
Received 12 May 2023, accepted 27 June 2023, date of publication 5 July 2023, date of current version 1 August 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3292789

Closed Loop Control of Melt Pool Width in Laser
Directed Energy Deposition Process
Based on PSO-LQR
LIGUO MIAO 1, FEI XING1,2, AND YUANXIN CHAI1
1School of Mechanical Engineering, Shenyang University of Technology, Shenyang 110870, China
2Nanjing Zhongke Raycham Laser Technology Company Ltd., Nanjing 210038, China

Corresponding author: Liguo Miao (miaoliguo@smail.sut.edu.cn)

This work was supported in part by the National Key Research and Development Program of China under Grant 2022YFB4602200, and in
part by the XingLiao Talents Plan under Grant XLYC1902022.

ABSTRACT A closed-loop controller was proposed to adjust the laser power to maintain melt pool stability
based on the linear quadratic regulator (LQR) control theory. The melt pool width acquisition system was
built based on complementary metal oxide semiconductor (CMOS), and the captured melt pool image was
processed using an image processing algorithm to obtain the melt pool width. The laser power was used as
the input variable and the melt pool width as the output variable. The state space spatial model was identified
using the subspace method to identify the experimental data. The LQR controller was designed based on the
state space equation, to improve the controller’s performance and reduce the hassle of selecting the weighting
matrixQ in LQR. A particle swarm optimization (PSO) algorithmwas used to optimize the control weighting
matrix globally, and the optimal control weighting matrix was obtained. The controller performance was
evaluated by constant-width and variable-width thin-wall deposition samples, and the results showed that the
algorithm is simple, efficient, and able to maintain the melt pool width stable in real-time. It can effectively
reduce reliance on manual experience.

INDEX TERMS Laser directed energy deposition, melt pool width control, optimal control, particle swarm
optimization.

I. INTRODUCTION
Laser directed energy deposition (LDED) is a technique
used to fabricate parts bottom-up layer-by-layer [1], [2], [3],
widely used in metal molds, automotive, aerospace and other
fields. LDED has numerous advantages, such as saving mate-
rial and energy, short processing cycles and the ability to form
complex structural parts compared to traditional manufactur-
ing processes. This technology also has some limitations. The
slight disturbance from the process parameters and deposition
environment may cause changes in the melt pool charac-
teristics, resulting in defects in the manufactured parts [4].
The defects’ accumulation will seriously affect the parts’
dimensional accuracy and mechanical properties if they do

The associate editor coordinating the review of this manuscript and

approving it for publication was Mauro Gaggero .

not adjust the process parameters. Real-time monitoring and
control of the deposition process can effectively solve these
problems [5], [6].

Pyrometers and CMOS (CCD) cameras are widely used
in online monitoring systems for LDED. The morphological
characteristics of the melt pool significantly influence the
deposition shape of the LDED process, and they are usually
detected and controlled. Moralejo et al. [7] established a
CMOS coaxial melt pool image acquisition system, utilizing
OpenCV for image process. It can extract the melt width
in real-time, with a processing efficiency of approximately
10 ms, providing data support for subsequent melt pool width
control. Yang et al. [8] used the minimum external rectangle
method to extract the melt pool width, which is less robust
when the noise is considerable. Jeon et al. [9] developed a
set of artificial neural networks for online prediction of the
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melt pool depth based on an infrared camera. The accuracy
was 25.97 um, with an average error of 8.95% in multi-
layer multi-pass tests. However, due to the requirement of
an infrared camera and a laser line scanner, this system has
high equipment costs and low efficiency. Zhang et al. [10]
proposed an edge-directed operator with high robustness
in the actual welding environment, solving the problem of
accurately extracting the melt pool’s weak edges, with an
algorithm frame rate of 15.7. Some scholars also monitored
the melt pool’s temperature characteristics. Höfflin et al. [11]
obtained data on thermal processes in the melt pool and
heat-affected regions through high-speed, high-resolution
observation (± 2 pixels) of the melt pool by infrared ther-
mography. Bernauer et al. [12] investigated the feasibility of
combining a coaxial pyrometer with a wire feeding system.
Nair et al. [13] designed two pyrometers connected in series
to measure the melt pool’s real-time cooling rate, with equip-
ment monitoring at 1 kHz. The system is poorly integrated
and not conducive to industrial applications. Wolff et al. [14]
developed a high-speed X-ray imaging system, which can be
used to monitor defects such as melt pool porosity. However,
the system has poor real-time performance and high costs.

Regarding control algorithms, the main controllable pro-
cess parameters are laser power, scanning speed, and powder
feeding speed. The powder control is less real-time than the
other two control methods because the powder conveying
has an unavoidable delay [2]. Laser power is the most com-
monly used control parameter. Yang et al. [8] designed a PID
controller to ensure the stability of the melt width, but no
specific accuracy data were given. Ding et al. [15] introduced
a feedforward compensation controller based on the PID con-
troller to ensure the stability of the melt area by controlling
the laser power. Devesse et al. [16] designed a PI controller
using melt pool temperature as the control parameter and
laser power as the output, achieving stable control of the melt
width with and without powder. Shi et al. [17] established
multiple PI controllers for controlling non-parallel surface
deposition. The deposition of bent tubes and fan-shaped
structures was achieved; other PI or PID controllers have
been designed for control schemes of melt pool character-
istics, such as [18], [19], [20], and [21]. Garmendi et al.
[22] constructed part surface point cloud data based on
structured light scanning. Then, the melt pool height was
controlled by manually adjusting the process. A study on
the cooperative control of multiple parameters has also been
conducted. Tyralla et al. [18] studied cooperative control of
control laser power and lateral lap rate, ultimately improv-
ing weld quality. Li et al. [23] showed that the controlled
scanning speed could be economical and improve deposition
efficiency compared to power control. Other cases where
models and algorithms were used in the LDED field, such
as data-driven feedback control method based on the part’s
physical data [24], [25] or simulation data [26], [27], [28].
Gan et al. [29] developed a novel data-driven approach based
on multi-physics field modeling-experimental measurement-
data mining, which achieved multi-objective quality-based

optimization of the additive process and helped to realize the
online tuning of the additive process.

Currently, the most used closed-loop control algorithms
are PI, PID or improved algorithms based on them. The
advantage of those algorithms is that their structure is simple,
but the application process relies heavily on the engineer’s
experience, and the optimal parameters can be difficult to
determine. The implementation of deep learning algorithms,
such as neural networks, in the LDED field has also been
proven feasible. However, this aspect of the algorithm is
highly dependent on the quality and quantity of data and
is currently only applied on the detection. To address the
algorithmic problems mentioned above, this paper proposes
a control method based on PSO-optimized LQR to reduce
the reliance on manual experience and lower the application
threshold for practitioners.

This paper consists of four sections. In Section II, exper-
iment setup is introduced. Closed loop control system is
designed in Section III. In Section IV, a step simulation
and thin-wall test are conducted. Conclusions are given in
Section V.

II. EXPERIMENT SETUP
The experiment setup is shown in Figure 1. The system
includes a CNC machine (Siemens 420-D), a melt pool mon-
itoring and control system, a laser (IPG YLR-2000-WC),
and a printing head (RC ND-26). The laser is connected to
the printing head by fiber optics and has a maximum output
power of 2000W. The powder is delivered to the powder tube
by the powder feeder, and printing nozzle ring feeding pow-
der. Themelt pool image is monitored by a coaxially mounted
CMOS camera (CAM013-10GM). The optical system is split
into forward and backward by a 45◦ mounted dichroic mirror.
The forward can pass 1070 ± 10 nm laser, whereas the
backward can pass 390 nm-780 nm visible light. The laser
diameter through the collimating lens with a focal length of
100 mm is 20 mm during forward propagation, after which
the focusing lens with a focal length of 250 mm focuses the
beam above the substrate. The melting powder converges on
the surface of the substrate and is melted by laser irradiation,
forming the melt pool and reflecting ‘‘process light.’’ The
‘‘process light’’ is reflected to the camera by the reflector.
A bandpass filter, with a wavelength of 540 ± 10 nm, and a
neutral density filter with a transmittance of 5% are installed
at the front of the camera. The bandpass filter reduces the
influence of ambient and other interfering light. Meanwhile,
the neutral density filter avoids light intensity beyond the
dynamic acquisition range of the camera (73 dB).

III. CLOSED LOOP CONTROL SYSTEM DESIGN
The structure diagram of the LQR controller based on the
PSO algorithm is illustrated in Figure 2. The controller
mainly consists of three parts:

1) LQR controller: This controller performs closed-loop
control on the plant.
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FIGURE 1. Experimental setup of LDED process with a closed loop control system.

FIGURE 2. Structure diagram of LQR control system based on PSO.

2) PSO algorithm optimizationmodule: This module opti-
mizes the weighting matrix Q based on the system’s
operating state.

3) Image extraction and processing module: This module
is responsible for detecting the weld pool image and
extracting the melt pool width.

A. MELT POOL IMAGE PROCESSING
High efficiency and high accuracy extraction of melt pool
width is the basis for online control. The data acquisition
system was developed based on C++ and multi-threaded
technology. It runs under Windows 10 and has an Intel Core
i5-1135 CPU with 2.40 GHz speed and 16 GB RAM. The
CMOS camera uses the Gige communication protocol with
a maximum transfer rate of 1 GB/s and the image format
Mono8, ensuring the stability of the image data transfer. The
camera works at a fixed frame rate of 30 fps and the software

takes about 20 ms to process each frame and the subsequent
feedback algorithm. During the experiment, it was found
that the background area of the melt pool was relatively
large, leading to an increase in image processing time [30].
To improve the efficiency of image processing, the image
was cropped with the melt pool as the center. The camera’s
maximum resolution was 1440 × 1080, and after cropping,
the resolution was 200 × 200.

The test uses Fe101 powder with a powder particle size
of 20 um-53 um, and the substrate material is 316. The
powder composition is shown in Table 1, and the process
parameters are shown in Table 2. The spot diameter of the
workpiece surface is 1.16 mm, located below the laser focus.
The powder spot diameter is 1.12 mm-1.25 mm, and spot
energy and spot concentration follow a Gaussian distribution.
Two additional parameters need to be determined before melt
width extraction. One is the physical size calibration of the
pixel, which determines the actual physical size represented
by a pixel. This paper is 5.5 × 10−4 mm2/pixel. The second
parameter is the threshold value in the image thresholding
segmentation algorithm, which in this paper is set at 94. This
value was determined by depositing a single melt test with
melt pool widths and comparing extracted melt width data to
the different threshold value binary images.

Figure 3 shows the extraction process of the melt pool
width from the original image. Figure 3 (a) displays a repre-
sentative melt pool image acquired using the abovementioned
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FIGURE 3. Extraction process of melt pool width. (a) Original image.
(b) Binary image. (c) Edge extraction. (d) Melt width extraction.

TABLE 1. Composition of Fe101 powder (wt.%).

TABLE 2. The Parameters in the process of LDED.

hardware. Firstly, a binary image of the melt pool
was acquired using threshold segmentation, as shown in
Figure 3 (b). Next, the Canny algorithm is used to extract
the edges of the binary image, and the results are illustrated
in Figure 3 (c). Figure 3(d) presents the calculation diagram
of the melt pool width. Due to the low cooling rate at the
end of the melt pool, the ‘‘tailing’’ phenomenon can occur,
leading to irregular changes in the shape of the melt pool, and
thus making it difficult to extract the actual melt pool width.
Based on the hardware system analysis, the laser spot is round
and has the highest temperature in processing. Therefore, the
maximum inner tangent circle diameter (number of pixels)
of the melt pool boundary serves as the width. The detection
results are shown in Figure 3 (d). The actual melt pool width
can be obtained by multiplying the number of pixels by the
calibration value. The measured detection error is less than
0.15 mm.

FIGURE 4. Input and output signals for model identification.

FIGURE 5. Input and output signals for model validation.

B. SYSTEM IDENTIFICATION
The specific energy in the LDED process is defined as the
energy delivered to the process by the laser:

E =
P
DV

(1)

where P is the laser power, D is the laser spot diame-
ter; and V is the travel speed. The specific energy plays a
key role in determining the melt pool’s size, temperature,
and microstructure morphology. Variations in heat transfer
mode (e.g., thermal build-up) and change in material prop-
erties (e.g., thermal conductivity) during processing make
it challenging to ensure the stability of the LDED process.
Real-time adjustment of the specific energy is required to
ensure process stability, and laser power directly impacts
specific energy. This study, the laser power was selected as
the adjustable variable (control output) that had a direct effect,
and the melt pool width was selected as the control input.

To fully identify the response characteristics of the system,
an experiment was conducted on the open loop system using
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a random binary analog signal. When the laser power is too
high, problems such as humping and flowing may occur,
whereas too low laser power may result in air holes, unfused
material, and other defects. Based on preliminary tests, the
final determination of the laser power range is 300 W-600 W,
cladding speed is 10 mm/s, power feeding is 0.3 g/s and
protective gas flow is 15 L/min. The controller sampling
period is set at 0.05 s. For model identification, 50% of the
sample data was selected, with the remaining 50% used for
validation. The identification result is shown in Figure 4.

e =
100
n

n∑
i=1

∣∣∣∣Tmodel(i) − Tmeasured (i)
Tmeasured (i)

∣∣∣∣ (2)

where Tmodel is the predict width, Tmeasured is the camera
width, and n is the number of data. The data in Figure 4 was
calculated and the average error was 3.01%. To further verify
the validation of the model, a 400 W-500 W step power was
selected for validation experiments, as shown in Figure 5,
which showed an average error of 2.89%. It can be seen that
the simulated data matches well with the measured data.

Melt pool data is identified based on the recursive subspace
method. The system state space equation is calculated as
order four by calculating the minimum residual variance. The
state space model has the form of

ẋ = Ax + Bu

y = Cx + Du
(3)

where x is the system state vector, y is the system control
output, u is the control input,A,B,C, andD are all state space
model matrix parameters, and each matrix is calculated to be

A =


−0.05711 0.9864 0.7269 −0.5036
−1.354 −0.7214 −2.199 0.9983
−0.3345 5.839 −4.721 5.337
0.3825 1.555 −3.198 −4.936



B =


0.00003588
0.0001764
−0.001783
−0.008155


C =

[
7.2 −0.04034 −0.8251 −0.02605

]
D = 0

C. LINEAR QUADRATIC REGULATOR (LQR) CONTROLLER
LQR control is to achieve adequate control of the target func-
tion with a small input. In the LDED process, the feedback
control of laser power is used to reduce energy consumption
whereas ensuring the forming quality, and the objective func-
tion is defined as

J (x) =

∫
∞

0

[
xTQx + uTRu

]
dt (4)

where u is the control quantity, x is the state quantity, Q is
a state quantity weighting matrix, which is usually set as a
position semi-definite matrix. R is a control quantity weight
matrix, which is usually set as a positive definite matrix.

LDED system is a single-input single-output system, so the
R matrix parameter is 1. Therefore, the (4) can be written as

J (x) =

∫
∞

0
(q1x21 + q2x22 + q3x23 + q4x24 + u21)dt (5)

The weighting matrices Q and R is defined as:

Q =


q1 0 0 0
0 q2 0 0
0 0 q3 0
0 0 0 q4

 , R = 1 (6)

The optimal feedback control law can be expressed as:

u = −Kx (7)

Assume there exists a constant P matrix that can stabilize
the system, which can be obtained as:

K = (R+ BTRB)−1BTPA (8)

where P is the Riccati equation solution:

PA+ ATP+ Q− PBRR−1BTP = 0 (9)

The parameters are determined initially by trial and error
method

Q =


450 0 0 0
0 550 0 0
0 0 210 0
0 0 0 130

 , R = 1

Therefore, the K is:

K =
[
0.3774 −0.4312 −0.1246 −0.0761

]
Equation (8) shows that the performance of the LQR

controller is mainly determined by the weight matrix.
In engineering applications, the weight matrixes are primar-
ily determined based on engineers’ experience or extensive
experiments, which wastes time and resources. It is also
difficult to determine the optimal solution. PSO algorithm is
used to iteratively find the optimal controller weight matrix,
which reduces the number of tuning parameters and improves
the controller performance.

D. PARTICLE SWARM OPTIMIZATION (PSO)
PSO algorithm mimics the principle of birds searching for
food and is a population-based stochastic search algorithm.
Particles represent solutions in space, and multiple particles
form a population. The position of particles in each popula-
tion changes according to the relative optimal solutions of the
particles and their neighboring populations. The position and
velocity of particles are iteratively formulated as (10):

v(k+1)
i,j = wv(k)i,j + c1r1(pbesti,j − x(k)i,j )

− c2r2(gbesti,j − x(k)i,j ) (10)

v(k+1)
i,j = x(k)i,j − v(k)i,j (11)
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FIGURE 6. Algorithm flow chart.

FIGURE 7. Matrix q and the fitness value iterations process. (a) Matrix q
iterations process. (b) Fitness value iterations process.

where i = 1, 2 . . . . . . , n, j = 1, 2 . . . . . . ,m, k = 1, 2 . . . , p,
n is the population size, m is the dimension of the search
space, p is the number of iterations, and x(k)i,j is the position
and velocity of particle i in the m-th dimension of the search
space during the iteration. The optimal solution of particle i in
the k-th iteration is denoted as pbesti,j. The optimal solution
searched by the whole population is denoted as gbesti,j. c1
and c2 are non-negative acceleration constants, r1 and r2 are
random numbers in the range of [0,1].

E. PSO-LQR CONTROLLER DESIGN
The parameter optimization process of the LQR controller
based on PSO is shown in Figure 6.

FIGURE 8. Square trajectory tracking response.

The bridge between the PSO and LQR algorithms lies in
the LQR controller weight matrix and particle best adaptive
value, and the parameter optimization process is as follows.

Step I: Population size, positions and velocities of par-
ticles, number of iterations, and size of search space are
initialized.

Step II: The individual adaptation value of each particle is
evaluated.

Step III: The current adaptation value of each particle
is compared with the best adaptation value, and the merit
is represented as pbest. The current adaptation value of all
particles is compared with the global best adaptation value,
and the merit is represented as gbest.

Step IV: The weight matrix, position and velocity are
derived according to (4) and (10).

Step V: Steps II-IV are repeated, and the iteration is
stopped when the results satisfy the convergence condition.
Then, the results are output.

Step VI: Verify the optimal solution in the simulation
model to verify whether the expected response and accuracy
have been achieved.

The population size n is 100, the dimension of the search
space m is 25, the number of iterations p is 50, and c1 = c2 =

1.5. After the convergence of the algorithm, the optimal value
is obtained, as shown in Figure 7.

The matrix Q and R are as follows

Q =


653 0 0 0
0 420 0 0
0 0 163 0
0 0 0 108

 , R = 1

And K could be calculated as

K =
[
0.1419 0.2206 −0.0750 −0.0444

]
IV. EXPERIMENTAL RESULTS AND DISCUSSION
A. STEP SIMULATION ANALYSIS
To analyze the performance of the two methods of control.
A rectangular wave step signal with a frequency of 1 Hz
and an amplitude of 1 mm is used as the step input. The
simulation results are shown in Figure 8. It is evident that the
PSO-LQR has a faster response and a smaller overshoot, with
a maximum overshoot reduction of 0.19 mm and the time
to steady-state is 0.23 s, a reduction of 0.4 s, similar to the
0.26 s of the literature [26]. Specifically, the response time is
reduced by 50% and the maximum overshoot is reduced by
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FIGURE 9. Sample print plan. (a) Schematic of multi-layer printing. (b) Schematic of scanning path.

55.8% when using PSO-optimized LQR. It is clear that the
results from using the PSO-LQR control system are signifi-
cantly better than the results from using the LQR.

B. DEPOSITION OF THIN WALL STRUCTURES WITH AND
WITHOUT CONTROL
In order to verify the actual control effect of the algorithm,
a few thin wall samples were deposited based on the hardware
system, and the scan plan is shown in Figure 9. Figure 9 (b)
shows the schematic of scanning path. After fixing the sub-
strate, the thin wall was generated by moving the machining
head back and forth. The moving distance of a single layer
was 40 mm, and the printing head decelerated to 0 when it
reached the endpoint of the thin wall. Then, the Z-axis lifts
upward by 0.3 mm. The Z-axis travel time was calculated to
be less than 2 ms, so the deposition error during this time
is negligible. The laser remains on the light throughout. The
printing head was reversed and accelerated to the set speed
when the target position was reached. The cycle exists for the
entire period of thin-wall printing.

The experiment includes constant power (constant initial
power) open loop control and constant width closed loop
(adjust power to ensure constant melt pool width) control.
All experiments kept the same parameters except for the
power, as shown in Table 2. The theoretical deposition layer
height is 33 mm, total of 110 layers for the complete samples.
Figure 10 shows the front view, enlarged view of the edge,
side view and top view of the thin wall deposited within
constant laser power mode.

Figure 10 shows the effect of the sample part deposited
in constant power mode. Figure 10 (b) shows a partial
enlargement of the sample part. Figure 10 (c) and (d) show
the side and top views of the sample. We observed from
Figures 10 (b), 10 (c), 10 (d) that the part deposited in constant
power mode exhibits significant dimensional fluctuations in
the melt width and height direction. This phenomenon was
caused by two serious problems.

The first problem because of the thermal build-up of
temperature. At the beginning of the deposition stage, the

substrate is at room temperature and the heat dissipation
mode of the deposition part is 3D (both sides of the depo-
sition layer and the substrate). It leads to the excellent heat
dissipation ability of the deposition part.When printing starts,
the processing head makes a reciprocating scanning motion,
and the temperature of the deposition area increases rapidly.
At the same time, the rise in the Z-axis changes the heat
dissipation mode from 3D to 2D (both sides of the deposition
layer). The combination of these factors leads to heat build-
up. The melt pool width increases significantly in the first
40 layers, reaching 0.41 mm. From 40 to 60 layers, there is
a slight increase of about 0.15 mm. After 60 layers, the melt
pool temperature reaches thermal equilibrium and the melt
width stabilizes, finally at 1.94 mm. The average width of the
sample was 1.87 mm, with a maximumwidth of 3.19 mm and
a minimum width of 1.45 mm. LDED deposited parts usually
require post-processing to improve the surface finish. When
the width of the deposited position is less than the average
width, the post-processing of deposition sites with a width
smaller than the average width can become difficult.

The second problem is that the processing head slows down
before accelerating as it runs to the ends of the thin wall. The
thin wall edges collect more energy and powder, whereas the
cooling time is reduced, resulting in serious quality problems
for the sample, reflected in the higher and thicker thin wall
edges. This phenomenon is present throughout the deposition
process, as shown in Figures 10 (d) and 11 (c). Although
the melt pool width does not increase significantly after
60 layers, the effects caused by the accumulation of defects
in the early stages are apparent, such as uneven deposition
heights, increased deposition widths and collapsed edges,
which seriously affect the quality of themolding. The average
deposition height was 31.42 mm, less than the target of
1.58 mm. According to [31], it is known that when the sub-
strate temperature increases, the deposition cross-sectional
area remains constant under single-pass deposition condi-
tions. The width of the melt pool increases whereas the height
decreases, which explains why the average deposition height
was lower than the target value. It is essential to maintain
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FIGURE 10. Sample with constant laser power. (a) The a front view. (b) Enlarged view of the edge. (c) The a side view. (d) The a top view.

FIGURE 11. Melt pool width signal and laser power signal without control. (a) Melt pool width signal. (b) Laser power signal. (c) Melt pool width
signal and laser power signal for the last 3 layers.

FIGURE 12. Overall effect of workpiece with constant melt pool width based on LQR. (a) The a front view. (b) Enlarged view of the edge. (c) The a side
view. (d) The a top view.

the relative height of the processing head to the substrate
during the deposition process, and when the relative distance
decreases or increases, it may lead to the failure of the
process [32].

Figuers 12, 14 show the deposited samples after the control
intervention. The sample dimensions are uniform, and the
melt pool width is stable throughout the deposition pro-
cess. As shown in Figure 12 (b) and Figure 14 (b), the
deposition starts with a low substrate temperature that dis-
sipates heat quickly. In order to reach the preset melt pool
width, the power rises quickly, and the highest power reached
was 521 W, exceeding the constant power in the uncon-
trolledmode. The power gradually decreases because the heat

dissipation of the sample gradually enters the saturation stage
after reaching the peak power. The algorithm reduces heat
accumulation by reducing the laser power.

In order to objectively analyze the effect of the intervention
of the control algorithm, the extreme differences and vari-
ances in the direction of the deposited height and width of
the samples in Figures 10, 12, and 14 were calculated. The
results are shown in Table 3.
The polar and variance values reflect the deposition

process’s stability. As seen from Table 3, the PSO-LQR-
controlled deposited samples reduced the range by 69.48%
and the variance by 92.82% in the height direction com-
pared to those without control. The range was reduced
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FIGURE 13. Melt pool width signal and laser power signal based on LQR. (a) Melt pool width power signal. (b) Laser power signal. (c) Melt pool width
signal and laser power signal for the last 3 layers.

FIGURE 14. Overall effect of workpiece with constant melt pool width based on PSO-LQR. (a) The a front view. (b) Enlarged view of the edge. (c) The a
side view. (d) The a top view.

FIGURE 15. Melt pool width signal and laser power signal based on PSO-LQR. (a) Melt pool width power signal. (b) Laser power signal. (c) Melt pool
width signal and laser power signal for the last 3 layers.

by 85%, and the variance was reduced by 15.87% in the
width direction. All numerical improvements were better than
the LQR-controlled, indicating that the PSO-LQR-controlled
deposition samples have better deposition process stability.
In addition, the average height of the deposited samples
was 32.12 mm and 32.53 mm for the LQR and PSO-LQR
algorithms, respectively. This indicates that controlling the
size of the melt width is accompanied by a certain control
of the melt pool temperature, which can help reduce inter-
layer errors. The minimum error was 0.47 mm, which may
be caused by two factors. Firstly, the matching relationship
between the interlayer lift and the single-layer deposition
height might have changed after the power change. Secondly,

the temperature of the melt pool of the same size may differ
due to the change in heat dissipation conditions, resulting in
uneven deposition height between layers. This paper did not
carry out themeasurement of melt pool temperature. It cannot
provide specific temperature change data. Follow-up will be
conducted in this area to address this limitation.

As shown in Figures 13 (c) and 15 (c), to avoid heat
build-up at the edges, the laser power drops more signifi-
cantly as the processing head scans the edges of the sample.
The maximum power drops for the LQR and PSO-LQR
algorithms were 60 W and 54 W, respectively. The max-
imum deviation in height is approximately 2.4% for the
LQR algorithm and 0.6% for the PSO-LQR algorithm. Due
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TABLE 3. Comparison of fluctuations in deposited part’s height and width data for different control states.

FIGURE 16. Response of control system. (a) Overall effect of workpiece
with variable melt pool width based on PSO-LQR. (b) Response of melt
pool width and laser power.

to the short-lived massive build-up of powder, the swelling
phenomenon at the deposition edge is improved but not com-
pletely eliminated.

C. PERFORMANCE VERIFICATION OF CONTROLLER
To verify the response characteristics of the PSO-LQR
algorithm, a further variable width experiment was con-
ducted. Closed loop control was applied throughout whereas
the initial experimental parameters were kept constant. The
initial target width was set at 1.9 mm and was changed to
1.7 mm when the deposition height reached 10 mm. The data
in the middle 10 s was taken for analysis and presented in
Figure 16.

As shown in Figure 16 (a), the sample exhibited an
apparent delamination phenomenon. From Figure 16 (b),

we observed that the power final fluctuation range was
about 50 W, and the melt pool width fluctuation range
was about 0.2mm. The system steady-state response timewas
about 0.5 s.

We observed from the above experiments that the control
method proposed in this paper can achieve stable control
of melt pool width and improve processing accuracy. The
optimized LQR algorithm has better molding stability and
control accuracy. Theoretically, the LQR controller can also
achieve the control effect of the PSO-LQR controller, but it
may require parameter trial adjustments.

In the height direction, the melt pool size control can
slightly weaken the influence of parameters such as pow-
der and path on the quality of the formed parts, thereby
improving the forming quality of the parts to some extent.
However, it cannot solve the problem of reduced part
geometric accuracy due to the use of complex processes.
This indicates that melt pool height control, in addition
to joint multi-parameter control based on melt pool width
control, is necessary. According to research, there is no
commercially available multi-parameter control method,
which is a major limitation that this article aims to
address.

Table 4 summarizes the advantages and disadvantages of
currently used closed-loop control algorithms. Due to dif-
ferences in hardware equipment, processes used and control
objectives, no relevant test data is available for the response
time and control accuracy of some algorithms. In terms of the
algorithm’s response time and control accuracy, this paper’s
proposed algorithm has no significant improvements com-
pared to existing melt width control algorithms. However,
it has outstanding advantages in terms of controller design
complexity and parameter trial tuning time, which can reduce
the dependence on process experience. This advantagewill be
further enhanced with the integration and interface develop-
ment of the identification algorithm and the parameter finding
algorithm.

Future work in this paper will focus on the following
aspects:

Modeling the correlation between process parameters:
Several process parameters, such as powder feeding amount
and scanning speed, are predetermined before the experiment.
However, these parameters may not be the optimal choice
during the dynamic adjustment process, which may result in
some quality problems. Therefore, simulation and modeling
of the dynamic relationship between parameters and quality
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TABLE 4. Brief summary of closed-loop control.

to obtain the dynamic range of process parameter matching
will be part of future work.

Cooperative control of multiple process parameters: Based
on melt pool width control, combined with detection and
feedback control of melt pool height and melt temperature.
The deposition quality is strongly coupled with the influence
of process parameters. Establishing a decoupling controller
based on the process parameter matching model is also a
focus and challenge of future research.

V. CONCLUSION
Variations in processing conditions during the LDED process
can lead to deposition quality problems. In this study, the
recursive subspace identification method was used to identify
the response relationship between laser power and melt pool
width average error was less than 4%. Subsequently, the LQR
control method was adopted to design the feedback con-
troller, and the optimal control matrix of the controller was
derived using the PSO algorithm. Furthermore, the response
and effectiveness of the controller algorithm were verified
through thin wall tests. The conclusions were as follows:

1) Quality problems such as wall thickness expansion
and uncontrolled edge forming can occur during the
processing of thin-walled parts.

2) The PSO-LQR algorithm designed in this study can
form thin walls of uniform width, reduce defects such
as wall thickness expansion and uncontrolled edge
forming, and improve the flatness in the direction of
deposition height. The test results indicate that the
melt width control accuracy is 0.2 mm, and the system
steady-state response time is about 0.5 s.

3) Simply controlling laser power cannot wholly solve the
forming quality problems caused by multiple factors,
and other process parameters need to be adjusted as
well.

Therefore, the control method using system identification
combined with PSO-LQR has high accuracy, fast response
and good robustness, which can be considered an effective
solution tomelt width instability in the additive process. It has
an equivalent referenced value in the application.
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