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ABSTRACT Online action detection in surveillance scenarios presents considerable challenges, particularly
due to the dynamically changing environments and real-time processing requirements. Within this context,
Multi-Object Tracking (MOT) serves as a critical component of the online action detection pipeline. Despite
the emergence of several state-of-the-art (SOTA) object trackers in recent years, a gap remains in the
comprehensive evaluation of these trackers specifically for action detection in surveillance scenarios. This
paper bridges this gap by offering a thorough study of SOTA MOT trackers, aimed at determining the
influential factors affecting their performance in surveillance settings and identifying the trackers optimally
suited for an online action detection pipeline. For relevance and rigor, we introduce SurvTrack, a new dataset
derived from a subset of VIRAT—dataset explicitly designed for action detection tasks—but intended for
object tracking. SurvTrack is utilized to assess these trackers under various conditions, including differing
image resolutions and detector confidence thresholds. This study uncovers the distinctive strengths and
weaknesses of each tracker, providing invaluable insights for researchers and practitioners in surveillance
and action detection. Importantly, this work focuses on tracking methods within the action detection domain,
underscoring the development of a tracker explicitly designed for action detection on pertinent datasets, such
as VIRAT.

INDEX TERMS Video surveillance, object detection, multi-object tracking, action detection, deep learning,
computer vision.

I. INTRODUCTION
Multi-object tracking via computer vision is a fundamental
task that involves detecting and tracking multiple objects
from video streams over time. It has numerous real-world
applications, such as security surveillance, trafficmonitoring,
and human-computer interaction. The goal is to accurately
track multiple objects while handling challenges like occlu-
sions, appearance changes, and interactions between tracked
objects. This requires development of sophisticated meth-
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ods that combine techniques from object detection, tracking,
and data association. Multi-object tracking remains an active
research area with ongoing efforts to improve accuracy,
efficiency, and robustness. Many problems such as video
surveillance, autonomous cars, action recognition, crowd
behaviour analysis would benefit from a high-quality tracking
algorithm [1]. For instance, recently, one of the key uses
of multi-object tracking is action detection, where trackers
generate potential action proposals [2], [3], [4]. Action detec-
tion in surveillance scenarios is a critical task, and the Video
Image Retrieval and Analysis Tool (VIRAT) dataset is one of
the most suitable video datasets for this purpose. An action
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detection system comprises multiple components: object
detection, multi-object tracking, proposal generation, and
action classification [2], [3], [4]. Therefore, a tailored multi-
object tracker is essential for achieving a high-performing
action detection system in surveillance settings.

However, the majority of state-of-the-art (SOTA) track-
ers are not specifically designed or evaluated for CCTV
surveillance like video from VIRAT dataset [5]. Instead, they
focus on improving performance on particular datasets, such
as MOT17 [27], MOT20 [13], CrowdHuman [28], Cityper-
sons [29], ETHZ [30], DanceTrack [31]. It is well-established
that a method that performs well on one dataset does not
necessarily perform well on another. Research knowledge
can be increased when we evaluate SOTA trackers in the
same setting by a third party - for instance, in a setting that
uses the same detector for all trackers. Moreover, state-of-
the-art methods are typically evaluated in an offline setting
by interpolating predicted tracks, which generally increases
performance. Consequently, these trackers are not optimal
candidates for action detection in surveillance scenarios that
require online tracking, that have low-quality camera views,
or that feature small scales objects. The goal of this work is to
enable researchers to properly select amulti-object tracker for
action detection. To this end, we perform a thorough compar-
ison of state-of-the-art trackers frommultiple perspectives on
a subset of the VIRAT dataset, which we named SurvTrack,
and is representative of real-time action detection scenarios
for the evaluation of trackers. Fig. 2 highlights the scene, view
and occlusion differences of MOT17 and SurvTrack datasets.
Our contributions can be summarized as follows:

• We introduce the SurvTrack dataset, derived from the
VIRAT dataset, to prepare trackers for online action
detection.

• We compare state-of-the-art object trackers (Deep OC-
SORT, ByteTrack, StrongSORT, and OC-SORT) on the
SurvTrack dataset, focusing on online tracking in a
CCTV action detection scenario.

• We analyze failure cases, the impact of appearance
modeling, effects of image resolution, and the effect of
detector confidence thresholds on tracker performance.

In this work, our scope is limited to multi-object visual
tracking, using only camera input. Furthermore, we focus on
online action detection scenario, which requires multi-object
trackers to operate in an online setting. This means that
evaluations are conducted without interpolating the entire
length of the predicted tracks, which is common in offline
learning settings. It is noteworthy to mention that our
experiments and methods dealt with multi-object tracking,
not action detection. however, the contribution of this work
is to prepare trackers for action detection tasks, specifi-
cally in surveillance scenarios. Our code, implementation
details, and the proposed dataset SurvTrack will be made
publicly available upon publication at the following URL:
https://github.com/Jumabek/SurvTrack to facilitate repro-
ducibility and further research in this area.

The remainder of this paper is organized as follows.
Section II discusses the relevant background for this study.
Section II-E describes our procedure for deriving the Surv-
Track dataset, and provides a brief explanation of multi-
object trackers, evaluation metrics, and hardware settings.
Section III presents the experiments and results, followed by
a discussion of the findings in Section IV. Finally, Section V
concludes the paper.

II. RELATED WORK
This section discusses the related work in the field of
multi-object tracking, focusing on methods applicable to
surveillance scenarios such as those found in the VIRAT
dataset. We also briefly address the significance of action
detection, and the components involved in these systems.

A. ACTION DETECTION
Action detection is a crucial research area in computer vision,
with applications spanning security surveillance, human-
computer interaction, sports analysis, and more. An action
detection system typically consists of several components,
including object detection, multi-object tracking, proposal
generation, and action classification [2], [3], [4]. Fig. 1
highlights the multiple components involved in the action
detection pipeline, including multi-object tracking. It is
important to note that activity recognition is another com-
ponent of the pipeline, which can also be considered as
a standalone application. For instance, there is ongoing
research in the field of human activity recognition [6], [7].
Activity recognition is also being actively utilized in elderly
care facilities [8], [9], demonstrating its significance in
various domains. To achieve high performance in action
detection systems, particularly in surveillance scenarios, a tai-
lored multi-object tracker is essential.

B. OBJECT TRACKING
Early object tracking techniques can be categorized
into different classes, including template-based meth-
ods, feature-based methods, motion-based methods, and
appearance-based methods [18]. However, these methods
often struggle with challenges like occlusions, appearance
changes, and varying object scales, which are common
in surveillance scenarios. Later, deep learning-based
tracking methods emerged, leveraging the capabilities of
neural networks in order to enhance tracking performance.
Notable approaches include Siamese networks, R-CNN-
based trackers, and the learning of embeddings. While these
methods have demonstrated remarkable results on various
datasets [17], their performance on surveillance datasets like
VIRAT remains underexplored.

In the last 2 years several SOTA MOT methods have
emerged, including BoT-SORT [19], StrongSORT [20],
Deep OC-SORT [21], Observation-Centric SORT [22], and
ByteTrack [23]. These methods employ strategies such as
data association, trajectory prediction, and online learning.
However, these SOTA trackers have not been specifically
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FIGURE 1. Architecture of Argus++. A video stream is processed frame-by-frame through object detection and tracking to generate overlapping cube
proposals. With frame-level foreground segmentation, stable proposals are filtered out. Activity recognition models determine the classification scores
for each proposal. These over-sampled cubes are deduplicated to produce the final activity instances. Adapted from [4]. This architecture highlights the
position of multi-object tracking within the action detection pipeline.

designed or evaluated for surveillance scenarios like the
VIRAT dataset. Instead, they concentrate on enhancing
performance on particular datasets as mentioned earlier.
A method excelling in one dataset may not necessarily per-
form well in another, making it crucial to evaluate these
methods on surveillance-specific datasets.

C. MULTI-OBJECT TRACKING AND SEGMENTATION
In addition to Multi-Object Tracking (MOT), there is an
extension called Multi-Object Tracking and Segmentation
(MOTS) that combines tracking with pixel-level segmenta-
tion. MOTS aims to provide richer information about the
scene by not only identifying the objects but also segmenting
them at the pixel level. Voigtlaender et al. introduced the
concept of MOTS and prepared pixel-level annotations for
existing datasets such as KITTI and MOT Challenge [10].
These annotated datasets are namedKITTIMOTS andMOTS
Challenge, respectively. By providing pixel-level annota-
tions, MOTS allows for more comprehensive analysis and
applications, enabling a deeper understanding of the scene
beyond traditional 2D bounding boxes. Another significant
dataset related to autonomous driving is BDD100K, which
consists of 100,000 videos and 10 tasks for evaluating com-
puter vision algorithms in the context of autonomous driv-
ing [11]. Although BDD100K encompasses various tasks,
it also includes annotations for object detection, instance

segmentation, and tracking, making it relevant for evaluation
in the MOTS domain. Cui et al. proposed the DGL-MOTS
dataset, which focuses on capturing diverse driving scenar-
ios and surpasses KITTI MOTS and BDD100K in terms
of annotation quality, data diversity, and temporal repre-
sentation [12]. The DGL-MOTS dataset offers a broader
range of situations and challenges, providing a valuable
resource for developing and evaluating advanced MOTS
algorithms. These MOTS-related datasets, including KITTI
MOTS, MOTS Challenge, BDD100K, and DGL-MOTS,
play a vital role in advancing research on multi-object
tracking and segmentation. They facilitate the develop-
ment and evaluation of algorithms that can handle complex
scenarios and provide precise and detailed object-level
information.

D. OFFLINE vs. ONLINE TRACKING
Online object tracking refers to the task of locating and
following objects of interest in a video as it unfolds, without
prior knowledge of the future frames [16]. Many SOTA
methods are evaluated in an offline setting where predicted
tracks are interpolated, generally leading to improved perfor-
mance. However, this approach may not be suitable for action
detection in surveillance scenarios, where online tracking is
necessary and when camera views are often of low quality
with small-scale objects.
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FIGURE 2. Representative frames from (first row) the MOT17 and (second row) the SurvTrack - a subset of VIRAT dataset.

E. GENERAL MOT DATASETS VERSUS SURVEILLANCE
SCENARIOS
Surveillance involves various computer vision applications,
including action detection. Unlike object detection or track-
ing, action detection is a more complex and higher-level
task that helps machines understand the scene. To design a
well-performing action detection system in such scenarios,
a multi-object tracker tailored for surveillance scenarios is
required. However, most MOT benchmark datasets are not
challenging enough for surveillance scenarios. Hence, there
is a lack of representative datasets in surveillance scenarios.
Although the VIRAT dataset is a good candidate for this task,
it requires extra steps to prepare it for MOT experiments,
and there is a lot of misannotation such as ghost annotation
bounding boxes that do not correspond to any object. To the
best of our knowledge, no prior work has explored the perfor-
mance of state-of-the-art trackers for surveillance scenarios.
In general, current benchmark datasets fail to cover the fol-
lowing conditions that are present in surveillance scenarios.

• Camera Viewpoints: Many MOT datasets are captured
from a single fixed camera viewpoint, which does not
reflect real-world surveillance scenarios where cameras
are often placed at different angles and positions.

• Object Types: MOT datasets typically focus on tracking
a limited set of object types, such as pedestrians and
vehicles, which may not be representative of the full
range of objects that surveillance systems need to track.

• Object Scale: Many MOT datasets have a limited range
of object scales, which may not reflect the full range of
object sizes encountered in real-world surveillance.

• Lighting Conditions: MOT datasets are often captured
under controlled lighting, whichmay not reflect thewide
range of lighting conditions encountered in real-world
surveillance.

• Occlusion and Clutter: Many MOT datasets do not
include enough occlusions and clutter which is common
in real-world surveillance scenarios. Even though the
presence of such challenges can greatly affect the per-
formance of tracking algorithms.

• Data Variety: Many MOT datasets have limited variety,
such as the number of scenes, objects, and frames, which
may not reflect the full range of scenarios encountered
in real-world surveillance.

In summary, although various SOTA trackers have been
developed, their suitability for surveillance scenarios like the
VIRAT dataset remains largely unexplored. The objective of
this work is to enable researchers to make informed decisions
when selecting a multi-object tracker for action detection
in surveillance scenarios. To achieve this, a comprehensive
comparison of SOTA trackers on the SurvTrack dataset, a rep-
resentative dataset for real-time action detection is conducted.

III. METHODOLOGY
A. MULTI-OBJECT TRACKERS
The following multi-object trackers exhibit a range of meth-
ods and have demonstrated strong performance with various
benchmarks:

• ByteTrack: ByteTrack is a simple, effective, and
generic association method that focuses on associating
almost every detection box, including low-score ones,
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TABLE 1. Comparison of methodology among different MOT trackers.

to recover true objects and filter out background detec-
tions. It achieves state-of-the-art performance on mul-
tiple tracking benchmark datasets, including MOT17,
MOT20, HiEve, and BDD100K.

• OC-SORT: OC-SORT is an observation-centric method
that improves upon the basic Kalman filter to obtain
state-of-the-art tracking performance. By using object
observations to compute a virtual trajectory during
occlusion, it corrects errors accumulated in the fil-
ter parameters. OC-SORT maintains simplicity, online
operation, and real-time performance, achieving state-
of-the-art results on multiple datasets.

• Deep OC-SORT: Deep OC-SORT extends the motion-
based OC-SORT by adaptively integrating appearance
matching using deep appearance features. in MOT
competition it achieved 1st place when using the
MOT20 and 2nd place when using MOT17 with good
higher-order tracking accuracy (HOTA) scores and it set
new SOTA performance on the DanceTrack benchmark
dataset.

• BoT-SORT: BoT-SORT combines motion and appear-
ance information, camera motion compensation, and
an accurate Kalman filter state vector to create a
robust tracker. It ranked first on MOT17 and MOT20
test sets in terms of MOTA, IDF1, and HOTA
metrics.

• StrongSORT: StrongSORT revisits the classic Deep-
SORT tracker and improves upon it in terms
of detection, embedding, and association. Com-
bined with the appearance-free (AFLink) model
and Gaussian-smoothed interpolation (GSI), Strong-
SORT++ achieved top ranking on MOT17 and MOT20
datasets in terms of HOTA and IDF1 metrics [20].

It is important to note that, among the aforemen-
tioned trackers, ByteTrack and OC-SORT do not have
an appearance model (Table 1). Other trackers use some
variant of appearance modeling, while all trackers use a
Kalman filter or its modified version for motion mod-
eling. Since there is no extra step for appearance mod-
eling, ByteTrack and OC-SORT enjoy high processing
speed.

B. EVALUATION OF MULTI-OBJECT-TRACKING METHODS
1) ERROR TYPES
Evaluation metrics are derived from the types of errors made
during tracking. Commonly employed error types from [15]
are used as shown in Fig. 3.

2) EVALUATION METRICS
In the following, the three most common MOT metrics for
evaluating multi-object tracking approaches are described,
including their formula.

a: MULTIPLE OBJECT TRACKING ACCURACY
MOTA is a popular metric used to evaluate the overall perfor-
mance of a multi-object tracking system. It considers factors
such as detection accuracy, false positives, missed detec-
tions, and ID switches. MOTA does not include a measure
of localization error, and detection performance significantly
outweighs association performance. The equation for MOTA
can be seen in (1) where FNt represents the number of false
negatives, FPt denotes the number of false positives, IDSWt
indicates the number of identity switches, and GTt signifies
the number of ground-truth objects in frame t .

MOTA = 1 −

∑
t (FNt + FPt + IDSWt )∑

GTt
(1)

b: MULTIPLE OBJECT TRACKING PRECISION
MOTP is ametric that measures the precision of the estimated
object positions. It calculates the average distance between
the ground-truth and estimated object positions. The equation
for MOTP is shown in (2) where dt,i is the Euclidean distance
between the predicted position of object i and its ground-truth
position in frame t , and Ct is the number of matches in
frame t .

MOTP =

∑
t
∑

i dt,i∑
t Ct

(2)

c: ID-F1 SCORE
This metric is used to evaluate the accuracy of object tracking
over time. It measures the percentage of correctly tracked
object trajectories, taking into account the number of true
positives and false positives. The equation for IDF1 in (3)
where TPi is the number of true positives for object i, FPi is
the number of false positives, and FNi is the number of false
negatives.

IDF1 = 2 ·

∑
i TPi

2 ·
∑

i TPi + FPi + FNi
(3)

3) PRIMARY METRIC
For an online activity detection application, maintaining
consistent object identities across frames can be critical
to accurately recognizing and analyzing the activities per-
formed. In this case, IDF1 score would be a more appropriate
primary metric.

C. DATASETS
1) VIRAT DATASET
VIRAT [26] is a large-scale video dataset that was col-
lected to evaluate the methods of video understanding in a
ground-based surveillance scenario. The dataset consists of
high-resolution, full-motion video recorded from fixed and
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FIGURE 3. Four cases illustrating tracker-to-target assignments. (a) An ID switch occurs when the mapping switches from the previously assigned red
track to the blue one. (b) A track fragmentation is counted in frame 3 because the target is tracked in frames 1-2, then interrupts, and then reacquires its
‘tracked’ status at a later point. A new (blue) track hypothesis also causes an ID switch at this point. (c) Although the tracking results is reasonably good,
an optimal single-frame assignment in frame 1 is propagated through the sequence, causing 5 missed targets (FN) and 4 false positives (FP). Note that no
fragmentations are counted in frames 3 and 6 because tracking of those targets is not resumed at a later point. (d) A degenerate case illustrating that
target re-identification is not handled correctly. An interrupted ground truth trajectory will typically cause a fragmentation. Also note the less intuitive ID
switch, which is counted because blue is the closest target in frame 5 that is not in conflict with the mapping in frame 4 (adapted from [15]).

moving cameras in various outdoor environments, includ-
ing parking lots, roads, and airport tarmacs. The VIRAT
dataset was a pivotal choice for our research due to its
distinctive application in action detection, particularly in
the widely recognized MEVA challenge [5]. Moreover,
VIRAT’s provision of bounding box information for every
frame facilitated the creation of the SurvTrack dataset,
which specifically caters to object tracking tasks. Notably,
VIRAT stands out as the sole dataset known to us that
has been utilized for action detection in the surveillance
domain, while also being adaptable for multi-object tracking
purposes.

The videos in the VIRAT dataset feature a variety of real-
world scenarios, including pedestrians, vehicles, bicycles,
and other objects, making it an ideal resource for evaluat-
ing multi-object tracking methods in a CCTV setting. The
videos in the dataset are annotated with object-level informa-
tion, including object type, position, and appearance, making
it easy to evaluate the performance of tracking methods.
In terms of its utility for multi-object tracking in CCTV
scenarios, the VIRAT dataset provides a realistic, challeng-
ing benchmark for evaluating the performance of tracking
methods in complex, real-world scenarios. The wide vari-
ety of objects and scenes in the dataset, combined with
high-resolution video footage, makes it an ideal resource
for researchers and practitioners working on multi-object
tracking for CCTV applications. In this work, Release 2.0 ver-
sion of the dataset is used for preparing our own SurvTrack
dataset, which includes 11 scenes. Each scene contains mul-
tiple video clips and clips may contain activities from the
12 categories shown in Table 2.

It is noteworthy to mention that, although the VIRAT
dataset contains information regarding activities shown in
Table 2, in this work our scope is to use only anno-
tated object tracks. The VIRAT dataset presents several
challenges for multi-object tracking due to the following
factors:

• Crowded scenes: Many videos feature crowded scenes
with multiple people and vehicles moving in different
directions, making it difficult to track individual objects.

TABLE 2. Complete list of activities in the VIRAT dataset.

• Scale variations: Objects can vary in size and scale,
making it challenging to detect and track them consis-
tently. This can be also seen in Figures 5 and 6.

• Occlusions: The presence of occlusions makes it dif-
ficult to track objects throughout the entire video
sequence, particularly when objects are partially or fully
occluded.

• Lighting conditions: Lighting conditions can vary sig-
nificantly, especially in outdoor scenarios, making it
challenging to detect and track objects accurately.

• Camera angle: as CCTV cameras are usually mounted
in ceilings at certain angle, this creates extra challenges
for computer vision applications

2) THE SurvTrack DATASET
To address the lack of datasets tailored for CCTV surveil-
lance scenarios and that are applicable to action detection,
we created a new dataset, named SurvTrack which is a subset
of the VIRAT dataset. The following describes the process of
deriving the subset and the exploratory analysis of SurvTrack.

a: EXCLUSION OF LENGTHY VIDEOS
It is noteworthy that some videos in the VIRAT dataset
are considerably longer than those in the MOT17 bench-
mark dataset, which contains videos of up to 1500 frames.
As depicted in Fig. 4, we excluded from the study themajority
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FIGURE 4. Video lengths of Virat dataset.

TABLE 3. Videos with incomplete annotations in the dataset.

of videos that exceeded 1500 frames. Out of the 329 videos,
we considered 156 videos with frame lengths below 1500.

b: EXCLUSION OF VIDEOS WITH INCOMPLETE
ANNOTATIONS
After selecting shorter videos, we identified some videos with
incomplete annotations. By inspecting each video’s anno-
tations, we discovered nine videos that were incomplete in
Table 3.

c: EXPLORATORY DATA ANALYSIS
In total, our SurvTrack dataset contains 145 video files
extracted from the VIRAT dataset. Among these, 131 have
a resolution of 1280 × 720, while the remaining 14 are
1920 × 1080.

The annotation sizes are visualized as a heatmap in Fig. 5.
Themajority of object widths range between 40 and 80 pixels,
with heights varying from 20 to 50 pixels. These dimensions
are relatively small compared to the 1280 × 720 resolu-
tion, thus making tracking more challenging in this dataset.
Fig. 7 depicts the distribution of classes in the SurvTrack
dataset. It is noteworthy to mention that for simplification,
we ignored object and bicycle classes they are in the minor-
ity. For comparison, heat map of object scales in MOT17
dataset is presented in Fig. 6. As can be seen, most of
the objects (peoples) in MOT17 have heights larger than
40 pixels, whereas in SurvTrack, the majority of objects are
smaller than 40 pixels. This difference can be attributed to
cameras in SurvTrack videos where viewing from an angle
makes humans look different. Another explanation could be

FIGURE 5. Heatmap of object sizes in SurvTrack dataset.

FIGURE 6. Heat map of object sizes in the MOT17 dataset.

that SurvTrack includes vehicles, and although vehicles are
usually wider than humans, they are shorter.

D. EXPERIMENTAL SETTING
YOLOv8m model is used for performing the detection stage
of all trackers. Unless otherwise mentioned, throughout the
experiment, the input image resolution in the YOLO model
was 640 × 640, and the minimum detection confidence was
set to 0.5. Deep learning models were executed for inference
with FP32 precision.

All experiments were conducted on a system equippedwith
the following hardware specifications:

• CPU:12th-Gen Intel Core i9-12900K at 5.2 GHz
• GPU: NVIDIA GeForce RTX 3090 with 24 GB VRAM
• RAM: 64 GB, DDR4 at 3200 MHz
• Storage: 1 TB SSD
The experiments were performed using the following

software:
• Ubuntu 22.04.4 LTS
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FIGURE 7. Annotated bounding boxes for each class in the SurvTrack
dataset. Note, object and cyclist classes are eliminated in the experiment
due to having 20× less samples in comparison to person class.

• Python Version 3.8.10
• PyTorch Version 1.10.0
• CUDA Version 11.5
• cuDNN Version 8.3.1

IV. EXPERIMENTS AND RESULTS
A. COMPARISON OF TRACKERS WITH DEFAULT SETTINGS
In this experiment, we compared the performance of
the selected state-of-the-art (SOTA) MOT trackers using
their default settings [14]. The evaluation was based on
commonly used metrics such as MOTP, MOTA, IDF1,
and FPS.

The results presented in Fig. 8 show that the overall per-
formance of trackers on the SurvTrack dataset using these
default settings was much worse than results with other
benchmark datasets [19], [20], [21], [22], [23]. Our second
observation is that ByteTrack had significantly poorer per-
formance on SurvTrack compared to its performance on the
MOT17 and MOT20 datasets, where it was on par with OC-
SORT [22]. Third, there is no significant difference in terms
of performance for trackers that exploit re-identification
ReID modules in addition to motion modeling. For instance,
OC-SORT had performance on par with StrongSORT and
Deep OC-SORT.

Since we have 145 videos in the dataset, it is useful to
provide error bars to indicate how performance varied across
different videos. Recall that in a normal distribution, approx-
imately 68% of the data lies within one standard deviation
(1σ ) to the left and right of the mean (µ). This is a property
of the normal distribution, also known as the Gaussian distri-
bution or bell curve.

FIGURE 8. Accuracy comparison of SOTA trackers on the SurvTrack
(subset of VIRAT) dataset.

FIGURE 9. Accuracy versus speed for SOTA trackers on the SurvTrack
dataset. Bubble size indicates the number of frames per second the
tracker processed. The detector’s processing time is not included because
all trackers used the same detector.

1) QUALITATIVE ANALYSIS
Results in the previous section discovered that ByteTrack
has a notable performance gap (an IDF1 score of 34%)
compared to OC-SORT (42.9%). This is significant because
both consist of only motion modeling based on the Kalman
filter. Below, we compare these two trackers qualitatively.
We selected a representative video that had the highest per-
formance difference: an IDF1 score of 11.8% for ByteTrack
and IDF1 of 53.4% for OC-SORT.

Observations from the figure are, Bytetrack is missing the
objects where the object scale is small and/or has illumina-
tion. In such cases, confidence of the detected object maybe
low and due to the two-stage matching nature of ByteTrack,
they use larger confidence for the first stage. Consequently,
such low confidence detections may never contribute for
instantiating a tracklet.

B. FAILURE CASE ANALYSIS
The previous section demonstrated that the trackers had
significantly lower performance on the SurvTrack dataset
compared to other benchmarks from the literature. In this
section, we investigate why. In Table 4, we present the
performance of five different multi-object tracking meth-
ods - BoT-SORT, ByteTrack, Deep OC-SORT, OC-SORT,
and StrongSORT - on five selected videos from the VIRAT
dataset. Table 4 reports IDF1 scores for each tracker-and-
video combination. It can be observed that most of the
trackers have relatively low IDF1 scores, indicating that they
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FIGURE 10. Qualitative comparisons between ByteTrack and OC-SORT. Each top of the frame shows tracks from ByteTrack compared to the bottom
frame from OC-SORT. For convenience, we only showed the sample frames from the video. A link to the full video is provided in Supplemental
Materials.

FIGURE 11. Object size distributions of the 10 most difficult videos for
each tracker. Some of the videos were difficult for more than one tracker.

are not making many correct predictions. In particular, Byte-
Track did not make any predictions at all in five cases. After
further investigation we confirmed that there wasnt any track-
ing prediction is made owing to high confidence threshold
and ByteTrack configuration.

Because not many predictions were made, a potential rea-
son for low performance is the high confidence threshold
of the YOLOv8 object detector, which was set at 0.5. With
such a high threshold, the object detector may fail to produce
a sufficient number of bounding box predictions, which,
in turn, affects the trackers’ ability to associate and track

objects accurately. This issue is particularly evident in cases
where the trackers have an IDF1 score of 0.0, indicating
no predictions. To improve performance from these trackers,
one possible solution is to adjust the confidence threshold
of the YOLOv8 object detector, allowing for more bounding
box predictions and consequently improving the ability to
associate and track objects in the videos.

Another observation from Fig. 11 is that object scales
in those videos are much smaller (around 20 pixel wide)
than the average object scale (around 50 pixels wide) shown
in Fig. 5 in Section II-E. This is especially troublesome
for the ReID component of the trackers because at such a
small scale, it is difficult to obtain descriptive embeddings
for the given object. Therefore, another possible solution is
to increase the resolution of input images so object scales
become larger. We include links to the visualization of the
worst and best-case scenarios in Supplementary Material.

C. EFFECT OF THE CONFIDENCE THRESHOLD
In this section, we investigate the impact of the detector
confidence threshold on the performance of the multi-object
trackers. The results are shown in Fig. 12, where each chart
illustrates a specific confidence threshold. Additionality, for
clarity, we also provide IDF results in Table 5. The input
resolution used is 640 × 640.
The minimum threshold of the YOLOv8m detector model

is kept at its default value of 0.5. While we provide all three
metrics, we focus on the primary metric, IDF1.
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TABLE 4. The 10 most difficult videos for each tracker based on IDF1 score.

TABLE 5. IDF1 scores of trackers at different detector confidence thresholds.

From the figure, it is clear that lower confidence thresholds
produce better results in general. An exception occurs when
switching the threshold from 0.2 to 0.1 where some trackers
such as StrongSORT obtain better performance while others
such as Deep OC-SORT lose performance. This indicates,
even though all trackers use the same detector, the minimum
confidence threshold affects them differently and should be
set carefully depending on which tracker is being used.

The experiments showed that adjusting the confidence
threshold of the YOLOv8 object detector can significantly
impact the performance of multi-object trackers. While each
tracker may have different sensitivities to the parameter,
exploring its effect can help optimize a tracker’s performance
for a given application or dataset.

D. EFFECT OF IMAGE RESOLUTION
In this section, we conducted experiments by varying the
input image resolution for both the detector and the tracker.
The input resolutions were resized to a square aspect ratio,
such as 640 × 640. We tested resolutions at 480, 640, 720,
1000, and 1280. Although we provide other metrics for com-
pleteness, our focus is on the IDF1 score. The results are
illustrated in Fig. 13 and Fig. 15.

The first observation is that, in general, larger resolu-
tions lead to better performance by trackers. The second
observation is that sensitivity to image resolution is higher
when the confidence threshold is set to 0.1. Third, different
trackers favored different image resolutions. For instance,
in Fig. 15, Deep OC-SORT achieved its best IDF1 perfor-
mance of 80.1% with an image resolution of 720 × 720,
while StrongSORT obtained its peak performance of 73.3%
from the 1280× 1280 resolution. It is interesting to see how
an increase in input resolution affects the inference speed.
In detection-based tracking pipeline, there are two compo-

nents which are detector, and tracker. Figures 16 and 15 depict
the effect of input resolution on inference speed of detector
and update time of tracker.

The main insight from this experiment is that by careful
tuning of the affecting factors we can improve IDF1 score
of 43% in a default scenario to an IDF1 score of 80.1%
at a resolution of 720 × 720 pixels when using a detection
confidence threshold of 0.1. Second, in terms of resolution,
720 × 720 could be considered the most suitable for Surv-
Track because it provided a good trade-off between accuracy
and computational complexity. Third, although increasing
input resolution reduces speed of the pipeline, it is still good
idea to use large resolution. This is because increasing input
resolution only increases the inference time of the detector
and has little effect on tracker update time. However, this
depends on the speed of the tracker as well. For instance, for
pure motion based trackers such as OC-SORT and ByteTrack
detector inference is the main bottleneck for speed.

V. DISCUSSION
A. THE IMPORTANCE OF THE DATASET
Our results underscore the significance of selecting an
appropriate dataset when evaluating multi-object trackers,
particularly for surveillance scenarios. The performance of
state-of-the-art trackers on the SurvTrack dataset, which
closely represents real-world surveillance conditions, was
substantially lower than performance on other benchmark
datasets reported in the literature. This observation highlights
the fact that a tracker’s performance on one dataset may not
necessarily generalize to other datasets or scenarios.

Choosing a suitable dataset is crucial for understand-
ing the limitations of multi-object trackers and identifying
areas where improvements can be made. With the Surv-
Track dataset, we noted that object scale, object detection

68088 VOLUME 11, 2023



J. Alikhanov, H. Kim: Online Action Detection in Surveillance Scenarios

FIGURE 12. Comparison of results from different confidence thresholds.

confidence threshold, and image resolution were factors con-
tributing to lower performance from the trackers. By carefully
analyzing these factors, we gain valuable insights into how

FIGURE 13. Confidence threshold: 0.5.

to enhance tracker performance in real-world surveillance
scenarios.
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FIGURE 14. Confidence threshold: 0.1

Moreover, the SurvTrack dataset emphasizes the chal-
lenges multi-object trackers face under real-world surveil-

FIGURE 15. Effect of input resolution on detector model inference speed.
YOLOv8m architecture is used. Time is measured in ms for a single frame.

FIGURE 16. Effect of input resolution on tracker update time. Time is
measured in ms for a single frame.

lance conditions, such as low-quality camera views, and
small-scale objects, and the need for online tracking. By eval-
uating trackers on a dataset that closely resembles the target
application, researchers can focus on developingmethods that
are more robust and adaptable to these specific challenges.

In summary, the choice of dataset plays a vital role
in evaluating and understanding the performance of multi-
object trackers, especially in surveillance scenarios. By using
a dataset like SurvTrack that closely resembles the target
application (e.g., action detection in surveillance scenarios),
we can ensure that the research community is developing
and evaluating trackers that are more likely to succeed in
real-world action detection applications.

B. THE IMPORTANCE OF DETECTOR SETTINGS
Our experiments demonstrate that the settings of the object
detector play a critical role in the performance of multi-
object trackers. Adjusting the confidence threshold of the
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detector can significantly impact overall tracking accuracy,
as evidenced by the different performance results obtained
from varying confidence thresholds. It is essential to carefully
tune the confidence threshold to strike a balance between
detecting enough objects for accurate tracking and avoiding
too many false positives. The results suggest that the optimal
confidence threshold may differ for each tracker, emphasiz-
ing the need for a tailored approach when choosing detector
settings for specific multi-object tracking methods.

C. THE IMPORTANCE OF INPUT RESOLUTION
The input resolution of images fed into the object detector
and tracker also significantly affects tracking performance.
As demonstrated in our experiments, trackers generally
achieve better performance with higher resolutions, provid-
ing more detailed visual information for both detection and
tracking. However, the sensitivity to image resolution may
vary across different trackers and confidence thresholds. It is
essential to consider the trade-offs between increased perfor-
mance and computational cost because higher resolutions can
also lead to slower processing. Identifying the optimal input
resolution for each tracker while considering computational
constraints is crucial for achieving the best possible results.

D. FUTURE WORK
Our analysis of the SurvTrack dataset from multiple aspects
reveals that, when properly configured with suitable confi-
dence thresholds and image resolutions, ReID-based models
can outperform pure motion-based models. However, ReID-
based models often suffer from slower inference speeds due
to the additional ReID component. To address this issue in
the future, one possible approach is to develop a methodol-
ogy that extracts appearance models directly from the object
detector without requiring pretraining of the ReID module.
In this way, the tracker can maintain the speed advantages of
pure motion-based methods while benefiting from the addi-
tional ReID component. Such an approach would allow for
more accurate and efficient multi-object tracking solutions.
Additionally, the development of adaptive methods to auto-
matically adjust confidence thresholds and input resolutions
according to the scene or object type could lead tomore robust
and versatile tracking systems capable of handling various
challenging scenarios. Lastly, employing color information
in addition to ReID embeddings may potentially enhance per-
formance while adding insignificant computational expense.

VI. CONCLUSION
The findings of this study provide valuable guidance for
researchers and practitioners in designing effective action
detection pipelines, particularly for surveillance scenarios.
By carefully selecting the most appropriate tracker and
configuration from this study, the performance of action
detection systems can be significantly improved. Further-
more, this research highlights a critical issue in the multiple
object tracking (MOT) community, where methods are often
evaluated in narrow domains such as pedestrian tracking,

while surveillance scenarios require more comprehensive
evaluation. It is crucial to evaluate state-of-the-art methods in
surveillance settings to ensure accurate performance assess-
ment.

In addition, the importance of dataset selection, detector
settings, and input resolution is emphasized in evaluating
multi-object trackers for real-world surveillance applica-
tions. These factors significantly impact the performance of
the trackers and should be carefully considered during the
evaluation process. It is essential to choose datasets that
are representative of surveillance scenarios and to optimize
detector settings and input resolution for accurate tracking
results.

By incorporating these insights and applying the recom-
mendations provided in this study, researchers and practition-
ers can continue to advance the performance of online action
detection systems in surveillance scenarios. The knowledge
gained from this research will contribute to the development
of more robust and reliable tracking methods, ultimately
enhancing the effectiveness of surveillance systems.

To summarize:

• Selecting the appropriate tracker and configuration
is crucial for designing an effective action detection
pipeline, especially in surveillance scenarios. It is essen-
tial to evaluate trackers in a comprehensive range of
domains, including surveillance settings, to ensure accu-
rate performance assessment.

• Dataset selection, detector settings, and input resolution
play significant roles in evaluating multi-object trackers
for real-world surveillance applications. Careful consid-
eration and optimization of these factors are necessary
to achieve accurate and reliable tracking results.

• The findings from this research provide valuable
insights and guidance for improving the performance
of online action detection systems in surveillance
scenarios. By incorporating these recommendations,
researchers and practitioners can enhance the effec-
tiveness of surveillance systems and contribute to the
advancement of the field.

SUPPLEMENTARY MATERIALS
We provide a link to the failure cases of the VIRAT dataset
for each of the five trackers evaluated in our study. The link
to the failure cases is available in the supplementary material
at the following URL: https://drive.google.com/drive/folders/
11H5reEyvelh050xfAS7310gSAooQe6IR?usp=sharing
Most of these cases involve small objects, occlusion, or illu-
mination issues.

Additionally, we provide visualizations of the most
successful cases for each tracker in the following link:
https://drive.google.com/drive/folders/
1kvkK3vtmUIzJbW5 × 2zKnljOy-do7yLHe?usp=sharing.
It is worth noting that many of the successful cases involve
static objects, where tracking is relatively easier.
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Full video for qualitative analysis shown in Fig 10 can be
found here https://drive.google.com/file/d/1bZamxpleRyq-
zxrZmA9ovjkxoIntdsmo/view?usp=share_link
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