ip (t) /Cp

cs

]
+

[
wp1 (t)
wp2 (t)

]
(1)

vp (t) = kp (t) SOCp (t) + V p
cs (t) + Ip (t)Rpi

+ dp (t) +
[
wp3 (t)

]
(2)

where vp (t), Ip (t) are the respective terminal voltage and
current at the time t , Rpi the internal resistance at the p

th cycle,
and wpi (t) , i = 1, .., 3, the uncertainties involved.
SOCp(t) indicates the battery state of charge (SOC) at

the pth cycle, defined as the percentage of releasable charge
capacity relative to the battery-rated charge capacity. The
battery open circuit voltage (OCV) at the pth cycle,OCV p (t),
can be obtained from Eq. (2) with Ip (t) = 0, OCV p (t) =

kp (t) SOCp (t) + dp (t). In Section V, we show that kp (t)
and dp (t) can be estimated from the pth cycle SOC-OCV
curve derived from SOHp, while Rpi is cyclically updated by
the functional relationship of Rpi with SOH

p. The remaining
model parameters, the polarization resistance, Rpt , the surface
capacitance, Cp

cs, and the bulk capacitance, C
p
cb, are subjected

to cyclic degradation the rate of which is affected by battery
operational temperature. Table 1 shows the variation of
degradation rates and their uncertainty bounds for Rt , Ccs,
and Ccb along cycles. They are created by computing the
average degradation rates and their maximum deviation over
the typical temperature range between 25◦C and 55◦C, which
is based on the experimental data on degradation rates with
respect to cycles and operational temperatures [28].

TABLE 1. Average degradation rate and their uncertainty bound due to
operational temperature variation.
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For accurate detection of anomalies based on (1) and (2),
it is necessary that the uncertainties associated with the state
and measurement, wi (t) , i = 1, .., 3, should be well-defined
at time t . When defining uncertainties, we consider variations
within the typical range of operational temperature, as well as
errors in state prediction and measurement. Specifically, first,
the uncertainty bounds of kp (t), dp (t) andRpi ,1k

p(t),1dp(t)
and 1Rpi , respectively, are achieved from the uncertainty
bound of the predicted SOHp, 1SOHp, as described in
detail in Section V. 1kp(t) and 1dp(t) are derived from the
variation in the estimated pth cycle SOC-OCV curve due to
1SOHp, while 1Rpi is derived from 1SOHp based on the
functional relationship of Rpi with SOH

p.1SOHp is obtained
by combining the uncertainty involved in the prediction of
SOHp with the variation of predicted SOHp due to different
operational temperature (refer to Tables 1, IIIV and IX). The
uncertainty bounds of the remaining parameters, 1Rpt , 1C

p
cs

and1Cp
cb, are from themaximum deviations listed in Table 1.

Finally, wp1 (t) and wp2 (t) are obtained in terms of 1kp(t),
1dp(t), 1Rpi , 1R

p
t , 1C

p
cs, 1C

p
cb and 1Ip (t) by applying the

first-order Tayler-series expansion to (1), as follows:

wp1 (t) = 1/
(
kp (t) cpcb

)
[1Ip (t)

−
(
Ip (t) kp (t)

)
1kp (t)

(
Ip (t) /Cp

cb

)
1Cp

cb] (3)

wp2 (t) = 1/
(
Rpt c

p
cb

) [(
V p
cs/R

p
t
)
1Rpt +

(
V p
cs (t) /Cp

cs
)
1Cp

cs
]

+1/Cp
cs

[
1Ip (t) −

(
Ip (t) /Cp

cs
)
1Cp

cs
]
.

wp3 (t) = 1vp (t) : terminal voltage measurement noise (4)

For an alternative account of temperature in a model, refer
to [24] for a battery model with temperature set as a state
variable.

B. CPF FOR PROBABILISTIC ANOMALY DETECTION
The CPF was suggested as a unified framework for data
fusion in the presence of spurious data [26], [27]. In CPF,
the two variables, x1 ∈Rn and x2 ∈Rm, under fusion are con-
catenated into a joint variable, x, xT = [x1,x2]T , x∈Rn+m,
in the fusion space. The constraint manifold, M (x), is then
defined in the fusion space as the constraint that should
be satisfied by x1 and x2. For instance, we can define
x1 = [SOCp (t), V p

cs (t)]T and x2 = vp (t) with M (x)
defined by (2). Data fusion in the CPF starts by defining the
probability distribution of x in the fusion space as the joint
probability distribution of x1 and x2. Then, CPF identifies
the probability distribution of x on the constraint manifold,
M (x), and finds the maximum probability point, x∗, on the
constraint manifold as the fused data.

FIGURE 2. Schematic illustration of CPF-based data fusion.

The probability distribution of x around x∗ on the
constraint manifold represents the uncertainty associated
with the fused data, x∗. Refer to Fig. 2 for the illustration
of CPF-based data fusion. Note that, if the probability
distribution of x is Gaussian and the constraint manifold is
linear, the maximum probability point, x∗, and the probability
distribution of x on the constraint manifold can be obtained by
a well-defined mathematical formula. Consider two Gaussian
random variables to be fused, x1 ∈Rn and x2 ∈ Rm, with
their means and covariances represented as x̂1∈Rn, P1∈Rn×n

and x̂2∈Rm, P2∈Rm×m, respectively. Then, the probability
distribution of x, x = [x1,x2]T , x∈Rn+m, is represented in
the fusion space as its mean, x̂, and covariance, P, as follows:

x̂ =

[
x̂1
x̂2

]
,P =

[
P1 P12
PT12 P2

]
(5)

where P12 ∈ Rn×m represents the cross-covariance between
x1 and x2. Now, assume that x1 and x2 are subject to a linear
constraint denoted by the constraint manifold, C1x1 = C2x2.
The constraint manifold, C1x1 = C2x2, can equivalently be
represented as amatrix,M , the columns of which are the basis
vectors spanning the constraint manifold. To derive x∗, first,
we apply the whitening transformation,W , to x by xw = Wx,
such that P in the x space becomes Iw, indicating a unit hyper-
sphere, in the xw space. W is defined as W = D−1/2ET ,
with D and E representing the eigenvalue and eigenvector
matrices of P, respectively. Then, x̂, P, and M in the x space
are transformed into the respective x̂w, Pw, and Mw in the xw

space by x̂w = Wx̂, Pw = WPW T
= Iw and Mw

= WM .
In the xw space, the maximum probability point, x̂w∗, and
the covariance, Pw∗, around x̂w∗, on Mw can be obtained
simply by projecting x̂w and Iw onto Mw, as illustrated in
Fig. 2. Finally, x̂∗ and P∗ on M in the original fusion space
is obtained, as the fused result of x1 and x2, by applying
an inverse whitening transformation, W−1, to x̂w∗ and Pw∗,
as follows:

x̂∗
= W−1Pr

(
Mw)

Wx̂ (6)

P∗
= W−1Pr

(
Mw)

Pr
(
Mw)T W−T . (7)

where Pr (Mw) is the projection operator projecting onto the
linear constraint manifold,Mw, and is given by:

Pr
(
Mw)

= Mw
(
MwTMw

)−1
MwT . (8)

By applying (8) and the following relationships,

P = EDET and P−1
= ED−1ET (9)

W TW = ED−1ET = P−1. (10)

to (6) and (6), the final fused estimate, x̂∗ and P∗, can be
derived by

x̂∗
= M

(
MTP−1M

)−1
MTP−1x̂. (11)

P∗
= M

(
MTP−1M

)−1
MT (12)
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In anomaly detection, the weighted distance, q, from
the fused estimate x̂∗ to the original vector x̂, q =(
x̂ − x̂∗

)T P−1
(
x̂ − x̂∗

)
, serves as a probabilistic anomaly

indicator. Specifically, q follows a chi-squared distribution
with (n+ m) degrees of freedom (DOF), q∼χ2 (n+ m),
where (n+ m) indicates the dimension of the fusion space.
With q∼χ2 (n+ m), we can assign a threshold, qα , such
that, if q is less than qα , we decide, with the statistical
confidence of 100 (1 − α)%, α∈ (0, 1), that x̂ is an inlier of
x̂∗. Formally, the following hypothesis test is performed for
anomaly detection:

Hypothesis H0: x̂ represents no anomaly.
Decision Rule: accept H0 if q < qα ∼ χ2 (n+ m) and

reject. H0 if q≥qα ∼ χ2 (n+ m)

To obtain qα for the given significance level, α, with the
given DOF, refer to the Chi-square distribution table [29].

III. OVERALL FLOW OF THE PROPOSED ANOMALY
DETECTION SYSTEM
The overall flow of the proposed anomaly detection system is
presented here together with the flow diagram shown in Fig. 3
for clarity.

FIGURE 3. An overall flow of the proposed anomaly detection system.
Note: the superscript ‘‘−’’ represents a ‘‘predicted’’ value ‘‘before’’
filtering by CPF.

Overall, the proposed system is comprised of the following
five steps of processes: 1) At the start of the pth cycle,
SOHp and its uncertainty, 1SOHp, are first predicted. Then,

the pth cycle model parameters, Rpi , R
p
t , C

p
cs, C

p
cb, and their

uncertainties,1Rpi ,1R
p
t ,1C

p
cs,1C

p
cb, as well as the p

th cycle
SOC-OCV curve and its uncertainty are derived based on
SOHp and SOHp. 2) At time t , first, the filtered state and
its covariance at time (t−1),

[
SOCp (t − 1) ,V p

cs (t − 1)
]T

and 6
p
s (t − 1), are propagated to the predicted state and its

covariance,
[
SOCp (t)− ,V p

cs (t)−
]T and 6

p
s (t)−, at time t

based on the state equation at time (t−1). The state equation
at time (t−1) is obtained from (1), (2), and (3) by deriving
kp (t − 1), dp (t − 1), 1kp(t − 1), and 1dp( t − 1) from the
pth cycle SOC-OCV curve and its uncertainty. 3) Then, the
predicted state,

[
SOCp (t)− ,V p

cs (t)−
]T , and the measured

terminal voltage, vp (t), at time t undergo the CPF-based
data fusion in their joint space, x, to generate the filtered
state and its covariance,

[
SOCp (t) ,V p

cs (t)
]T and 6

p
s (t),

at time t . 4) In the process of fusing
[
SOCp (t)− ,V p

cs (t)−
]T

and vp (t), the probabilistic anomaly indicator, qp (t), rep-
resenting the distance from the joint vector x̂ (t), x̂ (t) =[
SOCp (t)− ,V p

cs (t)− ,vp (t)
]T , to the fused vector, x̂∗ (t),

is computed based on qp (t) =
(
x̂ − x̂∗

)T P−1
(
x̂ − x̂∗

)
,

where P is obtained by 6
p
s (t)− and wp3 (t). Then, applying

the statistical hypothesis test described in Section II-B to
qp (t), whether or not an anomaly is present at time t is
decided. 5) Finally, the process iterates from time t to time
t + 1 based on the following conditional flow: If no anomaly
is detected at time t , the process advances to time t + 1 by
moving to step 2). On the other hand, if an anomaly is
detected at time t , the predicted state and its covariance,[
SOCp (t)− ,V p

cs (t)−
]T and 6

p
s (t)−, replace the filtered

state and its covariance,
[
SOCp (t) ,V p

cs (t)
]T and 6

p
s (t),

at time t to advance to time t + 1. This conditional flow
is intended to keep the battery model to represent only the
normal aging behavior of a battery by deleting influences
from abnormal behaviors, which helps to enhance sensitivity
in detecting a slow mode of anomalies. Note that, in Fig. 3,
vpm (t), vpm (t) = vp (t) − Ip (t)Rpi − dp (t), is introduced
as a means of having the constraint manifold linear: vpm (t)
= [kp (t) , 1]

[
SOCp (t)− ,V p

cs (t)−
]T (Refer to Section VI for

more details).

IV. ONLINE REAL-TIME SOH PREDICTION UNDER LOAD
CURRENT VARIATIONS AND NON-STANDARD PRACTICES
SOH prediction of rechargeable batteries can be conducted
based on either charging or discharging cycles. Here,
we present a deep-learning approach to SOH prediction
based on a cyclic history of terminal voltage and current
profiles for charging and discharging [30]. In particular, the
proposed SOH prediction accounts for nonstandard charging
and discharging practices in real-world operations, as well as
the intracycle variation of load current [31]. By nonstandard
charging and discharging practices, we mean less than full
charging and discharging between the lower and upper cutoff
voltages set as a standard. As described, the predicted SOH
will be used for cyclic as well as temporal updates of model
parameters to trace the normal aging behavior of batteries.
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A. INPUT FEATURE INDICES FOR SOH PREDICTION
For SOH prediction, we define four SOH indices extracted
from terminal voltage and current profiles as the input
features to the proposed deep-learning network. The four
indices were selected to work well with varying load currents
and nonstandard practices. The four indices defined are
1) the total charge charged or discharged during a cycle, 2) the
entropy of a voltage profile during charging or discharging,
3) the average of load current during a cycle, and 4) the
standard deviation of load current during a cycle. Notably,
the third and fourth indices are specifically chosen to address
variations in load current.

FIGURE 4. The variation of the total charge, Q, with respect to SOH
degradation for charging (a) and discharging (b) under standard (upper)
and nonstandard (lower) practices.

1) TOTAL CHARGE INDEX
The total-charge index, Q, is obtained by integrating the
terminal current during a charging or discharging cycle,
regardless of whether the standard or nonstandard practice
is involved. Fig. 4 shows the variation of Q along SOH
degradation for charging (a) and discharging (b) with constant
load currents and under standard (upper) and nonstandard
(lower) practices. Fig. 4 is produced based on the custom-
collected data using a 3.25Ah lithium-ion battery INR18650.
Fig. 4 depicts that Q is strongly correlated with SOH for
both charging and discharging unless nonstandard practices
take such extreme voltage ranges as 3.3V-3.6V (red) and
3.5V-3.8V (green) for charging while 3.3V-3.6V (red) for
discharging. Note that, in Section VII-B, we provide the
minimum voltage ranges that must be covered by charging
and discharging to ensure adequate accuracy in SOH
prediction under nonstandard practices.

2) VOLTAGE-TIME ENTROPY INDEX
The voltage-time entropy index, VE, is defined as the entropy
of the voltage derivative of time, dt/dv, associated with
a voltage profile. In practice, VE is obtained by equally
dividing the range of charging or discharging voltage into
a fixed number of voltage segments, vi, i = 1, . . . ,M , and
assign probabilities to individual segments, p(vi), i = 1,
. . . , M, in proportion to their corresponding time intervals.

FIGURE 5. The variation of dt/dv probability distribution, p (vi ),
i = 1, . . . , M, along cyclic aging for charging (a) and discharging (b).

Fig. 5 exemplifies typical variations of p(vi), i = 1, . . . ,
M, distribution along cyclic aging for charging (a) and
discharging (b) with M = 17. Based on p(vi), i = 1, . . . , M,
the voltage-time entropy, VE, is obtained by

VE = −

∑M

i=1
p (vi) log10 p (vi). (13)

Fig. 6 demonstrates the correlation existing between VE and
SOH for charging (a) and discharging (b) with constant load
currents and under standard (upper) and nonstandard (lower)
practices of various voltage ranges.

FIGURE 6. The variation of voltage-time entropy, VE, with respect to SOH
degradation for charging (a) and discharging (b) under standard (upper)
and non-standard (lower) practices.

In Fig. 6, a clear relationship between VE and SOH is
indicated for charging and discharging unless nonstandard
practices take such extreme voltage ranges as 3.3V-3.6V (red)
and 3.5V-3.8V (green) for charging while 3.3V-3.6V (red) for
discharging.

3) LOAD CURRENT AVERAGE AND STANDARD DEVIATION
INDICES
To account for the impact of inter-cycle and intracycle
variations of load current on SOH degradation, we add to
Q and VE the third and fourth SOH indices: the cyclic
average, Im, and standard deviation, SD, of load current.
Fig. 7 depicts how different values of Im and SD indices affect
Q (left) and VE (right) vs. SOH in the case of discharging.
Fig. 7 is custom-generated based on five 3.25Ah lithium-
ion INR18650 batteries. Fig. 7 indicates that both Im and SD
affect the Q and VE relationships with SOH. For instance,
although the blue and purple have the same Im of 1.6A, their
Q and VE relationships with SOH are not the same with their
different SDs of 0 and 0.92, respectively.
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FIGURE 7. The variation in Q vs. SOH (a) and VE vs. SOH (b) under load
current variations denoted by average (µ = Im) and standard deviation
(σ = SD).

B. STACKED LSTM FOR SOH PREDICTION WITH FOUR
INDICES
The prediction of SOH at the pth cycle, SOHp, is based on a
sequence of k input vectors,

[
up−k , up−k+1, . . . ,up−1

]
, where

up−j, j=1, . . . , k, is a vector composed of the four SOH indices

at the (p− j)th cycle: up−j =

[
Qp−j,VEp−j, Ip−jm , SDp−j

]T
.

Note that, in the case where the load current is constant,
e.g., charging under constant current, then, SDp−j is set to
null. As shown in Fig. 8, we adopted a stacked LSTM [32]
for SOH prediction that consists of two LSTM layers and a
fully-connected layer. A stacked configuration is chosen for
enhancing performance beyond a single-layer configuration.
Each layer of the LSTM stack is made up of k LSTM units
connected to their neighboring units to represent a sequence
of k input vectors.

FIGURE 8. A two-layer stacked LSTM with a fully-connected output layer
designed for SOH prediction at the pth cycle.

The (p− j)th LSTM unit, j = 1, . . . , k , in the first
and second layers is governed by typical LSTM formula in
terms of the respective cell states, Cp−j and C ′

p−j, as well as
hidden states, hp−j and h′

p−j with their associated input, output
and forget gates [29]. The fully-connected layer receives all
the outputs from the second layer of the LSTM stack and
uses them as its input to output SOHp. On the other hand,
1SOHp is obtained by combining the uncertainties involved
in the LSTM-based SOHp prediction (refer to Section VII-B)
with the possible deviations from the predicted SOHp due
to operational temperatures (refer to Table 1). The proposed
LSTM stack is implemented with the length of the input
sequence, k , set to 20, while the values of four input indices,
Q, VE, Im, and SD, are normalized so that their values lie

between 0 and 1. To avoid overfitting in training, a dropout
is applied between the LSTM stack and the fully connected
layer with a dropout rate of 0.3. Also, the Adam optimizer
is used for adjusting the learning rate along the progress of
training for optimal convergence while avoiding falling into
local minima.

C. EQUIVALENT TRANSFORMATION OF SOH INDICES
FROM NONSTANDARD TO STANDARD
Since the proposed SOH prediction takes account of non-
standard practices, the input sequence to a stacked LSTM
should include Qs and VEs from a mixture of standard and
nonstandard practices. However, the mixture of standard and
nonstandard practices in the input to the proposed LSTM
stack raises the following problem. 1) Since different Qs and
VEs from nonstandard voltage ranges can correspond to the
same SOH, as indicated by Figs. 4 and 6, (Q, VE) needs
to be augmented into (V1, V2, Q, VE) by concatenating its
associated voltage range, V1 and V2, to make it unique as
an input. 2) Due to the random nature of the cycles and
voltage ranges by which nonstandard practices occur, the
amount of data required to represent the input sequence may
be subject to a combinatorial explosion, making network
training difficult to implement. To solve the above issue,
we propose the following: 1) Establishment of the minimum
voltage ranges in charging and discharging that are required
for the derived Q and VE to be effective as SOH indicators
(refer to Section VII-B). 2) Transformation of (V1, V2, Q,
VE)n from the non-standard practice to the equivalent (Q,
VE)s from the standard practice in such a way that that
the same SOH corresponds to (V1, V2, Q, VE)n and (Q,
VE)s. For (V1, V2) covering the minimum voltage range,
the transformed (Q, VE)s is then used in the input sequence
for SOH prediction, instead of (V1, V2, Q, VE)n. Otherwise,
the cycle with (V1, V2) failed in the minimum coverage
is skipped in the input sequence. Here, a deep regression
network with a fully-connected configuration performs the
equivalence transformation, as shown in Fig. 9. Refer to
Section VII-B and C for experimental verification of the
effectiveness of the proposed regression network for SOH
prediction.

FIGURE 9. The proposed regression network with a fully-connected
configuration to learn the transformation from (V1, V2, Q, VE)n to (Q, VE)s.

The proposed regression network is trained by using the
root-mean-square-error (RMSE) as the loss function while
Adam Optimizer is adopted for adjusting the learning rate
along the progress of training for optimal convergence.
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V. SOH-BASED ESTIMATION OF AGING MODEL
PARAMETERS: kp(t ),d p(t ) AND Rp

i
A. ESTIMATION OF Rp

i FROMSOHp

The internal resistance, Rpi , is known to have a linear
relationship with SOHp, as expressed in the following [33]:

Rpi = c1·SOHp
+ c2. (14)

To obtain c1 and c2, we experimentally obtained the voltage
drops at a number of discharge cycles for the battery
INR18650 and applied linear least-square regression to obtain
-0.0357 and 0.17 for c1 and c2, respectively. The uncertainty
bound of Rpi , 1R

p
i , was then obtained by:

1Rpi = c1 · 1SOHp
+ c2. (15)

B. ESTIMATION OF kp (
t
)

AND dp (
t
)

BASED ON
SOCp (

t
)
−OCV p (

t
)

CURVE DERIVED FROM SOHp

The estimation of kp (t) and dp (t) starts with deriving
SOCp (t) − OCV p (t) curve at the pth cycle based on the
predicted SOHp. Since, from (2), the SOCp (t) − OCV p (t)
curve is represented by OCV p (t) = kp (t) SOCp (t) +

dp (t), kp (t) and dp (t) can be estimated from the
SOCp (t) − OCV p (t) curve as the tangential slope and
OCV p (t) − kp (t) SOCp (t), respectively, at the time t .
The SOCp (t) − OCV p (t) curve can be obtained from a
reference SOCr (t) − OCV r (t) curve collected at the initial
cycle with the maximum charge capacity, Qr . OCV r (t) is
achieved by averaging the discharging and charging terminal
voltage profiles obtained based on the same constant current
for both, as illustrated in Fig. 10. The maximum battery
charge capacity, Qr , is then obtained by integrating the
discharging current for the duration of the cut-off time
Tr , i.e., the duration between the upper and lower cutoff
voltages.

FIGURE 10. The reference OCV curve was obtained by averaging the
discharging and charging terminal voltages produced from the same
constant current (0.7 A) discharging and charging at the initial cycle
(obtained from a real battery, INR18650).

Based on OCV r (t) and Qr , OCV p (t) is obtained by the
following steps [32]: 1) Compute the cut-off time Tp at the
pth cycle by Tr×Qp/Qr , where Qp represents the maximum
charge capacity at the pth cycle and is obtained from the
predicted SOHp. 2) Generate OCV p (t) from OCV r (t) in
such a way that OCV p (tk) = OCV r (tr ) for tr∈Tr and tk =

tr×Qk/Qr . Fig. 11 (a) shows OCV p (t) (orange) generated
fromOCV r (t) (blue) based on the above steps when SOHp is
0.9. On the other hand, SOCp (t) is a decreasing function from

Qp/Qr the rate of which is determined by the discharging
current. Fig.11 (b) illustrates SOCp (t) for the case of a
constant discharging current.

FIGURE 11. (a) OCV p (
t
)

(orange) generated from OCV r (
t
)

(blue) based
on SOHp of 0.9. (b) SOCp (

t
)

(orange) under a constant discharging
current.

Now, the SOCp (t) − OCV p (t) curve at the pth cycle
is produced by relating the OCV p (t) with SOCp (t) thus
obtained, as shown in Fig. 12 (b). Finally, kp (t) and dp (t)
are derived from the SOCp (t)−OCV p (t) curve based on the
tangential slope andOCV p (t)−kp (t) SOCp (t), respectively,
at the time t , as illustrated in Fig. 13.

FIGURE 12. (a) SOC r (
t
)

− OCV r (
t
)

and (b) SOCp (
t
)

− OCV p (
t
)

curves
generated from the initial SOH and SOHp, respectively.

FIGURE 13. kp (
t
)

(green) and dp (
t
)

(red) derived from the
SOCp (

t
)

− OCV p (
t
)

curve in Fig. 12(b) as well as kr (
t
)

(blue) and d r (
t
)

(orange) derived from the SOC r (
t
)

− OCV r (
t
)

curve in Fig.12(a).

1kp(t) and 1dp(t) are obtained by deriving (kp (t)+,
dp (t)+) and (kp (t)−, dp (t)−) that correspond, respectively,
to SOHp

+ 1SOHp and SOHp - 1SOHp such that 1kp(t)
= |kp (t)+ − kp (t)−| and 1dp(t) = |dp (t)+ - dp (t)−|.

VI. DISCRETE-TIME IMPLEMENTATION OF CPF-BASED
ANOMALY DETECTION
In the implementation, the continuous-time state and mea-
surement equations, (1) and (2), are converted into the
discrete-time equations with the sampling interval of T,
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as follows:

xp1 (k)− =

[
1 0
0 1 −

T
CpcsR

p
t

]
xp1 (k − 1)

+

[ T
kp(k−1)Cpcb

T
Cpcs

]
Ip (k − 1) +

[
Twp1 (k − 1)
Twp2 (k − 1)

]
(16)

vp (k) =
[
kp (k) 1

]
xp1 (k)− + Ip (k)Rpi + dp (k) + wp3 (k)

(17)

Note that the superscript ‘‘−’’ in xp1 (k)−, xp1 (k)− =[
SOCp (k)− ,V p

cs (k)−
]T , represents the ‘‘predicted’’ state

at time k before turning into the ‘‘filtered’’ state
xp1 (k) , xp1 (k) =

[
SOCp (k) ,V p

cs (k)
]T . The filtered state,

xp1 (k), and its covariance matrix, 6
p
1 (k), are derived in the

process of fusing xp1 (k)− and its covariance matrix, 6p
1 (k)−,

with the measured terminal voltage, vp (k). As described
in Section III, we define a new variable, xp2 (k), xp2 (k) =

vp (k) Ip (k)Rpi d
p (k), based on (17) such that the CPF fusion

takes place between xp1 (k)− and xp2 (k), instead of vp (k), with
the linear constraint manifold expressed by

xp2 (k) =
[
kp (k) 1

]
xp1 (k)− (18)

xp1 (k)− and6
p
1 (k)− are predicted by propagating the respec-

tive xp1 (k − 1) and 6
p
1 (k − 1) based on (16). Specifically,

6
p
1 (k)− can be computed by the following equation with E

denoting the expected value:

6
p
1 (k)− =

[
1 0
0 1 −

T
CpcsR

p
t

]
6
p
1 (k − 1)

[
1 0
0 1 −

T
CpcsR

p
t

]T
+ E

[
Twp1 (k − 1) ,Twp2 (k − 1)

]T
×

[
Twp1 (k − 1) ,Twp2 (k − 1)

]
, (19)

For the second part of (19), the cross-covariance between
wp1 (k − 1) and wp2 (k − 1) is obtained by simulating their
joint distribution based on (3) and (4). On the other hand,
the covariance matrix, 6

p
2 (k), representing the uncertainty

of xp2 (k) is obtained based on E
[
1xp2 (k)2

]
, where 1xp2 (k)

consists of the noise involved in the measured terminal
voltage and current at the time k , wp3 (k) and 1Ip (k),
respectively, and the uncertainty bounds involved in model
parameters, 1Rpi , 1d

p (k) and 1kp (k), as follows:

1xp2 (k) = wp3 (k) −1Ip (k)Rpi − Ip (k) 1Rpi
− 1dp (k) −1kp (k) xp1 (k)− (20)

Note that in the last term, 1kp (k) xp1 (k)−, in 1xp2 (k)
is intended to make the constraint manifold noise-free.
E

[
1xp2 (k)2

]
is then obtained by simulating the distribution

of 1xp2 (k) based on the uncertainty bounds involved in (20).
With the above derivations, CPF fusion of xp1 (k)− and xp2 (k)
can now be performed for anomaly hypothesis testing at the
time k . First, xp1 (k)− and xp2 (k) are jointly represented as
a joint vector, x̂p (k)−, and its covariance matrix, 6̂p (k)−,
in the fusion space, while the linear constraint manifold, (18),

is denoted as the independent basis vectors,Mp (k), spanning
the manifold:

x̂p (k)− =

[
x̂p1 (k)−

x̂p2 (k)

]
and 6̂p (k)− =

[
6

p
1 (k)− 0
0 6

p
2 (k)

]
(21)

Mp (k) =

 1 0
0

kp (k)
1
1

 . (22)

Then, based on (11) and (12), the filtered joint vector, x̂p (k),
and its covariance matrix, 6̂p (k), at time k are obtained by:

x̂p (k) = Mp (k)
[
Mp (k)T

(
6̂p (k)−

)−1
Mp (k)

]−1

Mp (k)T
(
6̂p (k)−

)−1
x̂p (k)− (23)

6̂p (k)=Mp (k)
[
Mp (k)T

(
6̂p (k)−

)−1
Mp (k)

]−1

Mp (k)T .

(24)

From x̂p (k) and 6̂p (k) derived by (23) and (24), we can
extract the filtered state, xp1 (k), and covariance matrix,
6
p
1 (k), for use in the next iteration of prediction, filtering,

and anomaly detection at the time k + 1.
As discussed in Section II-B, the consistency test for

anomaly detection is based on the uncertainty-weighted
distance, qp (k), between the predicted joint vector, x̂p (k)−,
and the filtered joint vector, x̂p (k), in the fusion space:

qp (k) =
[
x̂p (k)− − x̂p (k)

]T
6̂p (k)−1 [

x̂p (k)− − x̂p (k)
]

(25)

Formally, the following hypothesis test is formulated:
Hypothesis H0: x̂p (k)− represents no anomaly.
Decision: Accept H0 if qp (k) < qα ∼ χ2 (3) ,

Reject H0 if qp (k) ≥ Ãqα ∼ χ2 (3)
The threshold, qα , is defined in such a way that

Pr{qp (k) ≥ qα} = α, which ensures that x̂p (k)−

and x̂p (k) are consistent with the statistical confidence of
100 (1 − α)%. To obtain the critical value, qα , for the chosen
significance level, α, refer to the Chi-square test table [34].
Note that, in the case where the anomaly is detected at the
time k , x̂p1 (k) and 6

p
1 (k) are substituted by x̂p1 (k)− and

6
p
1 (k)− to continue supplying a reference for normal aging

to the subsequent iteration, so as to deal with a slow mode of
anomalies while avoiding detection errors.

VII. EXPERIMENTAL RESULTS
A. EXPERIMENT SETTING
For the experiment, we employed the custom dataset
collected with the 3.25Ah lithium-ion battery INR-18650
together with the publicly available CS-2 family of the
CALCE dataset [28]. Refer to Table 2 for the specification
of the INR-18650 battery we used.
A total of 3 custom datasets were obtained by repeating

charging and discharging cycles over the battery life cycle.
We used the battery testing equipment illustrated in Fig. 14
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TABLE 2. Specifications of battery INR-18650 used for collecting
custom-datasets.

FIGURE 14. The experimental testbed was used to collect custom
datasets with the lithium-ion battery INR-18650 for evaluating the
proposed SOH prediction and anomaly detection system.

for data collection. The 3 custom datasets, labeled, respec-
tively, as R1, R2, and R3 datasets were particularly aimed
at gathering data under intracycle load current variations.
Particularly, we selected the discharging current randomly
at the time k based on Gaussian distribution with different
mean-standard deviation, (Im, SD), combinations: (1.4A,
0.46A) for R1, (2.2A, 1.02A) for R2, and (1.6A, 0.92A) for
R3 datasets, while maintaining a constant charging current
of 1.6A across all 3 datasets. On the other hand, the CS-2
family of CALCE datasets offers life cycle charging and
discharging data for the 1.1Ah lithium-ion battery cells under
constant discharging currents. Among 6 Types of datasets in
the CS-2 family, we adopted Type 1 (CS2-8 and CS2-21),
Type 2 (CS2-35 and CS2-36), and Type 3 (CS2-3) datasets
for supplementing the custom datasets. Type 1 and Type 2
datasets are based on the constant discharging current of
0.55A and 1.1A, respectively, whereas the Type 3 dataset is
based on cyclically alternating constant currents of 0.11, 0.22,
0.55, 1.1, 1.65, and 2.2A. Nevertheless, the charging data of
the CS-2 family are based on the standard charging profile
with a constant current of 0.55A. Formore details on the CS-2
family of CALCE datasets, refer to the ‘‘Battery Data Set.
CALCE [28],’’ provided by the CALCE Battery Research
Group of the University of Maryland, USA.

B. PERFORMANCE OF SOH PREDICTION UNDER LOAD
CURRENT VARIATIONS
The effectiveness of the proposed LSTM stack-based SOH
prediction is assessed under the variations in intracycle
discharging currents. The performance of the SOH prediction
is measured by the root-mean-square-error (RMSE) and the

goodness-of-fit, R2, metrics defined as follows:

RMSE =

√
1
m

∑m

i=1

(
yi − ŷi

)2 (26)

R2 = 1−
∑m

i=1

(
yi − ŷi

)2
/
∑m

i=1
(yi − ȳ)2 (27)

where yi and ŷi are, respectively, the ground truth and the
predicted SOH at the ith cycle, whereas ȳ =

1
m

∑m
i=1 yi. R

2 is
introduced here to assess the regression performance in SOH
prediction.

TABLE 3. RMSE and R2 performance of the proposed SOH prediction
evaluated by the CALCE dataset.

TABLE 4. RMSE and R2 performance of the proposed SOH prediction
under randomly varying load currents.

The proposed LSTM stack for SOH prediction was
evaluated based on the CALCE and custom datasets, which
allows for assessing the differences in prediction performance
due to constant (CALCE) and random (custom dataset)
intracycle load currents, as summarized in Tables 3 and 4
obtained for the CALCE and custom datasets, respectively.
Furthermore, the tables include the performance of both
charging-based and discharging-based SOH predictions for
their comparative analysis. Especially, we configured various
combinations of training and testing datasets to assess the
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robustness of the proposed SOH prediction against data
configurations. As shown in Tables 3 and 4, the training
and testing columns list various configurations of training
and testing datasets with each row indicating a particular
configuration of training and testing datasets. A non-
overlapping division between training and testing datasets
was obtained either by assigning independent datasets to
train and test separately or by randomly dividing the same
datasets into two non-overlapping datasets with a predefined
division percentile. The symbol + is used to represent
the union of datasets. Note that not only Tables 3 and 4
but also all the tables presented in Section VII follow the
same data configuration as well as notational convention
principles as described above for Tables 3 and 4. Table 3
depicts that the proposed LSTM stack-based SOH prediction
performs well with the CALCE dataset for both charging-
based and discharging-based SOH predictions. In particular,
the RMSE errors and R2 scores for different testing cases are,
on average, 0.0140 and 0.9929, respectively, for discharging
and 0.0214 and 0.9852, respectively, for charging, which are
comparable to other state-of-the-art performances reported to
date [19], [25].
Table 4 illustrates the performance of the proposed

SOH prediction under randomly varying load currents with
different combinations of R1, R2, and R3 datasets configured
for training and testing. The RMSE errors and R2 scores
for different testing cases are, on average, 0.0045 and
0.9511, respectively, for discharging and 0.0061 and 0.9517,
respectively, for charging. This shows that the proposed
SOH prediction, with Im and SD presented in the input
indices, performs equally as well under randomly varying
load currents as that under constant load currents. To analyze
the significance of having SD as an input index in SOH
prediction under varying load currents, we repeated the
same experiment as done for Table 4 except for setting
SD=0 in the input sequence. The result is summarized in
Table 5. Table 5 depicts that, without SD, the RMSE and R2

scores become, on average, 0.0122 and 0.9043, respectively,
which denotes a significant degradation in performance
from the RMSE and R2 of 0.0045 and 0.9511, respectively,
with SD.

TABLE 5. RMSE and R2 performance of the proposed SOH prediction
under random load currents with SD=0.

Tables 3 and 4 also show that the performance of
discharging-based SOH prediction is somewhat better than

that of charging-based SOH prediction for both constant
and random load current cases. Also, in Table 3, the SOH
prediction performance with CS2-21 as the testing dataset
is shown a lot worse than that with CS2-36. This signifies
the variance in aging behaviors among cells of the same
model, verifying the need for robust SOH prediction under
cell sampling.

FIGURE 15. The green zone (b) represents the required minimum voltage
range for discharging, inside which R2 performance (a) is 0.97 and higher.

FIGURE 16. The green zone (b) represents the required minimum voltage
range for charging, inside which R2 performance (a) is 0.97 and higher.

C. PERFORMANCE OF SOH PREDICTION UNDER
NONSTANDARD PRACTICES
1) MINIMUM CHARGING AND DISCHARGING VOLTAGE
RANGES REQUIRED FOR ACCURATE SOH PREDICTION
We first determine the minimum voltage ranges between
the upper and lower cutoff voltages that are necessary to
guarantee accuracy in SOH prediction under nonstandard
practices in charging and discharging. For convenience,
we represent a minimum voltage range by its center and
gap such that the overall ranges can be depicted as a zone
in the center-gap space, as shown by the green zones in
Figs. 15(b) and 16(b). The green zones in Figs. 15(b)
and 16(b) were obtained experimentally based on the CS2
family of the CALCE dataset by selecting the center
voltage in-between the upper and lower cutoff voltages
with 0.1V resolution and assigning the voltage gap of
0.3V, 0.5V, and 0.7V to each center voltage selected.
Then, we obtained SOH prediction corresponding to each
center-gap combination and assessed R2 scores of the
predicted SOH, as shown in Figs 15(a) and 16(a) for
discharging and charging, respectively. The required min-
imum voltage ranges, represented as the green zones in
Figs 15(b) and 16(b) for discharging and charging, respec-
tively, were then obtained as those combinations that have
R2 scores higher than 0.97. Notice from comparing the green
zones of Figs. 15 (b) and 16 (b) that the minimum voltage
ranges needed for charging are more stringent than those
needed for discharging.

75922 VOLUME 11, 2023



S. Lee, A. Kim: Online Real-Time SOH Prediction and Anomaly Detection

2) PERFORMANCE OF EQUIVALENCE TRANSFORMATION
In Section IV-B, we proposed the equivalence transformation
of nonstandard input indices, (V1, V2, Q, VE)n, to standard
input indices, (Q, VE)s, such that the LSTM stack-based
SOH prediction deals only with (Q, VE)s for the input
sequence to reduce a possible combinatorial explosion due
to the mixture of standard and nonstandard input indices.
We implemented a regression network for the proposed
equivalence transformation (refer to Fig. 9) and assessed its
performance based on the two datasets obtained from the
CS-2 family (Type1 and Type2) of the CALCE dataset for
training and testing. The first dataset, EQ1, is generated by
using the gap sizes of 0.7, 0.5, and 0.3V with the center
voltages fixed at 4.05, 3.85, 3.65, and 3.45V. The second
dataset, EQ2, is produced by using the same gap sizes as
above, but with the center voltages chosen to meet the
minimum voltage range requirement, i.e., (3.5-4.2), (3.7-
4.2), (3.6-4.1) and (3.8-4.1)V for charging and (3.5-4.2),
(3.7-4.2), (3.6-4.1), (3.4-4.1), (3.2-3.9), (3.4-3.9) and (3.6-
3.9)V for discharging. The resulting %RMSE performance
of the proposed equivalence transformation is summarized in
Table 6. In general, we discovered that the wider the voltage
range under nonstandard practices, the better the %RMSE
performance of the equivalence transformation becomes for
both charging and discharging, if the voltage range covers
the required minimum voltage range. Notice a tendency of a
reduced %RMSE according to a larger gap size as indicated
by the EQ1 result in Table 6. When the gap size is shrunken
to 0.3V, the portion of EQ1 data that violates the minimum
voltage range requirement increases for charging (refer to
Fig. 16(b)), resulting in a rapid increase in %RMSE of Q
for charging. On the other hand, the EQ2 result demonstrates
that, if the nonstandard voltage range covers the needed
minimum voltage range, we can achieve a %RMSE of less
than 2% and 8% in the equivalence transformation of VE and
Q, respectively, for both charging and discharging.

TABLE 6. Performance of the regression network for equivalence
transformation.

3) PERFORMANCE OF SOH PREDICTION UNDER
NONSTANDARD PRACTICES
Here, SOH prediction under nonstandard practices based on
the proposed equivalence transformation is assessed.

TABLE 7. Worst-case performance of SOH prediction under nonstandard
practices with equivalence transformation.

To this end, the proposed equivalence transformation was
applied to the EQ1 and EQ2 testing datasets gathered for
nonstandard practices to evaluate the performance of the
LSTM stack trained for SOH prediction under standard
practices. The testing was done based on two scenarios.
The first scenario, SC1, tested the worst cases in which
all the 20 inputs forming an input sequence are subject to
nonstandard practices. Whereas, the second scenario, SC2,
tested the cases in which the 20 inputs are configured
by a mixture of standard and nonstandard practices. The
nonstandard inputs were selected randomly from the EQ1
and EQ2 testing datasets. Table 7 displays the results from
SC1 while the numbers in parentheses show how much
the performance deviates from the benchmark (refer to
Table 3). Overall, the RMSE and R2 scores in the worst-case
scenario are, on average, 0.0364 and 0.9664, respectively,
for discharging and 0.0580 and 0.9256, respectively, for
charging. This represents the average degradations from
standard practices by 0.0224 and 0.0265 in RMSE and
R2, respectively, for discharging, and 0.0366 and 0.0596 in
RMSE and R2, respectively, for charging, which validates
the effectiveness of equivalence transformation for SOH
prediction. Note that, because of the rapid increase in
%RMSE of Q, the EQ1 testing with the 0.3V gap shows the
largest degradation in SOH prediction for charging. Table 8
shows the result from SC2, where testing is performed by
mixing standard and non-standard practices with the ratios
of 50%-50% and 30%-70%. In this case, the RMSE and
R2 scores are, on average, 0.0299 and 0.9863, respectively,
for discharging and 0.0491 and 0.9641, respectively, for
charging.

The overall trend in RMSE and R2 scores of the proposed
SOH prediction according to the ratio of standard and non-
standard practices involved in the input sequence is depicted
in Fig. 17. As shown, the higher the ratio of standard
practices, the higher the accuracy of the predicted SOH
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TABLE 8. Performance of SOH prediction under a mixture of
non-standard and standard practices.

becomes. Also take note that, for both SC1 and SC2, the
performance of discharging-based prediction is marginally
superior to charging-based prediction.

FIGURE 17. RMSE and R2 trends according to the standard vs.
non-standard ratio of inputs in the input sequence.

4) DISCUSSION
A critical necessity to consider realistic operational condi-
tions in battery SOH prediction, exists, in particular, for
application to electric vehicles. Battery SOH prediction can
be either charging-based or discharging-based. Charging-
based SOH prediction can take advantage of constant
charging current that leaves no need for an explicit account
of dynamic load conditions. Although an explicit account
of dynamic load conditions is necessary, discharging-based
SOH prediction can provide more accurate SOH prediction,
as verified also in this study (refer to Section VII-B).
You et al. [35] utilized a snap-shot voltage(V) and current(I)
sequence during charging to input to LSTM for SOH predic-
tion, obtaining about a 2.5% error. Notably, Shu et al. [36]
proposed a method for handling nonstandard charging
practices by projecting a full charging curve from short-
term charging data, with an approximate 2% error. On the
other hand, approaches to discharging-based SOH prediction
investigate a set of suitable input features that provides a
strong correlation with SOH under dynamic load conditions.
For instance, Ezemobi et al. [37] proposed 1V, SOC, 1S
OC, SOE (State of Energy), and 1SOE; Venugopal and
Vigneswaran [38] proposed to mean of V, I, and temperature,
prior SOH, total discharge time and level-wise durations of
load current; and Tian and Qin [39] proposed discharge time,

voltage variance and upward voltage after discharge, as input
features for deep networks to obtain about 4%, 2.5%, and
1% errors, respectively. The SOH prediction proposed in this
study demonstrates its capability of providing state-of-the-art
performance even under the presence of more severe yet more
realistic operational conditions than before, including a wider
variety of nonstandard charging and discharging practices
as well as dynamic load conditions. In particular, the novel
notions introduced here as the required minimum voltage
ranges and the equivalence transformation of nonstandard
to standard inputs, together with Q, VE, Im and SD as
input indices, help achieve the efficacy of the proposed SOH
prediction under more comprehensive realistic operational
conditions.

D. PERFORMANCE OF ONLINE REAL-TIME ANOMALY
DETECTION
For assessment of the proposed anomaly detection, we emu-
lated anomalies by using a 3.25AH lithium-ion INR-18650
battery (refer to Table 2 for its specifications). The following
two types of anomalies were produced online and in real-
time: 1) abrupt alteration of model parameters, kp (t) and
dp (t), and 2) abnormal alteration of internal resistance and
temperature with shunt resistors attached between battery
poles.

1) ANOMALY DETECTION THRESHOLD
For the anomaly hypothesis test described in Section VI,
we need to set the anomaly threshold, qα , since the decision
on an anomaly is based on qp (k) ≥ qα ∼ χ2 (3) (refer
to Section VI). Note that the anomaly decision is based on
well-defined χ2 statistics between qα and the confidence
probability, 1-α, with α indicating the significance level.
We set α as 0.05 for a 95% of confidence probability,
resulting in 7.185 for qα with 3 DOF of qp (k) (refer
to Table 9).

TABLE 9. Chi-square confidence probability table in terms of significance
level, α, and degree of freedom (DOF).

2) REAL-TIME UPDATE OF REFERENCE MODEL
PARAMETERS AND THEIR UNCERTAINTIES
At the start of the pth cycle, the battery model is updated
in such a way as to offer the reference for a normal battery
aging behavior. As shown in Section V, (kp (t) , 1kp(t)),
(dp (t), 1dp(t)) and (Rpi , 1Rpi ) are estimated based on
the predicted SOHp and 1SOHp while (Rt , 1Rpt ), (Ccs,
1Cp

cs) and (Ccb, 1Cp
cb) are updated based on their cyclic

degradation rates (refer to Table 1). To this end, we obtained
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the initial SOC-OCV curve, OCV 0 (t), of the INR-18650
battery by undertaking the initial discharging and charging
cycle by applying the same current of 0.68A, as dis-
cussed in Section V-B. Furthermore, based on the life
cycle charging and discharging experiment, we obtained
the functional relationship between SOHp and Rpi ,R

p
i =

−0.0357×SOHp
+0.17.

TABLE 10. Battery SOH and model parameters with their uncertainties
bounds updated at the 100th cycle.

TABLE 11. Battery SOH and model parameters with their uncertainties
bounds updated at the 200th cycle.

Tables 10 and 11 depict the predicted SOHs and their
uncertainties as well as the updated model parameters and
their uncertainties at the respective 100th and 200th cycles
selected for the anomaly test. Note that (kp (t) , 1kp(t))
and (dp (t), 1dp(t)) were obtained by the SOC-OCV
curves at the pth cycle derived from OCV 0 (t) and
SOHp (refer to Section V-B). The green and red curves
in Fig. 18 (a), (c), and (e) illustrate, respectively,
k200 (t) and d200 (t) generated from OCV 0 (t) and
SOH200. Finally, the uncertainty bounds associated with
the measured terminal current and voltage, 1Ip(t) and
1vp (t), were set by the manufacturer-provided sensor
uncertainties (0.05%).

3) ANOMALY EXPERIMENT 1: ABRUPTLY ALTERATION OF
MODEL PARAMETERS
In Experiment 1, we produced an anomaly by abruptly
altering the capacity-related model parameters, k200 (t) and
d200 (t), at the 200th discharging cycle of the INR-18650
battery. Three different modes of the anomaly were emulated
to examine how different traits in anomaly affect detection
performance. They are: 1) the abrupt mode generated by
abruptly changing k200 (t) and d200 (t) at 5,000 sec. for the
duration of 2,500 sec. by adding 1.0 to both parameters
(refer to Fig. 18 (a)), 2) the gradual mode generated by
adding a linearly increasing bias to k200 (t) and d200 (t)
from 5,000 s. to 10,000 s. (refer to Fig. 18 (c)) and 3)
the random mode generated by abruptly changing k200 (t)
and d200 (t) at a randomly chosen time between 5,000 s.
and 10,000 s. (refer to Fig. 18 (e)). The result of anomaly
detection for the above 3 modes of anomalies is illustrated

FIGURE 18. 3 modes of anomaly detection experiments: (a) , (b): abrupt
mode, (c), (d): gradual mode, and (c), (f): random mode. The red
crosslines in (b), (d), and (f) are the anomaly detection threshold, qα , with
95% confidence.

in Figs. 18 (b), (d), and (f), where the anomaly threshold,
qα , corresponding to 95% confidence in the decision is
indicated by the red crosslines. Figs. 18 (b), (d), and (f)
indicate that the proposed anomaly detection based on the
uncertainty-weighted distance, qp (k), gives high accuracy
and sensitivity in detecting different modes of anomalies.
Fig. 18 (d) indicates that a gradual increase in the level of
anomaly is directly reflected in a gradual increase in qp (k).
This implies that qp (k) can serve as an anomaly indicator
effective for identifying a slow mode of an anomaly with
the capability of exposing the level of anomaly. Moreover,
Figs. 18 (b) and (f) show that qp (k) is not only level-
sensitive but also time-sensitive as it indicates an anomaly
in synchrony with the time when the anomaly is in place
regardless of how abrupt and short the temporal pattern of the
anomaly is.

4) ANOMALY EXPERIMENT 2: ABNORMAL ALTERATION
OF LOAD CURRENT AND TEMPERATURE WITH
SHUNT RESISTORS
In Experiment 2, we generated an anomaly by abruptly
switching on and off the shunt resistors connected between
two battery poles at the 100th discharging cycle of the INR-
18650 battery. Refer to Table 10 for the predicted SOH and
updated model parameters at the 100th cycle. Experiment 2
was performed based on two different modes of the anomaly:
1) the abrupt shunt mode in which 5 ohms of shunt resistor
are abruptly switched on at 300 s. and off at 600 s. and 2)
the gradual shunt mode in which 10 ohms of shunt resistor
initially switched on at 600 s. is gradually reduced by 1 ohm
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at every 600 s. interval until the resistance reaches 1 ohm
before switching off at 6,600 s. With the shunting resistors
connecting two battery poles, Experiment 2 simulates an
abnormal change in battery internal resistance as well as an
abnormal rise in battery temperature to test the proposed
anomaly detection method. Figs. 19 (a) and (b) show
temporal variations of q100 (k) associated with the abrupt
shunt and gradual shunt modes of anomalies, respectively.
Fig. 19 (a) depicts that, same as Experiment 1, q100 (k)
accurately indicates an anomaly exactly at the time of
switching the shunt resistor on at 300 s. Notice, however,
that, unlike Experiment 1, q100 (k) indicating the level of
anomaly is increased gradually during the time of shunting.
This increase of q100 (k) is considered due to the temperature
rise caused by the battery overload from shunting.

FIGURE 19. q100 (
k
)

profiles for the abrupt shunt (a) and the gradual
shunt (b) modes of anomalies. The red crosslines represent the anomaly
decision threshold, qα , that corresponds to a 95% confidence level in the
decision.

On the other hand, Fig. 19 (b) shows the q100 (k)
profile associated with the gradual shunt mode of anomaly.
In Fig. 19 (b), q100 (k) is stepped up at the time of switching
the shunt resistor on at 600 s. to indicate an anomaly
occurrence. Then, q100 (k) is kept on increasing its anomaly
level according to the increase in the reduction of shunt
resistance by 1 ohm/600 s. rate. In particular, we observe
that exponential growth and the explosion of q100 (k) take
place as the shunt resistance is reduced further down below
4 ohms at 4,200 s. This phenomenon of the q100 (k) explosion
is considered due to battery overheating and thermal runaway
caused by the excessive flow of current inside the battery.
Fig. 19 (b) shows that, even after the shunt resistor is
switched off at 6,600 s., q100 (k) is remained higher than qα ,
indicating the failure of the battery to return to its normal
state due to permanent damage inflicted on the battery from
overheating. In summary, qp (k) proves to be an accurate and
sensitive anomaly indicator capable of quantifying the level
of anomaly or the probability of a battery being in the state of
anomaly. Finally, as depicted in Section III, upon detecting an
anomaly, we skip filtering a predicted state so that the model
keeps identifying the anomaly without adapting its state to the
anomaly for robust decision. Note that we may set an optimal
threshold for filtering decisions q′

α , separately from that for
anomaly decision, qα , such that a slowmode of anomalies can
subsequently be exposed through the accumulation of their
anomaly effects.

5) DISCUSSION
As described in Section I, anomaly detection based on
identifying outliers from the cluster of battery normal
behaviors is conceptually simple to implement as long as
statistically well-represented ground truth data are available
for cluster formation. However, clusters formed based on
the data collected along a life cycle of battery aging
under a wide variety of operational conditions have their
distributions wildly dispersed, increasing the ambiguity
in anomaly detection, in particular, at an earlier cycle.
The fundamental trade-off between accuracy and generality
that exists in cluster-based anomaly detection needs to be
further addressed. On the other hand, anomaly detection
based on the deviation between the predicted and observed
states of a battery relies on the accuracy of the model
used for the prediction. As noted, batteries have yet to
be modeled to accurately represent a life-cycle aging
behavior due to complex nonlinear electrochemical battery
dynamics [25]. A real-time fitting of model parameters to
actual measurements [20], [21], [22], [23], [24] proposed as
an alternative way of securing model accuracy may force the
model to adapt, in particular, to a slowly varying abnormal
behavior. The fundamental trade-off between accuracy and
sensitivity that exists in model-based anomaly detection
also needs to be further addressed. The proposed approach
mitigates such trade-offs by cyclically predicting battery
SOHs to follow battery aging while model parameters are
temporally updated within a cycle based on the predicted
SOHs without adapting to measurements. The integration
of two separate processes, the data-driven cyclic prediction
of battery aging and the model-based prediction of normal
behavior within a cycle with the model updated to battery
aging allows the proposed approach to effectively provide
accurate, sensitive, and robust anomaly detection along a life
cycle of batteries under a wide variety of realistic operational
conditions.

VIII. CONCLUSION
In this study, we proposed an approach to online and
real-time SOH prediction and anomaly identification for
rechargeable batteries during their life cycles, emphasizing
real-world operational conditions. Nonstandard charging and
discharging practices as well as dynamic load conditions
were considered for actual operational conditions. First,
to differentiate anomalies from normal aging, we introduced
a method for defining a life-cycle reference model by
cyclically updating model parameters and their uncertainties
based on the predicted SOH and its uncertainty at each
cycle. To achieve this, we presented a thorough and reliable
method for SOH prediction under dynamic load conditions
and unconventional charging and discharging procedures.
In particular, we proposed the equivalence transformation
as a novel method for addressing a possible combinatorial
problem in SOH prediction under non-standard practices
while developing the minimum non-standard voltage ranges
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required for SOH prediction. We confirmed by experiment
that we could achieve the state-of-the-art performance in
SOH prediction under the aforementioned realistic opera-
tional conditions by combining the proposed equivalence
transformation with Q, VE, Im, and SD selected as the
input features to LSTM stack-based SOH prediction. Finally,
we demonstrated by experiment that the proposed CPF-based
hypothesis test together with the SOH-based model update
could provide accurate and sensitive anomaly detection,
supported by the anomaly indicator, qp (k), capable of
representing the level of an anomaly for a slow mode of
anomaly. In the future, we plan to extend the experiment
with more custom-collected datasets to cover a wider variety
of real-world battery operational conditions. In the future,
we plan to extend the experimental verification with more
custom-collected datasets to cover a wider variety of real-
world battery operational conditions that affect battery
normal aging. In addition, we plan to deepen our investigation
on detecting, tracing, and diagnosing a wider variety of
real-world anomalies including, in particular, various slow
modes of anomalies. Also, we are interested in improving
accuracy in modeling the normal aging behavior of a
battery by adopting a more comprehensive battery model
representing a wider variety of aging factors existing in
reality. Notably, we recognize that we need to deal with
either the lack of available datasets or the difficulty in
collecting a sufficient size of datasets when deep learning-
based approaches are involved in either SOH prediction
or anomaly detection. Therefore, we are interested in
investigating in the future whether or not the applica-
tion of continual learning frameworks to deep learning-
based battery SOH prediction and anomaly detection is
feasible.
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