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ABSTRACT The heart sound signals captured via a digital stethoscope are often distorted by environmental
and physiological noise, altering their salient and critical properties. The problem is exacerbated in crowded
low-resource hospital settings with high noise levels which degrades the diagnostic performance. In this
study, we present a novel deep encoder-decoder-based denoising architecture (LU-Net) to suppress ambient
and internal lung sound noises. Training is done using a large benchmark PCG dataset mixed with
physiological noise, i.e., breathing sounds. Two different noisy datasets were prepared for experimental
evaluation by mixing unseen lung sounds and hospital ambient noises with the clean heart sound recordings.
We also used the inherently noisy portion of the PASCAL heart sound dataset for evaluation. The
proposed framework showed effective suppression of background noises in both unseen real-world data
and synthetically generated noisy heart sound recordings, improving the signal-to-noise ratio (SNR) level
by 5.575 dB on an average using only 1.32 M parameters. The proposed model outperforms the current
state-of-the-art U-Net model with an average SNR improvement of 5.613 dB and 5.537 dB in the presence
of lung sound and unseen hospital noise, respectively. LU-Net also outperformed the state-of-the-art Fully
Convolutional Network (FCN) by 1.750 dB and 1.748 dB for lung sound and unseen hospital noise
conditions, respectively. In addition, the proposed denoising method model improves classification accuracy
by 38.93% in the noisy portion of the PASCAL heart sound dataset. The results presented in the paper
indicate that our proposed architecture demonstrated a robust denoising performance on different datasets
with diverse levels and characteristics of noise. The proposed deep learning-based PCG denoising approach
is a pioneering study that can significantly improve the accuracy of computer-aided auscultation systems for
detecting cardiac diseases in noisy, low-resource hospitals and underserved communities.

INDEX TERMS Heart sound, real time denoising, deep learning, denoising autoencoder, cardiovascular
diseases, cardiac disease detection.

I. INTRODUCTION deaths [1]. With inadequate facilities, insufficiency of trained

Cardiovascular diseases (CVDs) continue to be one of the
leading causes of morbidity and mortality, claiming approx-
imately 17.9 million lives every year [1]. The CVD-related
death toll is ever on the rise, reaching about 32% of global
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physicians, and a lack of proper diagnostic equipment, the
residents of the developing and under-developed countries
are more vulnerable to CVD-related casualties [2]. Early
diagnosis and treatment can be helpful in alleviating the
adverse outcomes of CVDs. Heart sounds, generated by the
mechanical activity of the heart valves during blood flow,
reveal many diagnostically important information regarding
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the physiological condition of the heart [3]. Thus, the
phonocardiogram (PCG) is of paramount importance, being
an effective, non-invasive, and comparatively inexpensive
way for preliminary screening of CVDs [4]. Nevertheless,
inter-listener variability and subjectivity in the interpretation
limit its applicability.

The recent advancements in embedded systems and
smartphone technologies have enabled the deployment of
artificial intelligence-based computer-aided cardiac ausculta-
tion frameworks in point-of-care locations and, thereby, have
the potential to improve healthcare delivery substantially.
However, reliable and objective assessment of CVDs through
these computerized methods is still a challenge. High
susceptibility to motion artifact during signal acquisition,
intrinsic spectral overlap among heart sound and lung sound
(breathing sound), noise due to power supply interference,
ambient noise in a hospital (door opening/closing/knocking,
phone ringing, movement and speech of other patients in
the outpatient department (OPD)), distortions introduced
by the variation in device functionality (diaphragm, sensor,
amplifier) affect the quality of PCGs and may even mask the
presence of abnormalities in the perceived signal [3]. These
factors can further degrade the performance of the Al-based
automated diagnostic methods in real-life scenario [5].
Therefore, these factors must be considered crucial when
designing a robust computerized auscultation tool for aiding
the healthcare professionals in the CVD-screening process.

Over the past few decades, denoising noisy auscultation
sounds have been thoroughly explored. Several statistical,
time-domain and frequency-domain techniques have been
investigated to denoise heart sounds [5], [6], [7] and lung
sounds [8], [9]. Discrete wavelet transform (DWT) [10],
empirical mode decomposition (EMD) [11], variational
mode decomposition (VMD) [6], combination of singular
value decomposition (SVD) and compressed sensing [12],
non-negative matrix factorization (NMF) with adaptive
contour representation computation (ACRC) from corre-
sponding spectrogram [7] are some of the best performing
approaches reported so far. Nevertheless, these techniques
are often computationally intensive, time-consuming, and
highly dependent on the data, predefined basis functions, the
number of decomposition levels, thresholding parameters,
and types [5], [10]. Moreover, most of these methods are
evaluated using controlled clinical settings or simulated noisy
conditions that oversimplify the irregular, unpredictable
non-additive transient distortions from multiple sources [10].
All these data dependency factors and low protocol ver-
satility concertedly make the existing methods of heart
sound denoising a herculean task for the non-homogeneous
real-world data.

Deep learning-based methods have garnered much atten-
tion and become the mainstream in a variety of applications
and diverse branches of biomedical engineering [20], [23],
[25], [29], [30]. In the same vein, a considerable amount of
research work has been directed towards automated CVD
screening through Al-assisted PCG segmentation [31], [32]
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and classification frameworks [4], [33], [34], [35], [36]
due to the availability of multiple publicly available large
PCG datasets. The inhomogeneity introduced by the inherent
noises for automated PCG classification has been taken into
consideration by a very few recent studies [36] however,
development of dedicated deep learning-based denoising
algorithms aiming to improve the diagnostic performance
still remains unexplored. To the best of the knowledge of
the authors, only a single work exists in the literature that
has utilized deep learning-based architectures, i.e., 2D U-Net
and denoising convolutional neural network (DnCNN) for
denoising heart sound signals [37]. However, the work [37]
lacks relevance from a clinical perspective since only random
Gaussian noise was considered for synthetically corrupting
heart sounds. The framework was not validated for any
real-life noisy data. Additionally, the network performs in
the time-frequency domain i.e., the signal sequence needs
to be reshaped into a 2D vector for using the model weight
on it and, again, reshaped into a 1D vector for final auditory
inference. Thus, there is a significant buffering time between
the input and the inference, which makes it unsuitable for
applying in real-life scenarios. Furthermore, the denoising
method was not evaluated to determine its impact on PCG
classification performance. Practical denoising algorithms
may introduce distortions that can degrade classification
performance, and thus, such evaluations are crucial. Irre-
spective of these shortcomings, considering this work as
the stepping stone and being motivated by the successful
implementation of deep learning based methods for denoising
speech and other non-stationary time-series signals (see
a summary in Table 1), especially physiological signals
like electrocardiogram (ECG), electroencephalogram (EEG),
photoplethysmography (PPG), this paper aims to address
the challenges of designing a robust computerized heart
auscultation tool by proposing a comprehensive, resilient,
end-to-end deep learning framework.

In this work, we propose an end-to-end deep learning
framework for the real-time denoising of noisy heart sound
recordings corrupted by real-world noises, i.e., lung sounds
and hospital ambient noise. We aim to ensure that our
framework retains the signal morphology, especially the
murmurs, the primary indicators of cardiac abnormality,
despite severe distortions in the input. Our network design is
inspired by the fundamental nature of heart sounds and their
applicability in a real-world setting. The heart sound signal
is quasi-periodic as it is generated at regular intervals by
sequential opening and closing of heart valves as blood flows
through heart chambers [38]. Therefore, we hypothesize that
a recurrent module in the network will improve denoising
performance compared to standalone convolutional models
because of its capability to identify temporal relationships.
A flow diagram of the proposed framework is shown in Fig. 1.
The main contributions of this paper are summarized below:

o To the best of our knowledge, we are the first group

to propose a robust deep encoder-decoder based real-
time PCG denoising framework named LU-Net, which
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TABLE 1. Summary of the recent deep learning based works on speech and physiological signal denoising.

Speech Denoising

Author (Year)

Noise Type

Network

Kong et al. [13] (2022)

Alamdari et al. [14] (2021)

Liu et al. [15](2020)

Pandey et al. [16] (2019)

Rethage et al. [17] (2018)

Several kinds of environmental noise, music
from 3 benchmark dataset

Babble, wind, engine, driving car

10 types of noise (2 artificial and 8 from a
benchmark databaset)

Babble, cafeteria noise with other different
non-speech sounds

Environmental noise (conditions in a park, a
bus or a cafe)

CleanUNet (encoder-decoder architecture
with self-attention blocks)

FCN with Noisy2Noisy signal mapping

CP-GAN (Context Pyramid Generative Ad-
versarial Network)

Temporal convolutional neural network

Wavenet (CNN with non-causal, dilated con-
volutions)

Physiological Signal Denoising

Author (Year) Signal Type Noise Type Network
Pouyani et al. [18] (2022) Lung sound Gaussian white noise DWT-ANN
Aghaomidi et al. [19] (2022) ECG MA, BW, EM (I, II), RN DeepRTSNet (2D Encoder-Decoder)
Kiranyaz et al. [20] (2022) ECG Clean and corrupted samples 1D Cycle-GAN
from the CPSC-2020 dataset
Chuang et al. [21] (2022) EEG Eye, muscle, heart, channel noise, IC-U-Net (1D U-Net-based DAE)
other artifacts (during driving, walking)
Bing et al. [22] (2021) ECG MA, BW, EM (II) DeepCEDNet (2D Encoder-Decoder)
Guan et al. [23] (2021) ECG MA, BW, EM (II) LDTF (Low-dimensional denoising
embedding transformer)
Yi et al. [24] (2021) EEG Ocular & muscle artifact EEGDnet (2D Transformer)
Sawangjai et al. [25] (2021) EEG Ocular & muscle artifact with different EEGANet (GAN)
movements using a single upper extremity
Singh et al. [26] (2020) ECG MA, BW, EM (II), RN CNN-GAN
Sun et al. [27] (2020) EEG Ocular & muscle artifact, ECG noise 1D-ResCNN (CNN with parallel residual
blocks)
Chiang et al. [28] (2019) ECG MA, BW, EM (II) FCN-based DAE (1D)
Lee et al. [29] (2018) PPG RN, Saturation noise, Sloping noise Bidirectional Recurrent Auto-Encoder

* MA - Muscle artifacts, BW - Baseline wander, EM - electrode motion, RN - Random noise, DAE - Denoising autoencoder, ANN - Artificial neural network,
FCN - Fully convolutional network, I- Single noise types applied separately, II - Three kinds of noise (BW, EM, MA) are mixed with equal weight to form a

complex noise.

utilizes U-Net as a backbone with LSTM modules
to capture the spatial and temporal features, precisely
the quasi-periodic information embedded in the PCG
waveform. The model enhances the perceptual quality
by attenuating real-life noise components present in
PCG recordings during cardiac auscultation of any raw
PCG recording without preprocessing or hand-crafted
feature extraction. An expert cardiologist conducted a
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blind informal auditory test to confirm the model’s
effectiveness.

We also proposed a dedicated SNR estimation scheme
for real-life PCG signals contaminated with irregular,
unpredictable, multi-source distortions in low-resource
setting hospitals since obtaining the clean ground truth
of the corresponding noise signal is not feasible in
such scenarios. The proposed scheme was verified
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FIGURE 1. A graphical overview of the end-to-end denoising workflow. After several generic pre-processing steps, pure Heart sound (HS) and Lung
sound (LS) have been obtained which are mixed at particular SNRs to synthetically generate noisy HS data (distorted with LS). Frames of 0.8s from
each of the recordings are successively passed to the proposed architecture. This sums up the training phase. In the testing phase, using the
training weight, three completely unseen dataset(s) (synthetically generated noisy data with LS and hospital ambient noise as well as real-life
noisy data) have been denoised and evaluated using multiple relevant metrics.

using the signal quality label annotations found in the
literature.

o« We conducted extensive experiments to assess the
robustness of our proposed model on multiple blind
test datasets with varying degrees and types of
noise. To challenge the model on multiple levels,
we used two types of synthetically generated noisy
PCGs with different SNR levels, including lung sound
noise and hospital ambience noise (which was not
encountered during training). Additionally, we used
ground truth PCGs from a different dataset to evaluate
the model’s ability to generalize and restore salient
PCG features from a noisy input, regardless of the
PCG source. Finally, we evaluated the model’s per-
formance on a benchmark dataset containing real-life
noisy PCGs from both normal and diseased (murmur)
conditions.

« We conducted a study to assess whether our proposed
model affects the Al-based state-of-the-art CVD clas-
sification model to evaluate whether the characteristics
properties of heart sound required for differential
diagnosis persist after denoising it using the proposed
model. A deep encoder-decoder-based real-time PCG
denoising framework is designed to attenuate the noise
components present in PCG recordings during cardiac
auscultation.
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The remainder of this paper is organized as follows.
In Section II, we highlight the types of noises that majorly
degrade the quality of PCG, Section III-B contains the
detailed description of our proposed method. The data
resources used are described in Section IV. Section V
provides a detailed overview of the experimentation schemes,
i.e., training and test data preparation, baseline systems, and
evaluation metrics used. Section VI contains the qualitative
and quantitative analysis of the results obtained by the
proposed method as well as the baseline systems. The effect
of the loss function and computational efficiency on the
performance of the proposed system is also discussed in
this section. In Section VII, we discuss the implications and
limitations of our method, highlighting the future directions,
and finally, in Section VIII we summarize our findings with
a conclusive remark.

Il. BACKGROUND

In the case of heart sounds, one of the primary causes
of signal deterioration is the impact of noise from several
sources, such as lung sounds caused by breathing, hospi-
tal ambient noise, human conversation, intestinal activity,
stethoscope movements, sensor variability, and so forth [3].
Susceptibility to noise is a matter of concern in the
automated evaluation of cardiac disorders, especially in
low-resource settings. This section discusses the origin and
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properties of the different distortions present in heart sound
recordings.

A. LUNG SOUND NOISE

Lung and cardiac auscultation are two critical bio-signals
for cardiorespiratory diagnosis. Lung sounds are produced
throughout the respiratory cycle when air enters and exits the
airways, while heart sounds are produced by the heart valve,
leaflets, and blood movement in cardiac chambers [38].

The frequency ranges of the two main components of
normal heart sound recordings, namely the first (S1) and
second (S2) heart sounds, are between 20 and 150 Hz [39],
while components of murmurs may be heard between 30Hz
and 700Hz [40]. On the other hand, typical lung sounds span
between 50 and 1000 Hz, while tracheal sounds vary between
850 and 1000 Hz. Abnormal lung sounds, such as wheeze
and crackle, may vary in frequency from 400-1600Hz and
100-500Hz, respectively [41], [42]. Pure cardiac auscultation
signals are usually not accessible due to the fact that both
signals originate from proximal anatomical sites [38]. Thus,
the measured signals are often a mixture of heart and lung
sounds, and they are characterized by intrusive quasi-periodic
interference in both the temporal and spectral domains [43].
Even experienced cardiologists are sometimes perplexed by
the diastolic murmur-shaped breathing sounds present in a
typical HS recording, coupled with low pitched wheeze and
bronchial breathing [36]. Therefore, the diagnostic quality
of heart sound auscultation may be greatly improved by
suppressing respiration signals from heart sound signals.

B. ENVIRONMENTAL AND STETHOSCOPE MOTION NOISE
Due to the transitory nature of heart sound signals, they are
susceptible to irregular ambient noise components that are
randomly distributed in the time and frequency domain, such
as children wailing in the background, people talking, hos-
pital activity sounds, street announcement sounds, etc. [43].
Another potential source of noise is the sliding motions
of the stethoscope diaphragms as a result of the physician
relocating the recording spot, the patient becoming agitated,
or accidental displacement [44]. These noise components
are often of high amplitude, last for a short duration, and
introduce substantial time-frequency overlap between heart
sound signals [43]. These effects add to the complexity of the
analysis and make it more cumbersome for the physicians
to extract relevant diagnostic information. Therefore, noise
reduction would improve the reliability of quantitative and
qualitative assessments using heart sound signals.

Ill. PROPOSED APPROACH

A. PROBLEM FORMULATION

When the pure, noise-free PCG signal is corrupted with
several irrelevant components coming from the environment
or system, a noisy signal is formed as follows:

y=x+n (1)

where y € RN (N is the number of samples in the
signal sequence) represents an acquired noisy PCG signal,
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Algorithm 1 LU-Net

Xe =izt Yo = idi=t, 0 -
ground-truth and noisy PCG signal in the
training dataset, respectively;

X, = {x\lz}izl,...,m, Y, = {yi;}i=l,...,m -
ground-truth and noisy signal in the
validation dataset, respectively.

Output: F(y; 6) - an optimized network

Loss: L(x, X) - mean squared error

Input

Initialize 6 weights

repeat

Acquire noise-free prediction x; = F (yy; 0)

Calculate training loss between prediction and
ground-truth = L(x;, X;)

Update 6 using Adam optimizer with respect to
the loss L(x;, X;)

Acquire noise-free prediction x, = F(y,; 6)

Calculate validation loss between prediction and
ground-truth = L(x,, ;)

Preserve 0 if L(x,, x,) improves, ignore if Step=1

until loss L(x;, X;) converges

return F(y; 0)

x € RN denotes a noise-free PCG signal (theoretical) and
n € RN denotes the noisy signal components that are
additively integrated with the noise-free PCG signal and
degrade their quality.

X=F(;0) @

A deep learning-based end-to-end signal denoising model
implies that giving a noisy PCG signal y as the input
will provide the corresponding noise-free one X as the
output. This is achieved by constructing a highly complex
nonlinear mapping function F(-) i.e., neural network and
training its learnable parameter sets 6 to minimize the
disparity between the estimated noise-free PCG signal x and
corresponding noise-free one x using a suitable objective
function (reconstruction loss). This phenomenon can be
formulated as shown in (2):

In this paper, we leverage the widely-adopted Mean Square
Error (MSE) as the loss function, L(x, x) to train the proposed
architecture by small batch gradient descent method and
gradually minimize the loss by Adam optimization method.
The training pipeline and the associated optimization process
is shown in Algorithm 1.

B. PROPOSED MODEL ARCHITECTURE

The proposed network is a convolutional encoder-decoder-
based architecture with bi-directional long short term mem-
ory (Bi-LSTM) modules in the skip connections, as illustrated
in Fig. 2. It is characterized by the encoder and decoder
layers (each of the encoder or decoder layer is represented
by the subscript, i = 1 to 5), the bottleneck and the output
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FIGURE 2. (a) Proposed LU-Net architecture with the noisy PCG as input on the top and the denoised PCG as output on the bottom. (b) Detailed
representation of the encoder and decoder layers in conjunction with the corresponding Bi-LSTMs in the skip connections.

convolutional layer. Each encoder and decoder layer is
defined by the input (Cj,) and output (Coy) dimensions along
the frame length, kernel size (K) and stride (S).

As input, the first encoder layer (i = 1), Encoder
receives a noisy input frame, x; while the rest of the encoder
layers, Encoder; for i = 2 to 5, receive the output from the
previous encoder layer, Encoder; _ | as input. Each encoder
layer contains a 1D convolution layer with a kernel size of
K and stride of S with a defined number output channels,
Cout followed by a ReLU activation. The output feature
maps resulting from Encoder; is fed into Bi-LSTM; and
Encoder;;; (passed to bottleneck i.e., latent representation
for Encoders). Since Encoder;— .5 contain convolution
layer with a stride of 2, they successively create lower
dimensional representation of the noisy input frame along the
compression path. The Decoder; consists of a 1D convolution
layer followed by a ReLU non-linearity activation and an
UpSampling1D layer. Decoders directly inputs the feature
maps generated by the bottleneck. The rest of the decoder
layers, Decoder; — 1.4 receive the concatenated features from
Decoder;y; and LSTM;41 as input. Thereafter, the output from
Decoder; is concatenated with Bi-LSTM; and fed into the
Decoder;.1. Because of the presence of UpSampling layer, the
receptive field gradually expands while propagating through
the expansion path. Finally, the output from Decoder; is
passed through a convolution layer, where Cqy¢ = 1 which
provides the corresponding denoised output sequence, y;. For
a detailed visual description of the encoder and decoder, see
Fig. 2(b).

In the decoder phase of a typical U-Net, the bottleneck
is gradually expanded by upsampling or transposed con-
volution. The receptive field of the bottleneck is small;
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thus, when this approach is directly used, the network
tends to lose salient low-level information. To minimize
this loss, we incorporate the Bi-LSTM module in the
proposed framework as it can internally concatenate the
forward and backward vectors to a single vector that
captures all the hidden attributes present in a PCG frame.
Its inherent non-causality also enables the model to learn
the long-term dependencies with fewer parameters. In the
proposed architecture, Bi-LSTM; has 8, 16, 16, 32, 32 units,
respectively for i = 1 to 5. For all of them, he_Normal
kernel initializer [45] and hyperbolic tangent (tanh) activation
have been employed, and return_sequence have been
set to be TRUE so that consistent and homogeneous output
of the same length can be obtained. The proposed model will
be referred to as LSTM U-Net (LU-Net) in the rest of the

paper.

IV. DATA RESOURCES

A. 2016 PhysioNet/CinC HEART SOUND (PHS) DATASET
The 2016 PhysioNet/CinC challenge dataset [3] is an
openly accessible cross-corpus archive of PCG recordings
collected by seven different research groups from a total
number of 764 subjects in either clinical or non-clinical
settings. It contains 3240 PCG recordings with 84,425
cardiac cycles ranging from 35 to 159 bpm. The recordings
are of varying duration (5s-120s) and are collected from
six different clinical settings. Apart from domain variance,
i.e., in terms of acquisition device and recording set-up,
the presence of several noises (e.g., breathing, stethoscope
movement, intestinal activity, peripheral talking, etc.) in the
recordings make the dataset suitable for designing noise-
robust algorithms.
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B. PASCAL HEART SOUND CHALLENGE DATASET

The PASCAL dataset [46] contains data from 2 sources
having varying duration, between 1-30s. Dataset-A con-
sists of 176 recordings collected via the iStethoscope Pro
iPhone app at a frequency of 44.1kHz, while Dataset-B
contains 656 files collected in a clinical setting using the
DigiScope stethoscope at 4kHz. In Dataset-A, there are
four categories: Normal, Murmur, Extra Heart Sound, and
Artifact. Dataset-B consists of 3 classes: Normal, Murmur,
and Extrasystole. However, in the training set of Dataset-
B, there are sub-directories containing noisy data of normal
(120) and murmur (29). Apart from these classes, both
datasets contain some unlabelled data.

C. OPEN-ACCESS HEART SOUND (OAHS) DATASET

The open-access heart sound dataset (OAHS dataset) [47]
is a publicly available noise-free PCG dataset containing a
total number of 1000 recordings. Five classes, i.e., Normal
(N), Aortic stenosis (AS), Mitral regurgitation (MR), Mitral
stenosis (MS), Mitral valve prolapse (MVP), are annotated,
each class containing 200 recordings. The recordings are
sampled at 8kHz and have varying duration.

D. ICBHI 2017 DATASET

The International Conference on Biomedical Health Infor-
matics (ICBHI) 2017 dataset is the largest publicly available
respiratory sound database [48]. Two independent research
teams from Portugal and Greece have collected 920 audio
samples from 126 subjects at different sampling frequencies
(4kHz, 10kHz, and 44.1kHz). The total recording duration is
5.5 hours, while each data length varies between 10-90s. The
dataset contains 6898 respiratory cycles annotated by respira-
tory experts either as normal or having respiratory anomalies,
namely, wheeze, crackle, and wheeze and crackle. The dataset
also includes labels regarding the subject’s pathological
condition, i.e., healthy, and seven distinct disease classes,
namely Bronchiectasis, Bronchiolitis, Chronic Obstructive
Pulmonary Disease (COPD), Asthma, Pneumonia, Upper
Respiratory Tract Infection (URTI), and Lower Respiratory
Tract Infection (LRTI), along with their corresponding
collection site. Further details about the dataset can be found
in [49].

E. HOSPITAL AMBIENT NOISE (HAN) DATASET

This dataset has been prepared using a non-copyrighted
YouTube video' of 68 minutes where the audio occurrences
were recorded from different places (corridor, waiting room,
etc.) of a busy hospital. By manually selecting the noisy
portions, 562 segments of audio, each of 5s duration, have
been prepared, which are made available in Kaggle [50].
Since the major fequency components of the chunks are found
within 500 Hz, the data samples are filtered by applying a 3rd
order Butterworth low pass filter having cut off at 500 Hz.
Then, it is resampled to 1000 Hz, following the Nyquist

1 https://youtu.be/3LUuyDdWOy4
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criteria so that it can be used as a noise signal with the
heart sound while testing the robustness of the denoising
framework.

V. EXPERIMENTAL EVALUATION

We trained our model using the PHS dataset contaminated
with lung sound and tested it on an entirely distinct
heart sound dataset, the OAHS dataset, which was also
corrupted with lung sound data that differed significantly
from the ones used for training. Moreover, we evaluated
the performance of our model on hospital ambient noise,
which was entirely unfamiliar to the model. We also tested
the model on real-life noise-contaminated heart sounds from
the PASCAL dataset. The experimental design, data pre-
processing, implementation details and evaluation metrics
are described in the following subsections. Codes and
representative samples are available at Github.?

A. TRAINING DATA PREPARATION

Training of the denoising model is done using heart sound
recordings from the PHS dataset. All samples have been
resampled at 1kHz following the application of a 3rd
order Butterworth bandpass filter with a passband of 25Hz
to 400Hz. A spike removal algorithm [51] is used to
remove impulsive components from the signals. All signals
are normalized to the range [—1, 1] to reduce amplitude
variability. Due to the presence of significant noise in the
initial portion of some signals, the cleanest 5s segment is
extracted from each recording using a wavelet entropy-based
automatic cleanest segment selection algorithm introduced by
Langley et al. [52]. Next, six non-overlapping frames of 0.8s
is extracted from each 5s segment (explained in VI-D). These
frames are not taken at any specific event, such as S1 or S2,
but rather at random points along a PCG cycle, continuing
until six samples are collected.

We used lung sounds from the ICBHI 2017 dataset as the
noise source to create synthetic noisy PCG recordings. Lung
sounds are filtered with a 6th order Butterworth bandpass
filter with upper and lower cut-off frequencies of 50 and
2500 Hz [53], respectively, followed by a 1kHz resampling
step and min-max normalization. Among the various lung
sound auscultation sites, only sounds from the Anterior right
(Ar), Posterior right (Pr), and Lateral right (Lr) positions were
used since these locations are least contaminated with heart
sound components.

In each of the 0.8s PCG segments, a lung sound is
synthetically added with SNR values of —6dB, —3dB, 0dB,
3dB, 6dB. A total of 93480 noisy frames and corresponding
noise-free PCG frames are used to train the denoising
model as inputs and outputs, respectively, by retaining the
train-validation split of the original PHS dataset [3].

B. TEST DATA PREPARATION
A two-way testing protocol is considered for synthetic and
real-world noisy conditions. The relatively clean OAHS

2https:// github.com/mHealthBuet/Heart-Sound-Denoising
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dataset recordings are mixed with lung sound and hospital
ambient noise to generate two synthetic noisy test sets,
OAHS-LS and OAHS-HAN, respectively. To represent the
real-world test scenario, we used the noisy recordings of
the PASCAL dataset, which were corrupted by different
sources during data collection. We ensure that none of the
test samples or their corresponding noise recordings are used
during training.

All the HS datasets have been resampled to 1kHz, followed
by a min-max normalization to the range [—1, 1]. PCG
signals of the PASCAL dataset (only 149 samples labeled
as noisy) are truncated from the start of the recording up
to 2.4s. On the other hand, audio signals from the OAHS
dataset have been padded to a length of 3.5s to account for
the irregular length [54]. Each PCG recording is divided into
0.8s segments for processing. Lung sounds from the ICBHI
2017 are processed in the same manner as in training.

C. DATA PREPARATION FOR CLASSIFICATION

To examine the influence of denoising on classification
performance, we utilized PASCAL and OAHS datasets. First,
we trained and validated the classification model using clean
PCG signals from the normal and murmur categories in the
PASCAL dataset. We then tested the model’s classification
performance using only the noisy samples from the same
dataset and their corresponding denoised version. On the
other hand, we have partitioned the OAHS dataset into three
distinct sets: training, validation, and test, with a ratio of
70 : 10 : 20. The test portion has been mixed with lung sound
and hospital ambient noise to generate the test OAHS-LS and
OAHS-HAN datasets, respectively. These two PCG datasets
are processed in the same manner as done in the test data
preparation for enhancement V-B.

D. BASELINE SYSTEMS

The Fully Convolutional Network (FCN) [55] and U-Net [56]
are popular deep learning architectures typically utilized
for image-to-image transformation. Nevertheless, their 1D
versions are frequently employed in audio-to-audio trans-
formation, such as denoising, enhancement, and suppression
tasks in other fields [21], [28], [57]. Since audio denois-
ing is essentially a task of audio-to-audio transformation,
1D variants of U-Net and FCN are selected as baseline
systems.

In this work, inspired by [28], an FCN-based denoising
autoencoder has been constructed as a baseline system
(baseline-1). In addition, a 1D U-Net is constructed as a
second baseline (baseline-2), where the encoder maps the
input data into a lower-dimensional representation while the
decoder reconstructs the input data from this representation.
The encoder is composed of repetitions of a convolutional
layer followed by a rectified linear unit (ReLU) activation
layer that imposes non-linearity to the feature maps extracted
by the filters of the convolutional layers. The decoder path
is formed by mirroring the encoder layers in the reverse
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TABLE 2. Hyper-parameters of the proposed denoising framework.

Hyper-parameters Values
Batch size 128

Learning rate 0.0001
Epoch 100

Optimizer Adam

Loss function Mean square error

order. Each layer in the decoder is followed by a ReLU
layer. As the audio is gradually downsampled followed by
upsampling, it results in a rapid increase in the receptive
field that is convenient for the propagation of global time
and frequency information stored in the audio sequence. For
ensuring homogeneity and a fair basis of comparison, input
frame length, kernel size, stride size, the number layers and
corresponding hyper-parameters of LU-Net are retained in
the baselines.

E. EXPERIMENTAL SETUP

The deep learning architectures are implemented using
TensorFlow and Keras, while all the models are trained and
tested on Intel(R) Xeon(R) CPU and NVidia K80 GPUs
provided by Kaggle notebooks. Mean Square Error (MSE)
and Sparse categorical cross-entropy are used as the loss
function for training the denoising and classification models,
respectively.

The adaptive learning rate optimizer (Adam) with an
initial learning rate (Ir) of 10~* and batch size of 128 are
utilized for training both models. Due to the better efficacy
of Adam compared to the other optimizers, this stochastic
momentum based approach was chosen to accelerate the
model training [58].

A mini Batch balancing scheme [4] is employed to pass
an equal number of samples from each class on all the
batches during classification model training. A summary of
the considered hyperparameters are listed in Table 2.

F. EVALUATION METRICS FOR DENOISING

The denoising performance is evaluated using true SNR,
estimated SNR, percent root mean square difference (PRD),
and root-mean squared error (RMSE), as detailed below.

1) TRUE SNR METRIC
SNR is the primary metric for assessing the noise reduction
performance. It is defined as follows:

Ps Eiv_lx[t]2
SNR(dB) = 101log 7 = 10logig| —V——— 3)

n =N nlt]?

where, P and P, represent signal and noise power, respec-
tively. Also, x[¢] and n[¢] indicate the pth sample of the signal
and noise, respectively, while N denotes the total number of
samples in the signal and noise.
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FIGURE 3. A typical PCG signal with four states of the cardiac cycle
(S1, systole, S2, diastole). The pink and blue shaded areas contribute to
the noisy signal power and the noise power, respectively.

2) ESTIMATED SNR METRIC

To calculate true SNR using (3), the clean and the noise signal
must be known. It is thus impossible to calculate the true
SNR in real-life noisy PCG signals as we only have access
to the noisy signal. We propose an SNR estimation algorithm
designed particularly for heart sounds in such cases. The
method is described below.

A typical heart sound signal is first segmented into
four main regions: S1, systole, S2, and diastole (Fig. 3).
We assume that the systole and diastole regions only contain
background noise, while the S1 and S2 regions contain
both signal and background noise. Using these assumptions,
we estimate the noise power, noisy signal power and signal
power as follows.

P, = Zi\f;yf Xsys [t]2 i Zivzdifs Xdias [t]2 @)
Nsys Ndias

P, = w1 xsil1)? 52 xsalt)? 5)
Nsi Ns»

Py =Py — Py (6)

Here, P,,, P,s; and P represent the estimated noise power,
noisy signal power, and signal power, respectively. The
signals xgys[t], xdias[?], xs1[¢] and xs>[¢] indicate the PCG
signal segments for the systole, diastole, S1 and S2 regions,
respectively. The corresponding lengths of these signals
are indicated by the variables Ngys, Ndias, Ns1, and Nsa,
respectively.

To validate the estimated SNR metric, we perform an
experiment using the signal quality labels provided in [59]
for the PHS dataset. We hypothesize that if the estimated
SNR metric is a reliable estimate of PCG signal quality,
it will strongly correlate with the manually annotated quality
measures. In [59], the quality of a subset of PCG signals
was manually annotated with 5 labels: very bad (1), bad
(2), borderline (3), good (4) and excellent (5). We calculated
the mean and standard deviation of the proposed estimated
SNR for each quality label, while the Pearson coefficient and
coefficient of determination were calculated between quality
labels and the average estimated SNRs. The results illustrated
in Fig. 4 show that the proposed SNR estimate indeed has a
strong correlation with the subjective quality measure of PCG
signals. Thus, we justify using this estimated SNR metric for
the quality evaluation of intrinsically noisy PCG signals.
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G. ROOT-MEAN-SQUARED ERROR (RMSE)

RMSE is generally used to assess the deviation between
intended and actual signals. A lower RMSE indicates a
smaller difference. We use the following formulation to
calculate the RMSE between the clean and denoised HS
recordings:

1Y R
RMSE = N;(x[t]—x[t])z (7

where, x[¢t] and x[¢t] denote the clean and denoised PCG
signals, respectively, while N denotes the signal length.

H. PERCENT ROOT-MEAN-SQUARED DIFFERENCE (PRD)
The PRD metric denotes recovery efficiency by comparing
the input signal to the reconstructed signal. Lower PRD
indicates a superior reconstruction. PRD is calculated as:

S (x[r] — &[t])?
(x[1])?

where, x[¢] and x[¢] represent the clean and denoised PCG
signals, respectively, while the signal length is given by N.

PRD = (8)

I. EVALUATION METRICS FOR CLASSIFICATION

We hypothesize that improving the PCG signal quality
through denoising will also improve its automatic classifi-
cation performance. To evaluate this hypothesis, we perform
classification experiments using the OAHS-LS, OAHS-HAN
and PASCAL datasets using the model proposed in [60].
The classification performance is assessed using the accuracy
metric, which now acts as a secondary quantitative evaluation
metric for the proposed PCG denoising method.

VI. EXPERIMENTAL RESULTS

A. OBJECTIVE PERFORMANCE EVALUATION FOR
DENOISING

This section describes the evaluation of the proposed
denoising scheme compared to the baseline models primarily
using the SNR metric. In the case of the synthetically
generated noisy PCG datasets (OAHS-LS, OAHS-HAN),
we also use the PRD, and RMSE metrics for comparison. The
results are summarized in Tables 3 and 4, and Fig. 5.

The left column of Fig. 5 demonstrates evaluated per-
formance on the OAHS-LS dataset where the PCG signals
are mixed with lung sound noise. Here, we observe that
LU-Net consistently outperforms FCN and U-Net across all
evaluated metrics. The improvement in output SNR, PRD,
and RMSE, at all SNR levels indicates that the proposed
network reconstructs noise-free PCG signals more accurately
compared to the baseline methods. While FCN outperforms
the U-Net model in terms of SNR improvement (Fig. 5(a))
and RMSE (Fig. 5(e)) at low SNRs, U-Net performs better
at higher SNR levels. However, this trend is not evident in
PRD, where FCN performs inferior to U-Net for all the input
SNR levels (Fig. 5(c)). Overall, compared to the baseline
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TABLE 3. Denoising Performance Comparison between FCN, U-Net and LU-Net architectures on OAHS for Lung sound (OAHS-LS).

Output SNR (dB) PRD RMSE
Input SNR (dB) FCN U-Net | Proposed LU-Net FCN | U-Net | Proposed LU-Net FCN | U-Net | Proposed LU-Net
-6 1.608 0.084 2.095 0.917 | 0.859 0.816 0.145 | 0.159 0.137
-3 2910 2.724 3.984 0.869 | 0.803 0.752 0.126 | 0.129 0.111
0 4.107 4.710 5.846 0.805 | 0.721 0.669 0.110 | 0.103 0.091
3 5.042 6.423 7.447 0.730 | 0.620 0.577 0.099 | 0.085 0.077
6 5.649 7.710 8.695 0.661 | 0.527 0.493 0.094 | 0.074 0.067
Avg. 3.863 4.330 5.613 0.796 | 0.706 0.661 0.115 | 0.110 0.097
TABLE 4. Denoising Performance Comparison between FCN, U-Net and LU-Net architectures on OAHS for Hospital noise (OAHS-HAN).
Output SNR (dB) PRD RMSE
Input SNR (dB) FCN | U-Net | Proposed LU-Net FCN | U-Net | Proposed LU-Net FCN | U-Net | Proposed LU-Net
-6 1.044 | -1.374 1.069 0.926 | 0.737 0.633 0.145 | 0.200 0.151
-3 2.988 1.131 3.540 0.879 | 0.680 0.572 0.123 | 0.151 0.115
0 4.207 4.060 5.991 0.815 | 0.620 0.532 0.108 | 0.108 0.088
3 5.069 6.769 7.896 0.742 | 0.550 0.485 0.099 | 0.080 0.072
6 5.641 8.671 9.194 0.674 | 0.480 0.431 0.094 | 0.065 0.063
Avg. 3.789 3.851 5.537 0.807 | 0.613 0.530 0.114 | 0.121 0.098

40

Coefficient of Determination, R2 = 0.9992
Pearson correlation, r = 0.9996

301 15.3142.69
11.3942.59

6.93+2.70
20
3.35+3.34
-0.99+3.75
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Estimated SNR(dB)
o

Very bad Bad Borderlme 3) Excellent (5)

Quality Label

FIGURE 4. Validation of the proposed SNR estimation scheme for real-life
PCG signals with embedded noise. The obtained SNRs justify the
corresponding signal quality. A highly qualified physician and two senior
researchers with combined knowledge in heart sound signal processing
conducted these high-quality label annotations. Each recording was given
a quality label value between 1 and 5. The final label was created by
averaging the annotations provided in [59].

models across all input SNRs, the proposed LU-Net improves
SNR by an average of 5.613dB, which is superior to FCN
and U-Net models by 1.750dB and 1.283dB, respectively.
In addition, LU-Net achieved an average reduction in RMSE
by 2.138% and 1.356%, and an average reduction in PRD
by 3.112% and 4.474%, when compared to FCN and U-Net,
respectively. The performance metrics for different input
SNR levels are summarized in Table 3. These experimental
results demonstrate the effectiveness of the proposed denois-
ing method in suppressing lung sound noise.

In the case of the real-life noisy PCG recordings from
the PASCAL dataset, since it is impossible to calculate the
true SNR, we use the proposed heart sound SNR estimation
scheme to evaluate the denoising performance. The results
are reported in the first column of Table 6. In this case, the
proposed LU-Net improves the estimated SNR by 6.517 dB,
which is 26.175% and 2.725% superior relative to U-Net and
FCN, respectively. We have already shown in the previous
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FIGURE 5. Comparison of the denoising performance of all the evaluated
methods for OAHS-LS (left) and OAHS-HAN (right) dataset.

(a) & (b) Improvement in output SNR at varying input SNR levels,

(c) & (d) PRD at varying input SNR levels, (e) & (f) RMSE at varying input
SNR levels.

section that the estimated SNR closely correlates with PCG
signal quality. Therefore, we conclude that the proposed
method is effective in noise suppression, even in the case of
intrinsically noisy PCG recordings.

In the right column of Fig. 5, the performance of the
denoising methods is illustrated on the OAHS-HAN dataset,
where the PCG signals were corrupted by unseen hospital
noise. The results depict once again that the proposed
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TABLE 5. Classification performance open-access heart sound dataset
(OAHS dataset).

Classification Performance (% Acc)

Applied Actual 8 S )
SNR (dB Lung noise Hospital noise
Noisy | Denoised Noisy | Denoised
-6 48.35 72.13 55.06 71.28
-3 58.31 83.11 70.98 83.17
0 73.04 90.32 83.55 88.62
3 80.91 92.09 83.33 87.92
6 84.76 92.66 87.27 89.40

TABLE 6. Denoising and classification performance on PASCAL dataset
for real-world noise.

Denoised signal

Performance metric | Noisy Signal FCN [ U-Nef | LU-Ne
Estimated SNR (dB) 7.456 13.635 | 10.348 | 14.017
% Accuracy 26.17 60.40 54.34 65.10

LU-Net outperforms FCN and U-Net on all metrics studied,
including output SNR, PRD, and RMSE for all input SNR
levels, except for input noise —6dB, where FCN shows
marginally improved performance compared to LU-Net with
respect to RMSE (Fig. 5(f)). Compared to the two baseline
models, the proposed method improves the SNR by 5.537 dB
on average across all input SNRs, which is 1.748 dB
and 1.686 dB higher than the FCN and U-Net models,
respectively. In addition, when compared to FCN and U-Net
models, the proposed LU-Net yields an average reduction
in RMSE of 1.918% and 2.295%, and a reduction in PRD
of 2.600% and 8.300%, respectively. Interestingly, for this
type of noise, FCN outperforms U-Net at low SNRs in terms
of SNR improvement (Fig. 5(b)) and RMSE (Fig. 5(f)) but
significantly fall short of U-Net and the proposed LU-Net
at higher SNRs. Finally, in terms of the PRD performance
metric, the proposed LU-Net method provided the best
performance over the entire range of input SNR values
(Fig. 5(d)). Detailed results for the hospital noise experiments
are also provided in Table 4. Therefore, we may conclude
that the proposed LU-Net model is effective in suppressing
previously unseen hospital noise present in PCG recordings.

B. SUBJECTIVE PERFORMANCE EVALUATION FOR
DENOISING

Using 15 randomly chosen noisy samples from PASCAL
dataset and their corresponding denoised data, a blind
informal auditory test is performed with the help of an
expert cardiologist. The original and the corresponding
denoised recordings were randomly ordered in a list. The
cardiologist provided each recording a score between 1-5
depending on its subjective quality, with a 1 being described
as ‘““diagnostically poor quality HS with very intrusive
background noise” and a 5 being ‘“‘diagnostically excellent
quality HS with unnoticeable background noise”. To ensure
unbiased assessment, the cardiologist was not informed of
the list having noisy and denoised version of the same data.
From the mean scores for original raw recordings (1.60) and
the corresponding denoised recordings (3.53), it is confirmed
that the derived denoised signals are improved in terms of
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FIGURE 6. SNR improvement at different input noise levels with respect
to different window lengths using PHS validation dataset. A window size
of 0.8s demonstrates decent denoising performance with minimal latency.

subjective quality. This, in turn, proves that, our network
is well-capable of suppressing noise components and it is
significantly beneficial in terms of diagnosis.

C. CLASSIFICATION RESULTS

The classification performance has been evaluated for both
the noisy and the denoised recordings to assess the impact
of denoising for Al-based CVD detection. Experiments have
been conducted using the OAHS-LS, OAHS-HAN, and
PASCAL datasets. From the results summarized in Table 6,
it can be observed that the denoised signals attained an
average classification accuracy improvement of 17.00% and
6.67% over noisy signals with lung sound and hospital
noise, respectively. In the case of the noisy PASCAL
dataset, the denoised signals outperformed the raw PCG
signal in classification accuracy by a large margin of about
38% (see Table 6), demonstrating the significance of the
proposed LU-Net in terms of diagnostic interpretation. This
dataset consists of real-world noisy heart sound signals from
various sources, and thus, the performance improvement is
noteworthy [46].

D. OPTIMIZATION OF WINDOW LENGTH

The selection of the processing window lengths is a vital
system parameter for a real-time heart sound denoising
framework. A larger window size might cause latency,
whereas a shorter window size, on the other hand, may
considerably reduce the model’s denoising capabilities.
Various denoising experiments with window lengths ranging
from 0.032s to 2.016s are carried out to optimize this
parameter. All of the experiments are done on the validation
set of the PHS dataset using the baseline U-Net architecture.
After comparing the SNR improvement, we have found that
a window length of 0.8s provides a reasonable trade-off
between latency and decent denoising performance.

E. INFERENCE SPEED AND EFFICIENCY

The proposed LU-Net contains 1.32 M trainable parameters,
206 M floating-point operations per second (FLOPS), and
requires only 15.3 MB of memory. Thus, it achieves
substantial real-time PCG signals denoising and a great
reduction in storage and processing power requirements.
Because the suggested paradigm can immediately improve
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FIGURE 7. Waveforms and spectrograms of a typical abnormal PCG
signal. (a) original signal, (b) noisy signal (HS+LS mixed at 3 dB SNR),
denoised signals using (c) FCN (d) U-Net (e) LU-Net, respectively. LU-Net
reconstructed the PCG with high-fidelity, preserving the S1, S2 and the
systolic and diastolic murmurs.

raw PCG recordings without the need for pre-processing
and a hand-crafted feature extraction approach, it proves
the robustness of the model and makes it suitable for IoT
integrated mobile devices and wearable sensors.

F. COMPARISON OF LOSS FUNCTIONS

While training the proposed network, we investigated three
different loss functions: mean square error (Lysg ), hegative
signal-to-noise ratio (LgNr) [61], and scale-invariant signal-
to-distortion ratio (Lsr.spr) [62]. Table 7 shows the SNR
improvement, RMSE, and PRD scores over OAHS-HAN
dataset for SNRs of 6, 3, 0, 3, and 6 dB. As we can
see,Ls1-SDR loss show promising results for low SNR values
but degrades significantly at higher SNR values. A similar
pattern is also found for LgNr. On the other hand, Lysg
exhibits consistent performance, SNR by 3.154 dB and
1.121 dB, while exhibiting 3.358% and 1.112% reduction
in RMSE and 27.286% and 21.986% reduction in PRD,
respectively, when compared to loss functions Lgr.spr
and ESNR-

VIl. DISCUSSION

As demonstrated in Section VI, the proposed end-to-end
framework has superseded the standalone baseline models
in terms of all the quantitative metrics. Compared to the
baselines, the proposed model consists of skip connections
with bi-LSTM modules between the encoder and decoder,
which are absent in both the baselines. We may attribute the
improved results to these added modules. The incorporation
of bi-LSTMs enables the model to better learn the rhythmic
pattern of the quasi-periodic heart sound as it employs
both the backward and forward information of the PCG
sequence at every time instance. Preservation of salient
rhythmic information from both past and future makes the
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FIGURE 8. Waveforms and spectrograms of a typical normal PCG signal.
(a) original signal, (b) noisy signal (HS+HAN mixed at 6 dB SNR), denoised
signals using (c) FCN (d) U-Net (e) LU-Net, respectively. The proposed
LU-Net shows superior performance in retaining the signal morphology.

reconstruction task comparatively easier for the model. The
superiority of LU-Net over the baselines can be visually
observed in Fig. 7 and 8. While the baseline enhancement
schemes fail to reproduce the morphology of the signals
accurately, the proposed LU-Net reconstructed them with
high fidelity, preserving the S1, S2, and the characteristic
murmurs (present only in Fig. 7).

Further interesting insights were revealed during the
evaluation phase. The resulting improvement in SNR is
found to be consistent for three completely unseen noisy
PCG datasets. Despite being trained with only LS noise,
the proposed LU-Net exhibited significant noise removal
performance for both LS noise and unseen HAN. For lower
SNRs (i.e., —6dB, —3dB), the improvement in SNR is more
promising (see Table 3 & 4). A noticeable improvement
is also observed for higher SNRs (i.e.,3dB, 6dB) in the
case of both noise types. Nevertheless, the slightly better
performance obtained while using HAN is possibly due to
its aperiodic nature and the dissimilar spectral distribution
compared to HS.

The experiments on synthetically generated noisy PCG
establish the framework’s effectiveness concerning the sce-
nario of additive noise. The denoising experiment on the
real-life PaHS dataset further enhances its relevance from the
clinical perspective. At the same time, all the classification
experiments reveal the proposed method’s aptness to be
used in conjunction with the existing computer-aided CVD
diagnosis systems. The proposed framework is evaluated for
a wide range of varieties in PCG, and the results obtained
indicate its robustness and superiority compared to the
existing methods; these concertedly justify its applicability,
especially in challenging low-resource hospital settings.

However, there are few limitations to our study that should
be taken into consideration when interpreting the results.
One major limitation is the absence of a heart sound dataset
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TABLE 7. Performance of different loss functions in PCG denoising system measured using various performance metrics.

Evalua‘tlon ] SNR PRD RMSE

metrics imrovement

Fuﬁii?on Lsi.spR | LsNR | £mSE | Lsispr | £sNR | £msE | Lsispr | Lsnr | £MSE
-6 7.186 7.710 7.069 0.879 0.860 0.633 0.147 0.140 0.151
-3 4.970 6.460 6.540 0.844 0.820 0.572 0.137 0.119 0.115
0 2.584 4.810 5.991 0.802 0.760 0.532 0.129 0.1 0.088
3 -0.025 2.740 4.896 0.762 0.690 0.485 0.123 0.095 0.072
6 -2.799 0.360 3.194 0.730 0.620 0.431 0.121 0.090 0.063

that contains both clean and noisy signals. As a result,
we had to synthetically mix noise to train our encoder and
decoder network. While we attempted to create a realistic
noise mixture, it is possible that our synthetic dataset does
not fully capture the complexity and variability of real-life
noise. Another limitation is related to the dataset used in
our study. We used the PHS dataset, which is currently the
largest publicly available dataset of heart sounds. However,
this dataset is highly imbalanced, with a large number of the
samples containing only normal heart sounds. As a result,
the encoder and decoder network may have been biased
towards normal sounds and could potentially distort abnormal
murmurs.

Although the proposed denoising framework has demon-
strated satisfactory performance on multiple well-known
PCG datasets representing real-life scenarios, we plan to
further improve and generalize the denoising network,
LU-Net’s training by using a class-balanced in-house dataset.
This dataset will be composed of a larger number of PCG
recordings, with varying noise types and levels, to ensure
better generalization of the proposed approach. Additionally,
several advanced network strategies, such as Generative
Adversarial Networks (GAN) and Transformers, can be
attempted to obtain further optimized performances with
more efficiency and non-latency. In the future, we aim to
integrate the proposed LU-Net model into digital stetho-
scopes or wearable devices to perform automatic PCG
denoising. This integration will enable real-time processing
of PCG recordings and help clinicians in their diagnostic
decision-making process, particularly in low-resource, noisy
environments. Another interesting avenue for future research
is the exploration of the effectiveness of the proposed
approach to other medical signal denoising tasks, such as
ECG, EEG or PPG denoising.

VIil. CONCLUSION

In this work, we have proposed a generalized, robust
deep learning framework for real-time denoising of noisy
PCG recordings, which is crucial in automatic heart sound
abnormality detection. An SNR estimation scheme has also
been proposed for quality assessment of real-world PCG
data contaminated with irregular, multi-source, transient
distortions. Upon experimentation with multiple unseen
datasets with diverse levels and characteristics of noise,
we have demonstrated that the proposed method is robust

VOLUME 11, 2023

to different types of input noise. Compared to two state-
of-the-art systems, FCN and U-Net, the proposed method
has provided a relative SNR increase of 31.178% and
22.851%, respectively, on noisy cardiac sounds distorted
by respiratory sounds. Moreover, 31.569% and 30.454%
relative improvement in SNR was obtained in the case of
unseen hospital noise conditions compared to FCN and
U-Net systems, respectively. The proposed network has
considerably fewer trainable parameters compared to existing
models, which eventually elevates the potential of the model
to be deployed in memory-constrained platforms for real-
time applications. There are certain limitations in this study,
such as the use of synthetic noise mixture training and
the possibility of bias towards normal sounds caused by
an imbalanced dataset. However, in the future, we aim
to address these issues by enhancing and expanding the
training of LU-Net through a class-balanced in-house dataset.
Additionally, we intend to integrate this technology into
digital stethoscopes or wearable devices to perform real-time
automatic PCG denoising. Moreover, we plan to evaluate its
effectiveness for denoising other medical signals in the future.
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