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ABSTRACT In the last decade, breakthroughs in the field of deep learning have led to the development
of powerful presentation attack detection (PAD) algorithms which reported reliable performance across
different realistic scenarios. Typically, most of these techniques analyse the full face to detect attack
presentations (APs), ignoring that the attributes or artefacts produced in the fabrication of the attacks vary
their location on the face depending on the presentation attack instruments (PAI) species, subject and
environmental conditions. In addition, they still fail to categorise bona fide subjects who inadvertently
occlude their face with accessories such as glasses, scarves or masks to prevent respiratory infections.
To mitigate these issues, this paper explores the utility of using different facial regions for PAD. In this
context, a new metric, Face Region Utility, is proposed, which indicates the usefulness of a particular test
region to spot an attack attempt based on another training region. A thorough evaluation in challenging
scenarios on well-known databases shows which face regions can successfully substitute the full face to
detect APs in scenarios where pristine subjects use some of the mentioned accessories: up to a 67.73% of
detection performance improvement is yielded by applying our proposed analysis when pristine subjects
wear masks to prevent respiratory infections.

INDEX TERMS Biometrics, presentation attack detection, face, facial regions, facial region utility.

I. INTRODUCTION
The large variety of commercial and legal requests together
with the availability of the relevant technologies (e.g., smart-
phones, digital cameras, GPUs) have led to the deployment
of numerous face recognition (FR) systems in the last
decade [1], [2]. In contrast to other biometric characteristics
such as fingerprints and irises, the human face not only
can be used to identify a person but can also inform about
mood, intention and attention. On the other hand, a repre-
sentation thereof (i.e. a facial image) can be easily copied or
replicated by any unauthorised subject, e.g. through photos
or videos stemming from social media. Thus, those impos-
tors can get access to various applications such as financial
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transaction authentication, device unlocking, and automated
cars, where FR systems are commonly deployed. In partic-
ular, unattended applications (e.g., remote authentication for
automated payment - pay-by-face [3]) which do not require
direct monitoring are the target of malicious subjects launch-
ing attack presentations. Therefore, the next generation of
FR systems must include an efficient mechanism for the
detection of attack presentations.

To that end, a large number of facial presentation attack
detection (PAD) approaches have been recently proposed [4].
Their goal is to determine whether a face sample stems from
a real subject (i.e., it is a bona fide presentation - BP) or is an
artificial replica (i.e., it is an attack presentation - AP). The
great success of deep learning and its application to several
pattern recognition tasks has led as well to the development of
powerful PAD methods. Those schemes are mostly based on
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FIGURE 1. Examples of web-collected facial images occluded by different
accessories such as masks, glasses, hands, paper, and tattoos.

supervised learning where the input sample is classified into
one of two categories (i.e., BP or AP). They have reported
a remarkable detection performance when the samples for
training and testing are created using the same set of Presenta-
tion Attack Instrument (PAI) species (e.g., a printed photo of
a face). However, those algorithms drop their accuracy when
the test samples are fabricated with an unknown set of PAI
species.

A peculiarity of most PAD approaches in FR systems is
that they detect AP attempts by analysing the full face, thus
ignoring that the attributes separating a BP from an AP vary
their location on the face depending on the PAI species, the
subject and the environmental conditions. To address this
shortcoming, some PAD subsystems spot APs based on the
analysis of several local patches extracted around the full
face [5], [6], [7], [8]. Despite the improvement achieved by
those methods, they still fail when pristine subjects inadver-
tently occlude their face with different accessories, as shown
in Fig. 1. In particular, the use of accessories such as masks
to prevent respiratory infection, glasses, or traditional clothes
have resulted in a detection performance deterioration ofmost
PAD algorithms that analyse the full face or local patches [9].

To fill this gap in the literature, in this work, we present an
in-depth study of various facial regions to determine which
are most appropriate for PAD in different scenarios. In con-
trast to our previous research [10], we analyse to what extent
the use of a given facial region can produce similar or superior
results to those obtained with the full facial image which
might contain some of the above occlusions (see Fig. 1).
In summary, the main contributions of this study are:

• An in-depth analysis compliant with the metrics defined
in the international standard ISO/IEC 30107-3 [11] for
biometric PAD of several facial regions.

• A study on the impact of the facial region resize on the
PAD performance.

• A comprehensive analysis of the impact of wearing
glasses for PAD.

• The definition of a metric, Face Region Utility,
which combines correlation between facial regions and
algorithm’s detection performance to determine themost
useful regions for PAD. The empirical results computed
by the proposed metric can be successfully employed to
replace the full face in those applications whose pristine
subjects partially occlude their face with some kind of
accessory without the need to retrain the base PAD
algorithm.

• A benchmark of the best performing facial regions
according to the newly defined utility metric in chal-
lenging scenarios including unknown environmental
conditions, unknown PAI species, and cross-database.

• A benchmark of state-of-the-art PAD approaches for
a particular use case where individuals wore masks
to prevent SARS-CoV-2 coronavirus. We evaluate to
which extent the central region of the faces could out-
perform the results achieved by the full face on a masked
database.

The remainder of this manuscript is organised as follows: a
review of facial PAD methods is included in Sect. II. Sect. III
presents general concepts and the definition of facial regions
studied in our work. The experimental setup is explained in
Sect. IV. The experimental results of the analysis of facial
regions for PAD are discussed in Sect V. Finally, conclusions
and future work directions are presented in Sect. VI.

II. RELATED WORK
To mitigate the threats posed by attack presentations and
thus increase the security of biometric systems, PAD has
been one of the most studied topics in the last decade.
Numerous literature reviews [4], [12], [13] classify PAD
approaches into two broad categories: hardware and soft-
ware. PAD algorithms belonging to the former detect living
characteristics of a human body such as intrinsic properties
(e.g., reflectance [14], [15]), involuntary signals (e.g., ther-
mal radiation [16]), or responses to external stimuli (e.g.,
motion estimation [17]) by adding an extra sensor to the
capture device. Those hardware-based methods are usually
tailored for a particular PAI species, thereby reporting a high
detection performance for it. However, they decrease their
accuracy when the PAI species used in the evaluation are
unknown [12]. Furthermore, an extra sensor combined with
the capture device can significantly increase their production
cost (e.g., a thermal sensor for an iPhone exceeds 250 EUR1).
In contrast, software-based methods are interoperable not

only for face systems. Some of these schemes explore certain
involuntary gestures of a face or head e.g. eye-blinking [18],
lips movement, nodding, smiling, and looking in different
directions [19], [20]. Other algorithms analyse texture prop-
erties in the images through e.g. Fourier Spectrum [21],
Gaussian filters [22], statistical models [23], or traditional

1https://amz.run/44Mp
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FIGURE 2. Proposed framework to evaluate PAD approaches.

texture descriptors - Local Binary Patterns (LBP) [24], [25],
Histogram of Oriented Gradients (HOG) [26], Binarized Sta-
tistical Image Features (BSIF) [27], Local PhaseQuantization
(LPQ) [28]. In addition, some methods combine textural
descriptors with generative models to improve the general-
isation capabilities to unknown attacks [29], [30].

The advances experienced by deep learning techniques
and their great success in several pattern recognition tasks
have led to the development of powerful architectures for
PAD [31], [32], [33], which outperform the aforemen-
tioned handcrafted-based methods. In 2014, Yang et al. [34]
fine-tuned ImageNet pre-trained CaffeNet [35] and VGG-
face [36] models to distinguish a BP from an AP. Following
this idea, Xu et al. [37] combined Long Short-Term Memory
(LSTM) units with Convolutional Neural Networks (CNNs)
to learn temporal features from face videos. To improve
the lack of generalisation capability of PAD subsystems,
Sanghvi et al. [38] combined three CNN sub-architectures to
spot the three common face PAI species i.e., print, replay, and
mask attacks. Other techniques [39], [40] have also proposed
CNNs to analyse properties in 3D mask attacks based on the
fact that 2D face PAD algorithms suffer a significant detec-
tion performance degradation on this type of PAI species.
Given that acquisition properties such as facial appearance,
pose, illumination, capture devices, PAI species, and even
subjects vary between datasets, several important face PAD
approaches have recently explored domain adaptation (DA)
to align the features of two different domains [41], [42], [43],
[44]. This would improve the detection of previously unseen
PAIs.

As mentioned in Sect. I, most state-of-the-art PAD algo-
rithms detect AP attempts analysing the full face region, thus
reporting a decrease in performance when some accessories
such as glasses, masks to prevent respiratory infections, or tat-
toos occlude parts of the face. In fact, those PADmethods [5],
[6], [7], [8], which have demonstrated the advantage of local
face patches in defending against a variety of PAI species,
dropped their performance in detecting BPs when pristine
local patches contain some of the aforementioned acces-
sories. Thus, these approaches might also fail to correctly
separate a BP with occlusion from an intentional AP attempt.
Up to now, few studies have addressed the impact of some of
these occlusions for PAD [45] and most of them are focused
on the analysis of facial images havingmasks to avoid SARS-
CoV-2 coronavirus [45]. For further details on general facial
PAD, the reader is referred to [4], [12], and [13].

In our research, we abstract from the fact that the input
facial samples might contain some of the aforementioned
occlusions and present a comprehensive analysis of the

TABLE 1. Definition of facial regions by landmarks.

usefulness of various facial regions for PAD. These facial
regions could, in turn, be used in a variety of realistic and
challenging scenarios, including those in which certain occlu-
sions are detected.

III. PROPOSED FRAMEWORK
In our work the feasibility of using 14 facial regions for PAD
purposes: both eyes, both eyebrows, central face, chin, jaw,
left eye, right eye, left eyebrow, right eyebrow, mouth, nose,
left face, and right face regions is explored. Fig. 2 shows
the framework proposed to conduct our analysis, which is
based on two main steps: i) the facial region is detected and
extracted (see Sect. III-A), and ii) the facial region is the input
to a PAD approach (see Sect. III-B) for BP vs. AP decision.

A. FACIAL REGIONS EXTRACTION
For facial region detection and extraction, the open-source
toolbox dlib [46] which extracts 68 landmarks per face is con-
sidered. Based on such landmarks, 14 different facial regions
in Tab. 1 are defined. For a comprehensive analysis, these
regions are divided into two groups: single (i.e., mouth, nose,
chin, left eye, right eye, left eyebrow, and right eyebrow) and
composite (i.e., both eyes, both eyebrows, central face, jaw,
left face, and right face, full face). Fig. 3 shows an example of
those landmarks together with some facial regions. Note that
the left (right) region comprises the facial portion to the left
(right) of Landmark 27, bounded by the top of the forehead
and Landmark 8.

B. PAD METHODS
Five state-of-the-art CNN approaches are independently
evaluated:

• AlexNet is one of the first deep architectures developed
in 2012 [48] which outperformed all traditional machine
learning and computer vision approaches in the Ima-
geNet challenge [48].

• DenseNet was proposed by Huang et al. [49]. The net-
work connects each layer to every other layer in a
feed-forward fashion as long as they have the same
feature map size, thus reducing the vanishing gradi-
ent problem as the dense connections introduce short
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FIGURE 3. Some facial regions (i.e., mouth, nose, left and right eyes, left
and right eyebrows, chin and jaw) computed from landmarks extracted
from an image in REPLAY-MOBILE [47].

paths from inputs to outputs [49]. Moreover, this allows
implicit deep supervision since the individual layers
receive supervision from the loss function due to the
shorter paths. The DenseNet model with 121 layers is
utilised in the experiments.

• ResNet was the winner of ImageNet challenge in
2015 [50]. Like DenseNet, it does not suffer from the
vanishing gradient problem [50]. ResNet introduces a
residual connection strategy which improves both the
training speed and accuracy. In our implementation, the
version of 101 layers is adopted.

• MobileNetV2, in contrast to the aforementioned archi-
tectures, was developed by Sandler et al. [51] with a
focus on mobile applications. This network included a
novel layer, named inverted residual with linear bottle-
neck, which reduces the number of parameters to learn.

• MNasNet is a recent lightweight CNN developed by
Tan et al. [52] for mobile applications. This architecture
incorporates model latency into the main objective func-
tion to identify a model that achieves a good trade-off
between accuracy and latency (i.e., inference time).

In our implementation, the last fully connected (FC) layer
for all deep learning architectures studied is modified to
a single neuron with a sigmoid activation for the BP vs.
AP decision.

C. FACIAL REGION UTILITY
We define a new metric named Facial Region Utility which
combines the correlation between facial regions and the
detection performance of algorithms when they are trained
using a particular facial region and evaluated on another one.
This metric reports a value in the range [0, . . . , 1] which
indicates the usefulness of a particular region for training to

spot an attack presentation based on the other region in a
probe image. Formally, the Facial Region Utility for a probe
facial region RP with respect to a trained region RT is defined
as follows:

U (RT ,RP) =
|C(RT ,RP)| + (1 − P(RT ,RP))

2
, (1)

where C(RT ,RP) is the Pearson correlation coefficient
between RT and RP. C(RT ,RP) reports a value in the range
[−1, 1] indicating how correlated the features of RP are with
those of RT . Since the direction of the Pearson correlation
between RT and RP does not lead to any improvement, the
absolute value over the coefficient is applied. P(RT ,RP) rep-
resents the normalised Detection Equal Error Rate (D-EER)
when RP is evaluated using an algorithm trained over the
region RT . Utility values close to 1 state that RT can be
employed for training whilst RP can be successfully used
for detecting an AP in the probe image. To normalise the
D-EER values to the range [0, 1], the traditional Min-Max
normalisation [53] is employed:

normalisedD-EER =
D-EER − minD-EER

maxD-EER − minD-EER
, (2)

where minD-EER and maxD-EER are, respectively, the mini-
mum and maximum values of the set of D-EERs computed
by the proposed PAD methods (see Sect. III-B) on different
training and testing configurations of the facial regions.

Tomake the equation 1 clear to readers, the boundary cases
are outlined. Let A be a PAD algorithm, for the best case,
we assume that the performance of A on two face regions
(i.e., PA(RT ,RP)) would result in a D-EER = 0.0, and RT
andRP are highly correlated (i.e.,C(RT ,RP) = 1). Therefore,
the Facial Region Utility between RT and RP would achieve
the highest value (i.e., U (RT ,RP) = 1). On the contrary,
for the worst case, PA(RT ,RP) = 1, 0 and C(RT ,RP) = 0,
leading to a U (RT ,RP) = 0.

IV. EXPERIMENTAL SETUP
The experimental evaluation goals are manifold: i) study the
impact of image resolution for PAD across facial regions
ii) assess the feasibility of using facial regions for PAD,
iii) analyse the effect of wearing glasses on the detection
performance of PAD techniques, iv) evaluate the correlation
and detection performance of facial regions as well as their
utility for being used on real applications where some face
parts might be occluded, and iv) establish a benchmark of
state-of-the-art using our proposed analysis. To reach our
goals, we focus on three scenarios:

• Known attacks: Analyses of the detection performance
when the same PAI species are used for training and
testing. For this purpose, known-attack protocols in [22],
[24], and [47] are employed.

• Unknown PAI species: Exploration of the detection
performance when different PAI species are used for
training and testing. Protocol 2 from OULU-NPU
described in [54] is employed.

VOLUME 11, 2023 68515



L. J. Gonzalez-Soler et al.: Toward Generalizable Facial Presentation Attack Detection

TABLE 2. A summary of databases considered in our experiments.

• Cross-database, in which the datasets employed for test-
ing are different from the databases used for training.
Both datasets contain the same PAI species to ensure
that the performance degradation is due to the dataset
change and not to the unknown PAI species. Protocol 3
from OULU-NPU described in [54] is adopted.

The proposed framework was implemented using
PyTorch [55] and the CNNs were trained on the Nvidia Tesla
M10 GPU with 16 GB DRAM. The algorithms are trained
using the Adam optimiser [56]. Since the networks were
initialised with the ImageNet pre-trained weights, a learning
rate of 10−4 and a weight decay parameter of 10−6 are used.

A. DATABASES
The experimental evaluation is conducted with four well-
established databases which are summarised in Tab. 2:
CASIA Face Antispoofing database (CASIA-FASD) [22],
REPLAY-ATTACK (RA) [24], REPLAY-MOBILE (RM)
[47], and OULU-NPU [54]. Since most databases contain
videos, a random frame per video to conduct our experiments
is selected.

CASIA-FASD [22] is a small database containing
600 short videos captured from 50 different subjects under
different environmental conditions. Three PAI species are
included: i) warped photo attacks or printed attacks, in which
the attackers place their face behind the hard copies of
high-resolution digital photographs, ii) cut photo attacks,
in which the face of the attacker is placed behind the hard
copies of photos, where eyes have been cut out, and iii) video
replay attacks, where attackers replay face videos using iPads.
Three imaging qualities are also considered, namely the
low quality, normal quality and high quality in the video
acquisition.

REPLAY-ATTACK (RA) [24] has 1200 short videos of
50 different subjects. The videos were captured with a
low-resolution webcam of a 13-inch MacBook Laptop under

two different conditions: i) controlled, with uniform back-
ground and artificial lighting, and ii) adverse, with natural
illumination and non-uniform background. Moreover, three
PAI species are implemented: printed attacks, photo replay
attacks (i.e., a photo is replayed by a smartphone to the
capture device), and video replay attacks.

REPLAY-MOBILE (RM) [47] comprises 1190 video clips
of printed attacks, photo replay attacks, and video replay
attacks stemming from 40 subjects under different lighting
conditions. This database focuses on the PAD evaluation over
mobile scenarios, as videos were recorded with two smart
capture devices: an iPad Mini2 and a LG-G4 smartphone.

Collaborative Real Mask Attack (CRMA) [9] consists
of 423BP videos and 12690 attacks of 47 subjects. The videos
were acquired with three different high-definition capture
devices in realistic scenarios. The PAI species are i) both
unmasked (BM0) andmasked (BM1) bona fide presentations,
ii) printed and video replay attacks from subjects not wearing
a mask (AM0), iii) printed and video replay attacks from sub-
jects wearing a mask (AM1), and iv) partial attack where the
unmasked printed/replayed faces are covered with real masks
(AM2). The CRMA is challenging due to that it contains dif-
ferent masks to prevent SARS-CoV-2 coronavirus, multiple
capture devices, and several capture distances. An example
of different BP and AP samples is depicted in Fig. 4.
OULU-NPU [54] consists of 4950 high-resolution short

video sequences of BPs and AP attempts stemming from
55 subjects. The BP samples were acquired in three different
sessions under different illumination conditions and back-
ground scenes. The PAI species are printed attacks and video
replay attacks which were recorded using the frontal cameras
of six mobile phones. This database defines four different
protocols as follows:

• Protocol 1 focuses on the generalisation ability of PAD
techniques across different environmental conditions
(i.e., illumination and background scenes). The settings
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FIGURE 4. Example of BPs and APs in the CRMA database taken from [9].

of the environmental conditions used for the capture
of the tested samples are different from those for the
acquisition of the training images.

• Protocol 2 is designed to evaluate the PAD generali-
sation capability when the tested PAI species remain
unknown from the training set (i.e., Unknown PAI
species scenario).

• Protocol 3 analyses the capture device interoperability
following a Leave One Camera Out (LOCO) protocol,
where samples recorded by five smartphones are used
for training whilst instances captured by the sixth mobile
device are used for testing. In essence, this protocol
evaluates cross-database scenarios.

• Protocol 4 is the most challenging scenario, as it
combines all described protocols. In particular, the gen-
eralisation ability of PAD approaches across previously
unknown illumination conditions, background scenes,
PAI species, and capture devices is simultaneously
evaluated.

B. EVALUATION METRICS
The experimental results are analysed and reported in com-
pliance with the metrics defined in the international standard
ISO/IEC 30107-3 [11] for biometric PAD:

• Attack Presentation Classification Error Rate (APCER),
which computes the proportion of attack presentations
wrongly classified as bona fide presentations.

• Bona Fide Presentation Classification Error Rate
(BPCER), which is defined as the proportion of bona
fide presentations misclassified as attack presentations.

Based on these metrics, we report i) the BPCER observed
at an APCER value or security threshold of 10% (BPCER10);
and ii) the Detection Equal Error Rate (D-EER), which is
defined as the error rate value at the operating point where
APCER = BPCER.

V. RESULTS AND DISCUSSION
A. KNOWN ATTACKS
In this section, we conduct several experiments aimed at
evaluating the effect of varying image resolution and the use

FIGURE 5. Impact of image resolution on different facial regions.

of glasses on PAD performance. For this purpose, known-
attack scenarios, i.e. the PAI species used to generate the test
database are known a priori in training are adopted. In this
way, biases related to external variables such as PAI species,
subject and environmental conditions are avoided.

1) EFFECTS OF IMAGE RESOLUTION FOR PAD
Since the size of facial regions can vary across images, the
impact of image resolution for PAD is investigated. To that
end, the D-EER per facial region and algorithm defined in
Sect. III-B over three databases is computed: CASIA, RM,
and RA. Fig. 5 reports the boxplots per facial region over
three resolutions i.e., 64× 64, 128× 128, 256× 256: greater
resolution configurations might result in a performance dete-
rioration due to pixel value interpolation for the smallest
regions. Note that the D-EER improves with the image res-
olution, thus yielding the best detection performance for an
image size of 256 × 256 pixels. Observe that those regions
having a large image size (e.g., full face, right face, left face,
and jaw) report a low standard deviation (std) for an image
resize greater or equal than 128 × 128 pixels (see red and
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FIGURE 6. Best performing facial regions for known attacks.

green boxes in Fig. 5-b): the mean std is approximately 6.99.
In contrast, their standard deviation increases when a small
size of 64 × 64 is used (see blue boxes in Fig. 5-b): the mean
std is approximately 10.25.

Following the above observations, it can be also seen that
the pixel value estimation for the smallest facial regions
(i.e., left and right eyes, left and right eyebrows, both
eyebrows, both eyes, mouth, nose, and chin) during the
resize significantly affects the algorithm’s detection perfor-
mance, thus resulting in a high standard deviation in the
ranges [6.72, . . . , 13.62]. These resolution results confirm
the findings in [57]: the up-sampling or down-sampling step
performed by the deep learning approaches to adjust the size
of a given image in the input layer leads to an information
loss of artefacts for the smallest or largest sizes, respectively.

Since most facial regions report on average their best
detection performance for a resize configuration of 256 ×

256 pixels, we select it for further experiments.

2) DETECTION PERFORMANCE OF FACIAL REGIONS
In the second set of experiments, the PAD performance
for each facial region over CASIA, RM, and RA databases
following their corresponding known-attack protocols is eval-
uated. Similar to the above experiment, the D-EER per facial
region and algorithm defined in Sect. III-B is computed -
their detection performance is reported as boxplots in Fig. 6.
As it may be noted, the training and evaluation of selected
approaches using the full face attain on average the best
D-EER: a median D-EER of 3.92% (indicated by the central
blue mark in the boxplots) outperforms the remaining facial
regions. Regarding composite regions, it can be observed that
they report the best performances e.g., right face (median
D-EER = 4.61%), left face (median D-EER = 5.38%),
jaw (median D-EER = 5.53%), and central face (median
D-EER = 6.28%). Furthermore, the error rates of these com-
posite regions tend to their median values, thus resulting in a

FIGURE 7. Detection performance for images containing glasses (blue
boxes) and no glasses (red boxes).

low standard deviation with respect to the mean values: their
standard deviation is in the ranges [5.88, . . . , 7.97]. Among
the single regions, the nose achieves the best detection perfor-
mance, yielding a median D-EER of 7.19% with a standard
deviation of 7.06. Even, this outperforms the performance
attained by both eyes (median D-EER = 7.83%). Whereas
75% of the D-EER values of the nose region are below
their median, only 25% of the error rates of both eyes are
below their median, hence indicating that the nose is more
suitable for PAD than both eyes. Since the nose is a flat
region composed mostly of skin, we think that any variation
in quality, colour, or texture can lead to an improvement in
the detection of APs.

Note that the worst regions are the right and left eyebrows
and mouth which report median D-EERs above 13% and
standard deviations in the ranges [10.28, . . . , 12.08]. Observe
that the union between both regions (i.e., both eyebrows)
improves their individual errors by three percentage points
(i.e., 10.41% for both eyebrows vs. 14.01% for the right
eyebrow). This is because the region comprising both eye-
brows includes flat skin in between which allows algorithms
to detect APs. Similar behaviour can be also perceived in the
results achieved for both eyes.

3) IMPACT OF WEARING GLASSES ON PAD
Note in Fig. 6 that most regions around the eyes (i.e., left
and right eyes and left and right eyebrows) report a high-
performance deterioration, thus yielding std values in the
ranges [10, . . . , 12]. Based on this observation, the effect of
wearing glasses in those regions that might contain such an
accessory is investigated. To that end, we follow the same
experimental evaluation used in Sect. V-A2 and split the
training and evaluation sets from the CASIA, RM and RA
databases into two balanced sets each containing faces with
glasses and faces without glasses. The boxplots representing
D-EERs computed by the methods defined in Sect. III-B, per
facial region in the above databases are shown in Fig. 7. Note

68518 VOLUME 11, 2023



L. J. Gonzalez-Soler et al.: Toward Generalizable Facial Presentation Attack Detection

FIGURE 8. Correlation and detection performance between facial regions. The green rectangles highlight some examples of facial region configurations
which report high correlations and detection performances.

that i) wearing glasses affects the detection performance of
approaches evaluated when trained using either the full face
or the central face, ii) right and left faces are not affected by
wearing glasses, thus yielding a better detection performance
when faces contain glasses, iii) wearing glasses impact the
PAD performance for both left and right eyes along their
fusion (i.e., both eyes), and iv) whereas the performance for
left and right eyebrows is not highly affected by wearing
glasses, the fusion region (i.e., both eyebrows) is. The latter
is due to the accuracy of the region extraction algorithm:
it includes part of the glasses in the final images. These
findings complement the study conducted in [58]: wearing
glasses also has a negative impact on iris segmentation and
thus on iris recognition. A possible solution to improve the
detection performance of PAD techniques against subjects
wearing glasses would therefore be to first focus on detecting
the glasses and then use the jaw area, which reports high
performance in Fig. 6 to reject AP attempts.

4) CROSS-DETECTION PERFORMANCE, CORRELATION, AND
UTILITY
Now the correlation between facial regions is explored. For
this purpose, the PAD approaches for each facial region over
the CASIA, RM, and RA databases are first trained. On the
evaluation sets, latent vectors from the last FC layer before the
final decision layer are extracted and averaged them. Fig. 8-a
shows the average Pearson correlation coefficient between
facial regions. It should be noted that the features representing
the facial region combination share at least 50% of their
characteristics with each other. Facial regions that are highly
correlated with each other are highlighted with a green rect-
angle. Specifically, the latent vectors of facial regions such

as the left and right eyes, left and right eyebrows, mouth and
nose report as expected a high Pearson correlation ranging
from 0.74 to 1.00. As expected, the right and left regions of
the faces share 82% of their characteristics. Therefore, they
can be interchangeably used for PAD. Finally, the full face is
highly correlated with the central part of the face, followed
by the jaw and the left and right regions of the face.

Following the above idea, the detection performance
between facial regions (as it is illustrated in Fig. 8-b) is
computed. In this experiment, the architectures are trained
using one facial region (depicted by the rows) and evalu-
ated on the remaining regions (shown by the columns) over
three databases (i.e., CASIA, RM, and RA). Then, the mean
D-EER between facial region combinations is reported in
Fig. 8-b. It is important to point out that error rates are
normalised following the eq. 2. It should be observed that
the evaluation of facial regions such as the jaw, central face,
and left and right regions achieves the best detection when
the algorithms are trained using the full face. In fact, the jaw
yields the same D-EER as the one attained by the full face
(i.e., D-EER = 0.05). Subsequently, the central face and left
and right face regions depict similar detection performance
(i.e., 0.10 vs. 0.12). As a consequence of these results, we per-
ceive that the full face can be used to spot an AP attempt in
the probe image when PAD algorithms are trained on either
jaw, left face, right face, or central face regions.

Based on Fig. 8, the Facial Region Utility is computed
using the eq. 1 and reported in Fig. 9. As was mentioned in
Sect. III-C, this metric indicates the usefulness of a particular
region for training to spot an attack presentation based on the
other region in a probe image. As can be observed, the same
region used simultaneously for training and testing reports
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FIGURE 9. Facial Region Utility computed from the correlation and
detection performance matrices. The green rectangles highlight the
combinations of facial regions with a high utility. The red rectangles state
those examples of facial region combinations whose correlation and
detection performance values show a contrary trend in Fig. 8.

the best utility (i.e., diagonal values). Note that facial regions
such as the full face, left and right faces, central face, and jaw
can be used the create a reliable train and test configuration
as they report high Facial Region Utility values. In particular,
the training of a PAD approach over the full face (i.e, red
rectangle at the bottom) allows the successful evaluation of
regions such as jaw (U (·) = 0.84), central face (U (·) = 0.83),
right face (U (·) = 0.80), and left face (U (·) = 0.79). It should
be noted that the Facial Region Utility highly depends both
on the correlation and the algorithm’s detection performance.
Those train-test facial regions which drop their Facial Region
Utility due to contrary trends depicted in Fig. 8 are high-
lighted with red rectangles. Whereas mouth, nose, right and
left eyes and left and right eyebrows pose a high correlation
with each other (see Fig. 8-a), the detection performance
between them decreases considerably (see Fig. 8-b). There-
fore, they are not suitable for a PAD train-test configuration.

B. ANALYSIS OF THE FACIAL REGION UTILITY ON
CHALLENGING SCENARIOS
To verify the usefulness of the Facial Region Utility, several
state-of-the-art PAD techniques are trained using the full face.
The best-utility regions (i.e., jaw, central face, right face, and
left face) are then evaluated - their detection performance over
the challenging protocols in the OULU-NPU database [54] is
reported in Tab. 3. Note that the results depicted in Tab. 3
might differ from the ones yielded by their corresponding
papers. In contrast to the original pipelines which use all
video frames to make the final decision, these algorithms
were trained and assessed using a random video frame.
Observe that the D-EERs improve with the utility of facial
regions independently of the evaluated protocol. Specifically,

FIGURE 10. Some images show why the detection performance between
left and right faces is different. a) and b) represent the visual differences
between a perfect symmetrical face (i.e., b) and its original face
(i.e., a) [60]. c and d are examples of BP and AP in OULU-NPU whose
artificial light configurations differ from each other.

the best detection performance is yielded by the full face,
followed by the jaw. According to the Facial Region Utility,
the central face is the third best region to spot anAP attempt in
a probe image after the full face and jaw. However, this region
reports a detection performance decrease with respect to the
results achieved by the right and left faces. This behaviour
mostly happens due to the sensitivity of this region to the
use of glasses (see Fig. 7). On the other hand, the right face
outperforms the left face in all experiments. This is mainly
due to variables such as the asymmetry of the face and the
artificial light positions used in the BP and AP acquisition.
The latter causes most of the characteristics separating a BP
from an AP to be detected in the right region of the face (see
Fig. 10).
Note that the detection performance attained by the

handcrafted-based technique (i.e., FV-GMM) shows for the
jaw an improvement regarding the remaining regions. Unlike
deep learning approaches evaluated, this algorithm derives
a kernel from the parameters learned by a generative model
(i.e., Gaussian Mixture Models (GMM) [61]) to characterise
how the distribution of a set of unknown local descriptors
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TABLE 3. Benchmark of the state-of-the-art algorithms trained on the full face and evaluated on the regions with the best Facial Region Utility in terms
of D-EER(%) using the OULU-NPU database [54].

TABLE 4. The detection performance of the DeepPixelBis algorithm on the CRMA database. The PAD decision threshold employed in the APCER, BPCER,
and ACER computation is the one yielded at a BPCER10 (i.e., BPCER@APCER = 10%) on only unmasked data in the development set.

differs from the distribution of known features. Therefore,
this does not require the probe image to be similar in terms
of shape to the trained samples. It can be observed that
deep learning schemes suffer from a detection performance
deterioration when the object in the probe image (e.g., the
jaw) is different from the one used for training (i.e., the full
face). We think that deep learning solutions focused on local
patches could improve the above limitation.

C. BENCHMARK WITH THE STATE OF THE ART
The usefulness of the Facial Region Utility for a real appli-
cation where subjects wore masks to prevent respiratory
infections is also evaluated. For this purpose, the best per-
forming algorithm in Tab. 3 (i.e., DeepPixelBis) is selected
and a benchmark with the state-of-the-art techniques in Tab. 4
over the CRMA database is established. To build a realistic
analysis where the behaviour of the PAD on facial images
containing masks to prevent SARS-CoV-2 coronavirus is
still unknown, we follow the experimental setup in [45] and
report the APCER and BPCER values by using the threshold
BPCER10 that is computed on only unmasked data in the
development. In this experiment, the algorithms are trained
on the full faces and evaluated either on the full face (i.e., the
four first rows) or the central face (i.e., the last row). As the
jaw which is the second region with the highest utility (see

Fig. 9) is fully occluded by the masks, i.e. a large drop in the
detection performance is expected, the central face is directly
evaluated. The Average Classification Error Rate (ACER)
is computed due to the lack of a proper evaluation of the
state-of-the-art compliant with the ISO/IEC 30107-3 [11] for
biometric PAD.

Note in Tab. 4 that the evaluation of the algorithms using
the full face leads to a significant detection performance dete-
rioration. In particular, the BPCER values for BM0 and BM1
are considerably high (i.e., first row, BPCER ≥ 63.16%),
thereby confirming our initial hypothesis: PAD algorithms
misclassify BPs as an intentional AP when subjects wear
some accessories e.g., masks. In fact, the Regional Weight
(RW) and Partial Attack Label (PAL) methodologies pro-
posed in [45] to mitigate such attacks build a secure
(APCER ≤ 1.95%) but not convenient (BPCER ≥ 26.32)
PAD subsystem. In contrast, the evaluation of the cen-
tral region alongside the earlier detection of a facial mask
to avoid SARS-CoV-2 coronavirus resulted in an over-
all improvement of the detection performance: an ACER
of 9.51% which outperforms the DeepPixelBis [31] and
DeepPixelBisRW−PAL [45] method by relative improvements
of 67.73% and 17.98%, respectively, allows the building of a
secure and convenient system. Finally, it is worth noting that
the subjects only used glasses in 16% of the images in the
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CRMA database unlike OULU-NPU, whose subjects wore
glasses in 50% of the images. Therefore, these results are not
fully biased by this type of accessory.

VI. CONCLUSION
In this work, the feasibility of using different facial regions
for PAD was explored. In particular, 14 regions including
single and composite regions were evaluated in compli-
ance with the metrics defined in the international standard
ISO/IEC 30107-3 [11] for biometric PAD. The experimen-
tal evaluation conducted over the freely available databases
such as CASIA, REPLAY-MOBILE, REPLAY-ATTACK,
CRMA, and OULU-NPU depicted that the composite regions
achieved the best detection performances. In particular, the
full face yielded a median D-EER of 3.92%, followed by the
right (median D-EER = 4.61%) and left (median D-EER =

5.38%) faces, jaw (median D-EER = 5.53%), and central
face (median D-EER = 6.28%). As expected, there exists a
correlation between representing the left and right regions of
the face as well as both eyes and eyebrows. In addition, the
proposed Facial Region Utilitymetric indicated those regions
capable of being used in unattended applications where sub-
jects have some common accessories. In fact, these facial
regions with a high Facial Region Utility (i.e., jaw, central
face, left and right face) can be also combined to improve the
particular result reported by the use of the full face on those
applications.

In our work, we also showed the usefulness of the Facial
Region Utility for a particular use case where individuals
wore masks to prevent respiratory infections: the use of the
central face over the full face yielded an ACER of 9.51%
which outperforms the state-of-the-art methods by a relative
improvement up to 67.73%. We noted that the BPCER val-
ues yielded by the state-of-the-art were decreased down to
BM0 = 7.02% and BM1 = 15.79% for pristine subjects.
These results allow therefore the building of a secure and
convenient PAD module.

The use of other accessories such as glasses also impacts
the detection performance of algorithms when either the full
face, eyes, or central face is used to detect AP attempts.
We observed that increasing the size of facial regions also
affects the detection performance of the analysed algorithms:
256 × 256 pixels reported the best results for all regions.
The pixel value estimation for the smallest facial regions
such as left and right eyes, left and right eyebrows, both
eyebrows, both eyes, mouth, nose, and chin during the resize
considerably affects the algorithm’s detection performance,
thus resulting in high standard deviation values.

Finally, a disadvantage of the proposed analysis relies on
the detection of facial landmarks and thus on the extraction
of regions in images whose pristine subjects have some kind
of disease, e.g. paralysis.2 AP attempts launched by these
individuals should be appropriately addressed in future work.

2https://www.facialparalysisinstitute.com/photo-gallery/
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