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ABSTRACT Meta-heuristic algorithms have emerged as a popular approach for solving engineering
optimization problems. In this paper, an Improved Sand Cat Swarm Operation (ISCSO) is proposed and
applied to optimize double-layer spraying path parameters. The Sand Cat Swarm Operation (SCSO) has
some limitations, such as poor initial population quality, slow convergence speed, and a tendency to fall into
local optima. To overcome these limitations, three improvement strategies are introduced in ISCSO. Firstly,
the SPM chaotic mapping is used to enhance the initial population quality. Secondly, a nonlinear cycle
adjustment strategy is introduced to balance global exploration and local exploitation, thereby accelerating
the convergence speed. Finally, integrating the Immune Algorithm (IA) enables ISCSO to avoid falling
into local optima, resulting in improved solution accuracy. Furthermore, we extended our experiments to
include 21 low-dimensional functions and 15 test functions of LSOPs, where ISCSO was compared with
seven other popular algorithms. The experimental results highlight the promising performance of ISCSO in
solving different types of functions, achieving both higher solution accuracy and faster convergence speed.
In particular, the effectiveness of ISCSO has been demonstrated through experiments aimed at optimizing
the parameters of the double-layer spraying path. The results of these experiments further highlight the utility
of ISCSO in tackling challenging optimization problems.

INDEX TERMS Sand cat swarm optimization, chaotic mapping, immune algorithm, nonlinear periodic
adjustment, spray parameter optimization.

I. INTRODUCTION
Optimization problems are widely present in various fields
of science and engineering technology, making it a popular
research topic [1]. Meta-heuristic algorithms have emerged
as effective problem-solving approaches for optimization.
These algorithms can be classified into four major categories:
evolution-based algorithms, group intelligence-based algo-
rithms, human-based algorithms, and physical and chemical
methods-based algorithms.

Evolution-based algorithm simulate the natural law of
survival of the fittest in evolution. Through evolution, the
overall progress of the population is achieved, and the optimal
solution is eventually attained. Examples of such algo-
rithms include Genetic Algorithm (GA) [2] and Differential
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Evolution (DE) [3]. As well as other proposed algorithms
like Evolutionary Strategy (ES) [4], Evolutionary Program-
ming (EP) [5], Gene Expression Programming (GEP) [6],
Genetic Programming (GP) [7], Covariance Matrix Adapta-
tion Evolution Strategy(CMA-ES) [8], Biogeography Based
Optimization(BBO) [9], among others.

Population intelligence-based optimization algorithms
simulate the cooperative behavior among members of the
population to determine the overall best solution. For
instance, Particle Swarm Optimization (PSO) [10] simulates
the foraging behavior of birds, Ant Colony Optimization
(ACO) [11] simulates the behavior of ant colonies, Cuckoo
Search(CS) [12] simulates the egg-laying behavior of cuck-
oos, Firefly Algorithm (FA) [13] simulates the courtship
behavior of fireflies, Gray Wolf Optimization (GWO) [14]
and Whale Optimization Algorithm(WOA) [15] simulate the
foraging behavior of animals, Bacterial Foraging(BF) [16]
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simulates the behavior of bacteria foraging, Harris Hawks
optimization (HHO) [17] simulates the hunting behavior of
Harris Hawks, and so on.

Human-based algorithms simulate human behavior in
teaching, social, learning, emotional, and managerial
behaviors to solve optimization problems. Examples include
Teaching-Learning-Based Optimization (TLBO) [18], Har-
mony Search (HS) [19], Soccer League Competition
(SLC) [20], Election Algorithm (EA) [21], Ideology
Algorithm (IA) [22], Group Search Optimizer (GSO) [23],
Imperialist Competitive Algorithm (ICA) [24], Social-Based
Algorithm (SBA) [25].

Physical and chemical methods-based algorithms mimic
the laws of physics and chemistry to solve optimization prob-
lems. For instance, Simulated Annealing (SA) [26] simulates
the process of annealing ofmatter, Gravitational Local Search
Algorithm(GLSA) [27] simulates Newton’s law of gravity,
Big-Bang Big-Crunch (BBBC) [28] based on the Big Bang
and contraction theory, Charged System Search (CSS) [29]
based on Coulomb’s Law and Newton’s Law, Artificial
Chemical Reaction Optimization Algorithm (ACROA) [30]
based on chemical reaction principles, Galaxy-based Search
Algorithm (GbSA) [31] simulates the spiral motion of
galaxies, Ray Optimization (RO) [32] simulates the law of
refraction of light, and Water Cycle Algorithm (WCA) [33]
simulates the water cycle process, among others.

In conclusion, metaheuristic algorithms have proven to
be effective problem-solving approaches for optimization in
various fields. The different categories of algorithms provide
powerful tools for solving complex engineering optimization
problems [34].

The Sand Cat Swarm Optimization(SCSO) [35] algorithm,
proposed by Amir Seyyedabbasi and Farzad Kiani in 2022,
simulates the hunting behavior of sand cats. Sand cats are
known for their ability to detect low-frequency noise, which
helps them locate prey both above and below the ground.
SCSO is characterized by its simplicity, low parameter set-
tings, and high performance in finding the best solution.

SCSO has been increasingly applied in engineering opti-
mization, with researchers developing various approaches
to enhance its performance. For example, Li et al. [36]
introduced an elite collaboration and stochastic variation
mechanism to improve the convergence accuracy of SCSO.
Iraji et al. [37] used chaotic sequences to diversify the ini-
tial population of SCSO and combined it with a pattern
search algorithm to evaluate the minimum safety factor of
slopes. Jovanovic et al. [38] incorporated the Artificial Bee
Colony (ABC) [39] algorithm to enhance SCSO’s ability
to escape local optima and used it to optimize an intrusion
detection system. Wu et al. [40] added a wandering strategy
to improve SCSO’s ability to jump out of local optima.
Seyyedabbasi et al. [41] successfully applied SCSO to solve
the inverse kinematics of a robotic arm. Kiani et al. [42]
improved SCSO’s search capability by randomly selecting a
new position between the optimal candidate solution and the
current position. Seyyedabbasi et al. [43] combined SCSO

with reinforcement learning techniques to further enhance
the algorithm’s performance. The above improvements to the
algorithm have improved the performance of the algorithm,
but there are still some shortcomings. For instance, the ini-
tialized populations lack sufficient diversity, the conversion
settings of global exploration and local search are unclear, and
the algorithm can easily converge to a local optimum. In the
experimental section of this paper, the ISCSO is compared
with two other existing variants SCSO.

In the field of spraying, there are also many algorithms
used to optimize the spray trajectory. Biyu et al. [44] pro-
posed an improved Particle Swarm Optimization algorithm
based on edge composite operator for optimal combina-
tion of spray trajectories of torch with improved efficiency.
Wang et al. [45] improved the traditional RRT algorithm and
applied it to the path planning of autonomous spraying
robots in orchards with good results. Fu et al. [46] devel-
oped a new method for complex surface segmentation
in spray trajectory planning for two robots using genetic
algorithms.

Despite its successes, SCSO does have some limitations.
Firstly, the initial population in SCSO is created randomly,
resulting in unstable quality. This affects the effectiveness
of the global exploration phase. Secondly, SCSO balances
local exploitation with global exploration by using lin-
early decreasing sensitivity, resulting in slow convergence
in the initial phase before quickly achieving the local opti-
mum. Finally, as the population converges towards the
ideal individual, population diversity decreases in later iter-
ations, making it easier for SCSO to get stuck in local
optima.

To address these issues, we propose an Improved Sand Cat
Swarm Optimization (ISCSO), in which three strategies are
used to improve its comprehensive performance on diverse
problems. The specific contributions of this paper are as
follows:

1. SPM chaotic mapping is introduced to increase the
diversity of the ISCSO’s initial population. This over-
comes the problem of poor initial population quality in
SCSO.

2. Adding a nonlinear periodic adjustment mechanism to
balance the algorithm’s local exploitation and global
search capabilities.

3. We calculated and ranked the incentive degree among
individuals. The ability of ISCSO to escape local
optima was greatly improved by treating the top 20%
of individuals with cloning, mutation and cloning
suppression.

This essay is divided into the following sections: Section II
introduces SCSO. Section III presents the improvement
strategy and algorithm steps of ISCSO. Section IV is
the experimental results and analysis of test functions.
Section V applies the ISCSO algorithm to the optimize of
the double-layer spraying path parameters, and the results
are compared and analyzed. Section VI concludes this
paper.
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II. SAND CAT SWARM OPTIMIZATION
The two primary activities of sand cats are simulated by
the Sand Cat Swarm Optimization (SCSO): searching and
attacking. In the wild, sand cats are solitary creatures. In order
to emphasize the idea of population intelligence, the proposed
algorithm assumes that sand cats live in colonies. The SCSO
algorithm employs sand cats to represent various problem
variables.

In the SCSO algorithm, the initialized sand cat popula-
tion is first randomly generated. Assuming that the sand cat
population size is N , and the search space is d-dimensional,
the location of the i-th sand cat is labeled as Xi =

{x1, x2, x3, · · · xd }, i = 1, 2, 3 · · ·N . The location of the
prey corresponds to the global optimal solution of the prob-
lem. Then, a global search is started and the sand cats use
equation (1) to update the location.

−→
X (t + 1) =

−→r ·

(
−→
X b(t) − rand ·

−→
Xc (t)

)
(1)

where t denotes the current number of iterations,
−→
X b(t) is the

optimal individual position,
−→
X c(t) is the current individual

position of the sand cat. rand is a random number within
[0, 1], and −→r simulates the sensitivity range of the sand cat,
which is described as follows:

−→r =
−→rG × rand (2)

where −→rG simulate of the sand cat’s sensitivity, whose value
declines linearly from 2 to 0 repetitions. The equation for −→rG
is described as:

−→rG = SM −

(
SM × t
tmax

)
(3)

where SM simulates the auditory characteristics of the sand
cat with a value of 2. tmax is the maximum number of
iterations.

During the local development phase, SCSO updates each
sand cat’s position as follows:

−→
Xmd =| rand ·

−→
Xb(t) −

−→
Xc (t) | (4)

−→
X (t + 1) =

−→
Xb(t) −

−→r ·
−→
Xmd · cos(θ ) (5)

where θ is a random angle between [0, 360], obtained
randomly using a roulette wheel.

−→
Xmd denotes a random

position.
The SCSO method switches between a local search and

a global search depending on the value of the parame-
ter

−→
R . The formula for calculating

−→
R is described as

follows:
−→
R = 2 ×

−→rG × rand −
−→rG (6)

From equation (6), it can be seen that
−→
R is a random

value in the interval [−−→rG , −→rG ] and decreases gradually
with the linear decrease of −→rG . When the value of

−→
R is

in [−1, 1], the sand cat individual updates its position by
Eq. (5), otherwise it updates its position by Eq. (1). the

latest individual position update of the SCSO algorithm is as
follows:

−→
X (t + 1) =

{
−→r ·

(
−→
Xb (t) − rand ·

−→
X c (t)

)
|
−→
R | > 1

−→
Xb(t) −

−→r ·
−→
Xmd · cos (θ) |

−→
R | ⩽ 1

(7)

In conclusion, the SCSO algorithm benefits from a
straightforward structure, simple implementation, and min-
imal parameters. However, the initial population it generates
lacks diversity. During the process of global exploration and
local exploitation, SCSO is susceptible to falling into local
optima and yielding low precision results.

III. IMPROVED SAND CAT SWARM OPTIMIZATION
A. POPULATION INITIALIZATION BASED
ON CHAOTIC MAPPING
Deng et al. [47] proposed that the quality of the initial pop-
ulation has a significant impact on both the accuracy and
convergence speed of meta-heuristic algorithms. A diverse
initial population can greatly enhance the performance of
the algorithm. However, SCSO employs a random technique
to generate the initial population, resulting in an uneven
distribution and low diversity. Additionally, it is essential
to distribute the population evenly across the search space
since predicting the location of the global best solution is
challenging.

Therefore, ISCSO adopts the SPM chaotic mapping [48]
which has better ergodicity and faster iteration speed. SPM
chaotic mapping is a novel mapping method proposed by
Ban et al. in 2020. This mapping method extends the range
of chaotic mappings and guarantees the ergodicity of the
results. This mapping greatly improves the efficiency of
chaotic sequence generation without compromising security.
The functional representation of SPM chaotic mapping is
given by equation (8).

y(t + 1)



mod
(
y(t)
η

+ µsin(πy(t) + r, 1)
)

0 ⩽ y(t) < η

mod
(
y(t)/η
0.5 − η

+ µsin(πy(t) + r, 1)
)

η ⩽ y(t) < 0.5

mod
(
1 − y(t)/η
0.5 − η

+ µsin(π(1 − y(t))) + r, 1
)

0.5 ⩽ y(t) < 1 − η

mod
(
1 − y(t)

η
+ µsin(π(1 − y(t))) + r, 1

)
1 − η ⩽ y(t) < 1

(8)

Figure 1(a) shows the distribution of SPM chaos mapping
in 2000 dimensions, and Figure 1(b) shows the statistical
histogram of this distribution. It can be seen that the SPM
mapping has a very good chaotic effect.
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FIGURE 1. SPM chaotic mapping distribution statistics.

The initial population is obtained by mapping the
SPM chaotic sequence into the solution space. A dimen-
sional solution of the population of people is shown
by Eq (9).

Xid = Xmin + y(t) (Xmaxd − Xmind ) (9)

where, Xmaxd and Xmind are the upper and lower bounds
of the search in the d-th dimension. The initial pop-
ulation of ISCSO is obtained according to the above
method.

Based on the above introduction, the ISCSO’s population
initialization process is detailed as Algorithm 1.

Algorithm 1 Initializing the population

Input: µ =0.3,η =0.4, Xmaxd, Xmind
01: Generate chaotic series y(t) according to Eq.(8);
02: For i=1 to N
03: Calculate Xi according to Eq.(9);
04: End For
Output: X

B. NONLINEAR CONVERGENCE FACTOR
The transition of SCSO between global exploration and
local exploitation is mostly influenced by changes in the
parameter

−→
R . A larger

−→
R prevents becoming stuck in a

local optimum and has stronger global search capabilities.
A smaller

−→
R speeds up the algorithm’s convergence and

provides a stronger local exploitation capacity.
The parameter

−→
R in SCSO has a range of [−−→rG , −→rG ] and

is linearly reduced during iterations from 2 to 0. However, the
linearly decreasing strategy provides the algorithm a superior
global exploration capability in the early stages of SCSO but
a slower convergence speed. Although the speed of conver-
gence is accelerated in the later period, it still frequently falls
into the local optimum. Therefore, we expect that the param-
eter

−→
R will maintain a high value early on and gradually

decline as rounds increase. When the SCSO reaches a certain
number of iterations, the parameter

−→
R is then rapidly reduced

to a smaller value. As a result, the following equation (10)
introduces a nonlinear convergence factor.

−→rG = 2 − 2
(
et/tmax − 1

e
− a

)µ

(10)

where µ and a are constant coefficients, which take values
greater than 0.

C. FUSION IMMUNIZATION ALGORITHM
In the late stage of the SCSO search, to avoid falling into
the local optimum, this paper improves SCSO by fusing the
Immune Algorithm [49]. In the Immun Algorithm, the better
individuals are immunized according to the incentive degree
of antibodies. This can ensure the diversity of the population
and avoid falling into local optimum.

To determine whether the algorithm is trapped in a local
optimum, this paper introduces the optimal fitness change
rate RC(t). The judgment formula is as follows.

RC(t) = |
f (Xb(t)) − f (Xb(t − n))

f (Xb(t))
| ≤ 1, t > n (11)

where, f (Xb (t)) is the optimal individual fitness at the t-th
iteration. If the optimal fitness change rate RC(t) is less than
a threshold 1 in n consecutive generations, it indicates that
the population has fallen into a local optimum. Then, the
immunization operation is performed on the population.
ED(Xi) is the individual incentive degree of the population.

The population’s individual incentive degree is first calcu-
lated before the immunization procedure is carried out. The
formula for the computation is as follows.

ED(Xi) = α · fit(Xi) + β · ND(Xi) (12)

where, α, β is the weighting factor, and ND(Xi) is the current
individual concentration. It is calculated as follows.

ND(Xi) =
1
N

∑N

j=1
S(Xi,Xj) (13)

S(Xi,Xj) =

{
1 aff (Xi,Xj) < δs

0 aff (Xi,Xj) ≥ δs
(14)
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whereN is the population size, S(Xi,Xj)denotes the similarity
between individuals of the population. aff (Xi,Xj) denotes
the Euclidean distance between individual i and individ-
ual j. δs denotes the similarity threshold between population
individuals.

The population individuals are graded based on the
level of incentive. Then, the individuals in the top 20%
of the incentive degree ranking are cloned and mutated.
The mathematical expression of the above operation is as
follows.

Tc(Xi) = clone(Xi) (15)

Tg(Xm,i,j) =

{
Xm,i,j + (r − 0.5) · λ rand < pm
Xm,i,j others

(16)

where Tc(Xi) denotes the set consisting of m clones identical
to Xi. Xm,i,j denotes the j-th dimension of the m-th clone
of an individual Xi. Tg(Xm,i,j) is the set of clones of Xi
after mutation. λ is the range of the defined neighborhood.
r is the random number between [0, 1]. pm is the probability
of mutation.

The mutant individuals are then put under clonal
suppression. Clonal suppression refers to the elimina-
tion of low affinity individuals and the retention of
high affinity individuals. In order to create a new pop-
ulation, the individuals who underwent the immuniza-
tion operation are finally combined with those who did
not.

Based on the above introduction, the immunization opera-
tions process is detailed as algorithm 2.

Algorithm 2 Immunization operations
Input: X,f (X), α, β, δs, λ, pm,m
01: For i=1 to N
02: Calculate ND(X i) based on Eq.(13)and Eq.(14);
03: CalculateED(X i) based on Eq.(12);
04: End For
05: Sort ND(X i); ND(X1) < ND (X2) < . . . < ND(Xd );
06: Select the top 20% of individuals according to the

ranking of ND(X i);
07: For i=1 to N/5 Do
08: Cloning m individuals X i based on Eq.(15);
09: For g=1 to m
10: Generate new individualsTg(Xi) based on

Eq.(16);
11: End For
12: Sort Tg(Xj) satisfying;

f (T1 (Xi)) < f (T2 (Xi))
< . . . < f (T g (Xi))

13: If f (T1 (Xi)) < f (Xi)
14: X i=T1 (X i)

15: End If
16: End For
Output:X

FIGURE 2. Flowchart of ISCSO.

D. FRAMEWORK OF ISCSO
By incorporating the aforementioned components, the pseu-
docode of ISCSO is shown in Algorithm 3, the complete
fowchart of ISCSO is described as Fig. 1.

E. COMPUTATIONAL COMPLEXITY
In this paper, the ISCSO algorithm is composed of four main
components: population initialization, calculation of the non-
linear convergence factor, updating population locations, and
immunization operations. The computational complexity of
the algorithm can be analyzed as follows, given a population
size N and problem dimension D.

The population initialization has a computational complex-
ity of O (ND). The calculation of the nonlinear convergence
factor has a complexity of O (1). Updating individual posi-
tions has a computational complexity of O (N ). In the
immunization operation phase, the incentive degree of indi-
viduals in the population is calculated and ranked, with a
computational complexity of O (2Nlog(N )). he top 20% of
individuals are then cloned and mutated, with a computa-
tional complexity of O (2Nlog(10)) When the number of
clones m = 10.

Therefore, if the algorithm is stopped after T genera-
tions, the overall computational complexity of ISCSO can be
expressed asO (ND+ T (O (1) + O (N )) + O (2Nlog(N )) +

O (2Nlog(10))). Note that, different operators have different
time usages.

IV. EXPERIMENTAL RESULTS AND COMPARISONS
To verify the performance of ISCSO, we conducted
experiments using benchmarking functions. We selected
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Algorithm 3 ISCSO pseudocode
/∗ Initialization ∗/
01: Initialize population size N,1
02: Initialize the populations Xi according to
Algorithm 1;

03: Evaluate Xi,
−→
Xb=Xi;

/∗ Main Loop ∗/
04: Evaluate Xi, Update

−→
Xb;

05: For t=1 to tmax Do
06: Calculate −→rG based on Eq.(10);
07: Calculate −→r ,

−→
R based on Eq.(2) and Eq.(6);

08: For i = 1 to N Do
09: Get a random angle based on Roulette Wheel
Selection(0◦ < θ < 360◦);
10: If abs

(
−→
R

)
≤ 1

11: Update Xi based on Eq.(4) and Eq.(5);
12: else
13: Update Xi based on Eq.(1);
14: End If
15: End For
16: Evaluate Xi;
17: Calculate RC(t) based on Eq.(11);
18: If RC(t) =≤ 1

19: Perform immunization operations according to
Algorithm 2;

20: End If
21: t=t+1;
22: End For
Output results.

21 low-dimensional functions that are commonly used by
researchers, as well as 15 test functions of Large-Scale
Optimization Problems (LSOPs) that are internationally rec-
ognized. This allowed us to test the ability of ISCSO to solve
LSOPs problems.

A. EXPERIMENTAL SETUP
1) PEER ALGORITHMS AND BENCHMARK FUNCTIONS
For comparative analysis, we selected seven state-of-the-
art algorithms, including RLLPSO [50], TAPSO [51],
MAPSO [52], XPSO [53],WOA,GWO, SCSO, ISCSO1 [54]
and SESCSO [36]. as peer algorithms in this article. The
parameter settings of all peer algorithms are summarized
in Table 1. It is worth noting that the parameter settings of the
selected peer algorithm are the same as those in the reference
paper.

Details of 21 low dimensional functions can be found
in Table 2. In the 21 functions, F1-F7 are unimodal functions.
The unimodal functions can test the local convergence ability
of the algorithm. F8-F13 are multimodal functions. Multi-
modal function can test the ability of the algorithm to jump
out of the local optimum. F14-F21 for the fixed-dimension
multimodal function. The fixed-dimensional multimodal
function can test the solution accuracy of the algorithm.

TABLE 1. Basic information of the seven algorithms.

The details of the 15 test functions of LSOPs are shown
in Table 3. Their dimensions are all set to 200,500,1000
dimensions.

After repeated experiments, the optimal parameters in
ISCSO were:µ = 0.9, a = 0.1 in the convergence factor;
1 = 0.00001 in the optimal fitness change rate threshold,
α = 1 and β = 1 in the weight coefficient, δs = 0.1 in the
similarity threshold, and pm = 0.7 in the variation coefficient
in the immunization operation.

In the experiments, the population size of all algo-
rithms was set to D=60 and the number of iterations was
Maxiter=500. The maximum fitness evaluation was set as
the population size multiplied by the maximum number
of iterations. MaxFES=D× Maxiter. All algorithms were
individually run 50 times for each test function. All of the
algorithms are coded in MATLAB2020 and run on a PC with
an AMD Ryzen 9 5900HS CPU@3.30 GHz/16 GB RAM.
(Note that only a single processor is used.)

2) PERFORMANCE METRICS
The article utilizes four basic performance metrics, namely
average value (Ave), standard deviation (Std), rank of average
value (Rank), and two-tailed t-test results. It is important to
note that freedom at a 0.05 level of significance is adopted
in the t-test. The tables present the t-test results as ‘‘+,’’
‘‘−,’’ and ‘‘=,’’ which indicate that ISCSO is significantly
better than, significantly worse than, or almost the same as
the corresponding competitor algorithms, respectively.

B. COMPARISON ON 21 LOW-DIMENSIONAL FUNCTIONS
In this section, the results of 21 low-dimensional functions
are presented and analyzed statistically. The best results for
the average and standard deviation on each problem among
all algorithms are highlighted in bold black.

1) UNIMODAL FUNCTIONS (F1-F7)
Table 4 provides the optimization results for seven unimodal
functions. Based on the average value and standard deviation
of the experimental results, it is observed that ISCSO per-
forms the best on F1, F2, F3, F4, and F7. MAPSO shows the
best performance on F5, while XPSO performs the best on F6.

VOLUME 11, 2023 68669



Y. Hu et al.: Improved Sand Cat Swarm Operation and Its Application in Engineering

TABLE 2. 21 low dimensional functions.

Furthermore, based on the rank and t-test results, it is evident
that ISCSO significantly outperforms the other optimization
algorithms on F1, F2, F3, and F4. Additionally, ISCSO is
not significantly inferior to other algorithms on F5 and F6.
As unimodal functions have only one global optimal, the rel-
evant algorithms’ performance is evaluated during the global
exploitation phase. The experimental results demonstrate that
ISCSO is successful in the global exploitation phase.

2) MULTIMODAL FUNCTIONS (F8-F13)
The table in Figure 5 presents the optimization results of
six multimodal functions. By examining the average value
and standard deviation of each test function, it is evident

that ISCSO exhibits exceptional performance in F9, F10,
AND F11. In fact, ISCSO was able to identify the theoretical
optimal value of both F9 AND F11. ON the other hand,WOA
performed best in F8, While XPSO demonstrated superior
performance in F12 AND F13.When considering the ranking
results, it is clear that ISCSO outperforms the other com-
parison algorithms significantly or almost equivalently, with
the exception of F12 AND F13. The multimodal function
features a single global optimal solution and multiple local
optimal solutions, thereby testing an algorithm’s ability to
escape from local optima. The experimental results reveal
that ISCSO exhibits a stronger capacity to escape from local
optima compared to other algorithms.

68670 VOLUME 11, 2023



Y. Hu et al.: Improved Sand Cat Swarm Operation and Its Application in Engineering

TABLE 3. 15 large-scale standard test functions.

TABLE 4. Optimization results on the seven unimodal functions.

3) FIXED-DIMENSION MULTIMODAL FUNCTIONS (F14-F21)
Table 6 shows the optimization results on eight fixed-
dimension multimodal functions. From the average value
of each tested function, ISCSO demonstrates the best
performance on F14, F15, F16, F17, F18, F19,
and F20.

Additionally, ISCSO obtains the theoretical optimal solu-
tion of the function on F16, F17, F18, F19, AND F20.
GWO Performs best on F21. The standard deviation of
ISCSO is either equal to 0 or close to 0 on EACH
TEST FUNCTION, indicating its high stability. Fixed-
dimensional multi-peaked functions can test an algorithm’s
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TABLE 5. Optimization results on the six multimodal functions.

TABLE 6. Optimization results on the eight fixed-dimension multimodal function.

TABLE 7. T-test results between iscso and other peer algorithms on the
21 low dimensional functions.

local exploration ability. The experimental results show that
ISCSO has good local exploration ability compared with
other comparison algorithms.

Overall, considering the performance of all algorithms on
the 21 low-dimensional test functions, although the prob-
abilistic immunity operation of ISCSO makes the number
of iterations significantly less than that of the other peer
algorithms with the sameMAXFES, ISCSO achieves the best
results and performs best on 75% of the tested functions.
Fig.2 depicts the convergence curves for some functions,
providing a more intuitive view of ISCSO’S performance.

TABLE 8. Friedman-test of mean values on the 21 low dimensional
functions.

4) T-TEST RESULTS
The results of the t-test between ISCSO and other peer algo-
rithms are among the 21 low-dimensional functions are given
in Table 7. In the table, ‘‘#+’’, ‘‘#=’’, AND ‘‘#-’’ indicate
that the test results of ISCSO are significantly better than,
almost the same as, and significantly worse than other peer
Algorithms, respectively. The comprehensive performance
(CP) is equal to ‘‘#+’’ minus ‘‘#−’’.

As can be seen in Table 7, ISCSO significantly outperforms
the other peer algorithms in most of the tested functions.
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FIGURE 3. The convergence curves of some of the 21 low-dimensional tested functions.

FIGURE 4. The schematic diagram of the model.
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TABLE 9. Optimization results on 15 large-scale standard test functions (D=200).

This indicates that ISCSO has good performance compared
to other peer algorithms. Moreover, based on the CP values,
ISCSO shows the most promising performance, followed by
ISCSO1, SESCSO and MAPSO

5) FRIEDMAN-TEST RESULTS
In this part, a Friedman-test of Average values is used to
compare the overall performance among all ten competitors.
The results are listed in Table 8, in which each algorithm
and its rankings are listed in ascending order (the lower the
better).

From the results in Table 8, ISCSO shows the best overall
performance. This is consistent with the results of the t-test.
Therefore, we can further conclude that ISCSO has better per-
formance in global exploration, local search and jumping out
of local optimal solutions compared to other peer algorithms.

C. COMPARISON ON 15 TEST FUNCTIONS OF LSOPS
The large-scale optimization problem is famous because of
his large dimensionality. As the dimensionality of the prob-
lem increases, the performance of the algorithm deteriorates
dramatically. Despite this challenge, LSOPs have enormous
potential for real-world applications, making it crucial to
study the effectiveness of algorithms like ISCSO on these
problems

To evaluate the performance of ISCSO and its counterparts,
we selected 15 test functions of LSOPs outlined in Table 2.
We also conducted tests on three dimensionsD=200, D=500,
and D=1000 to gain further insight into the algorithms’
capabilities

1) RESULTS COMPARISON AND ANALYSIS
The experimental results of ISCSO and other peer algorithms
on 15 large-scale (D=200,D=500,D=1000) test functions
are given in Tables 9, 10 and 11. As shown in the table,
ISCSO outperforms the other algorithms onmost of the tested
functions. In detail, ISCSO shows excellent performance
in 3-D of F1,F2,F3,F4,F6,F8,F9,F10,F11,F15. It is worth
mentioning that in F4, ISCSO not only finds the theoretical
optimal solution of the function, but also overwhelmingly
gets better than other algorithms. With the increase of dimen-
sionality, the performance of ISCSO does not change much,
which fully illustrates the strong robustness of ISCSO in
solving large-scale problems. From the results of t-tests,
ISCSO significantly outperforms other peer algorithms for
most functions. Overall, the performance of ISCSO remains
stable and significantly better than other peer algorithms
as the dimensionality increases. Fig.3 depicts the conver-
gence curves for some functions on D=200. The convergence
curves of other dimensions are similar to it and therefore are
not listed.
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TABLE 10. Optimization results on 15 large-scale standard test functions (D=500).

2) T-TEST RESULTS
The t-test results for ISCSO and other peer algorithms in the
3-D cases of 15 test functions of LSOPs have been analyzed
and presented in Table 12. In the table, ‘‘#+’’, ‘‘#=’’, and ‘‘#-
’’ indicate that the test results of ISCSO are significantly
better than, almost the same as, and significantly worse than
other peer functions, respectively. The comprehensive perfor-
mance (CP) is equal to ‘‘#+’’ minus ‘‘#−’’.

It shows that ISCSO outperforms other peer algorithms
significantly in 3-D of the 15 test functions of LSOPs.

Moreover, the performance of ISCSO remains stable even
with an increase in dimensionality, which further validates
its reliability. Based on the CP value, ISCSO exhibits the best
performance, followed by SCSO and SESCSO, which aligns
with the results obtained from low dimensional function
tests.

3) FRIEDMAN-TEST RESULTS
We conducted a Friedman test on all algorithms in 3-D and
the results are presented in Table 13. The algorithms are
listed in ascending order based on their ranking values.The
results reveal that ISCSO achieved the most favorable
outcomes in 3-D of the experiments. This is further cor-
roborated by its overall ranking. SESCSO and ISCSO1
obtained the second and third highest performance rankings,
respectively.

V. DOUBLE-LAYER SPRAYING PATH PARAMETER
OPTIMIZATION
A. DOUBLE-LAYER SPRAYING PAINT FILM
THICKNESS MODEL
This paper uses ISCSO to resolve the paint thickness uni-
formity problem in air spraying, further demonstrating the
viability of the method.

The spray gun’s paint distribution is better described
in this study by an elliptical double β spraying distri-
bution model. Figure 4 displays the model’s schematic
diagram.

The following equation (17) represents the total rate of
spraying per unit of time at a point P in the plane.

D(x, y) = Dmax(1 −
x2

a2
)
β1−1

(1 −
y2

b2(1 −
x2
a2
)
)
β2−1

(17)

where, −a ≤ x ≤ a, −b(1 −
x2

a2
)
1
2

≤ y ≤ b(1 −
x2

a2
)
1
2 , Dmax

are the maximum layer thickness values in the spraying area
per unit of time. β1, β2 are function distribution parameters.
D (x, y) is the accumulated thickness of the layer per unit of
time at point P.

During the spraying process, the distance between the
spray gun and the sprayed surface needs to be var-
ied. The three-dimensional layer thickness model for dif-
ferent spraying distances h can be obtained according
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TABLE 11. Optimization results on 15 large-scale standard test functions (D=1000).

TABLE 12. T-test results between ISCSO and other peer algorithms on the
large-scale standard test functions.

to the projection method. The model equation is as
follows.

D (x, y, h) = Dmax

(
h0
h

)2

1 −
x2(

a0 ·
h
h0

)2


β1−1

×

1 −
y2

(b0 ·
h
h0
)
2
(1 −

x2

(a0· hh0
)

2
)


β2−1

(18)

where h0 is the height of the gun reference. a0 and b0 are the
long and short axes of the spraying surface ellipse at this time.

TABLE 13. Friedman-test of mean values on 15 large-scale standard test
functions.

The center point of the spray gun is moved along the y-axis.
Assuming the travel speed of v, the total time elapsed for any
point on the spray plane is shown in Equation (19).

ta = 2(b0 ·
h
h0

)(1 −
x2

(a0 ·
h
h0
)
2 )

1
2

/v (19)

Eq. (18) is then time-integrated to produce a model for the
buildup of paint thickness on the plane.

The cumulative model of paint thickness at each location
on the plane when the gun is at any height is represented by
equation (20).
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From equation (20), it can be seen that when the spray-
ing parameters h0, a0, b0,Dmax , β1, β2 are determined, the
cumulative model of the plane paint thickness of the gun is
also determined.

T (x, h, v) =

∫ t

0
aDmax

(
h
h0

)2

1 −
x2(

a0 ·
h
h0

)2


β1−1

×

1 −

[(b0 ·
h
h0
)(1 −

x2

(a0· hh0
)
2 )

1
2

− vt]
2

(b0 ·
h
h0
)(1 −

x2

(a0· hh0
)
2 )

 dt

(20)

The Z -path is now the spraying path chosen by spraying
robots the most frequently. In this paper, the research is
carried out based on the Z -path.
Figure 5 (a) shows the schematic diagram for the planar

double-layer spraying trajectory. In the first layer of spraying,
two adjacent trajectory spray gun center distance d , spray gun
height h1, and spraying speed v1. The second layer of the
spraying gun axis is situated midway between the previous
layer’s two neighboring spraying trajectory. In the second
layer of spraying, the height of the gun is h2 and the speed
of spraying is v1.
As shown in Figure 5 (b), the coordinates of the points

in the figure are O(0, 0),B(d − a1, 0),C(a1, 0),D( d2 +

a2, 0),O1(d, 0). a1 is the length of the long axis of the first
spraying area. a2 is the length of the long axis of the second
spraying area.
T1a (x, h1, v1) stands for the first trace of the first coat-

ing layer’s coating thickness, and the coating thickness of
the second trace is obtained by translating T1a (x, h1, v1) in
the x-direction d , denoted by T1b (x, h1, v1, d). The coating
thickness of the second layer is then denoted as T2(x, h2, v2).
Equation (21) is the distribution function of coating thickness
for the double-layer spraying.

T (x, d, h1, v1, h2, v2)



T1a(x, h1, v1)

0 ⩽ x <
d
2

− a2

T1a(x, h1, v1) + T2(x, h2, v2)
d
2

− a2 ⩽ x < d − a1

T1a(x, h1, v1) + T2(x, h2, v2)
+T1b(x, h1, v1)
d − a1 ⩽ x < a1

T2(x, h2, v2) + T1b(x, h1, v1)

a1 ⩽ x <
d
2

+ a2

T1b(x, h1, v1)
d
2

+ a2 ⩽ x ≤ d

(21)

FIGURE 5. The schematic diagram of the model.

FIGURE 6. Planar double-layer spraying trajectory diagram.

B. PRAYING EXPERIMENT
Spraying experiments were conducted in this study with
the relative position of the spray gun and workpiece kept
unchanged. The purpose was to obtain the essential technical
parameters of the coating thickness accumulation model as
specified in subsection V-A.

A steel plate with a thickness of 1 mm was placed perpen-
dicular to the spray gun axis, with the muzzle distance from
the spray surface set at 500 mm. The spraying time lasted
for 3 seconds and was timed using a stopwatch. Once the
paint layer dried, a marking point was used as the origin,
and the long axis direction of the ellipse area was represented
by the X-axis, while the short axis direction was represented
by the Y-axis. Then, as depicted in Figure 6, parallel lines
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were marked along the X and Y axes at 20 mm intervals, and
the junction of the two lines was taken as the measurement
point for the coating thickness.

To measure the coating thickness, a TC580 coating thick-
ness gauge (measurement range 0∼1700, resolution 0.1) was
used. For each measurement point, the thickness was mea-
sured 5 times, and the average value was recorded. Finally,
to determine the coating thickness per unit of spraying time,
the measured coating thickness was divided by 3. Table 14
shows some of the experimental data, with only the mea-
surement data on the X and Y axes included due to space
limitations.

FIGURE 7. Planar spraying experimental diagram.

The least squares method is used to fit the experimen-
tally collected measurement data to the paint film surface.
Since the surface functions are known, the solution was
directly performed using the MATLAB genetic algorithm
toolbox. The final key parameters of the model obtained
are: a0= 204.665, b0= 117.776,Dmax= 11.448, β1= 2.763,
β2= 3.174. Figure 7 shows the surface fitting model.

C. SIMULATION EXPERIMENT FOR OPTIMIZATION OF
PARAMETERS OF DOUBLE-LAYER SPRAYING TRAJECTORY
1) ESTABLISHMENT OF THE OBJECTIVE FUNCTION
The objective of this paper is to increase the sprayed layer’s
uniformity. First, the variance between the film thickness
and the desired film thickness is calculated for each point
in the spraying area. A point is selected at 0.5mm intervals
between 0 and d . The variance calculation function is given
by equation (22).

L =
1
n

n∑
i=1

(T (xi) − Td )2 (22)

whereT(xi) is the thickness of the paint film at each point and
Td is the desired paint film thickness. n is the total number
of points.

At the same time, to ensure that the coating will not be
extremely thick or thin, the polar difference of the painting

FIGURE 8. Experimental fitting plot.

is constrained. Equation (23) is the polar difference calcula-
tion function.

E = Tmax − Tmin (23)

where Tmax is the maximum value of the layer thickness
and Tmin is the minimum value of the layer thickness.
Equation (24) is the final objective function.

Minimize : 0.5 ∗ L + E (24)

Combining the painting experience and equipment perfor-
mance, the desired film thickness is Td D 80 µm. Also
constrain each target solution: d ∈ [300, 1000],h1 ∈ [300,
1000], v1 ∈ [1, 100],h2 ∈ [300, 1000], v2 ∈ [1, 100].

2) OPTIMIZATION ALGORITHM SOLVING AND SIMULATION
The spraying trajectory parameters were optimized using
the ten aforementioned algorithms. The specific algorithm
parameters are selected as follows: The fitness function is
Equation (24); the population size is 60, the maximum num-
ber of iterations is 100, and other optimization parameters are
set as shown in subsection III-A

Finally, the convergence curves of the ten algorithms
after algorithm execution are shown in Figure 8. The
layer thickness distribution is shown in Fig. 9. The opti-
mal results are shown in Table 15. Among them, the
optimal solution obtained by the ISCSO algorithm is
[620.066, 999.797, 17.200, 585.154, 79.550]. IT shows that,
in the first layer of spraying, the center distance of two
adjacent trajectories d = 620.066mm, gun height h1 =

999.797mm, and spraying speed v1 = 17.200mm/s. In the
second layer of spraying, the gun height h2 = 585.154mm,
and spraying speed v2 = 79.55mm/s

According to Fig. 8, ISCSO shows stronger convergence
and better merit-seeking performance. From the specific
convergence data, the range and variance of ISCSO are sub-
stantially improved compared to the original algorithm. This
further demonstrates that ISCSO has a better result in finding
the best performance. Based on the graphical results, this
paper concludes that ISCSO is more efficient and superior to
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TABLE 14. Some data of the spraying experiment.

FIGURE 9. Convergence curve of optimization algorithm for planar
double-layer spraying.

FIGURE 10. Thickness distribution of planar double-layer spraying.

the original algorithm in iteratively solving the double-layer
spraying trajectory optimization problem.

3) COMPARISON OF OPTIMIZATION RESULTS OF PLANAR
SINGLE-LAYER SPRAYING AND PLANAR DOUBLE-LAYER
SPRAYING
To evaluate the efficacy of double-layer spraying, a com-
parative simulation experiment was conducted in this
study. ISCSO was used to optimize the trajectory of

TABLE 15. Algorithm optimization of optimal results.

FIGURE 11. Single and double spray painting thickness comparison chart.

single-layer spraying, and the optimal solution was obtained,
[385.270, 732.485, 22.778], with the overlap width of adja-
cent trajectories being d = 385.270mm, the spray gun height
being h = 732.485mm, AND THE SPRAYING SPEED
BEING v1 = 22.778mm/S. The thickness distribution of
the single-layer sprayed layer and the double-layer sprayed
layer was compared and presented in Figure 10. The figure
shows that the layer THICKNESS uniformity has signifi-
cantly improved after optimization.

VI. DISCUSSION
In this paper, we introduce an Improved Sand Cat Swarm
Optimization (ISCSO) algorithm to address the limitations
of the original Sand Cat Swarm Optimization (SCSO)
algorithm. While SCSO is a simple and easy-to-implement
algorithm, it suffers from issues such as poor initial
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population quality, slow convergence speed, and a tendency
to fall into local optima. To overcome these problems, we pro-
pose three improvement strategies.

Firstly, we introduce the SPM chaotic mapping technique
to increase the diversity of the ISCSO’s initial population.
This helps to improve the quality of the initial population
and overcome the problem of poor initial population quality
in SCSO. Secondly, we add a nonlinear periodic adjustment
mechanism to balance the algorithm’s local exploitation and
global search capabilities. Finally, We calculated and ranked
the incentive degree among individuals. The ability of ISCSO
to escape local optima was greatly improved by treating the
top 20% of individuals with cloning, mutation and cloning
suppression.

To verify the performance of ISCSO, we conducted exten-
sive experiments on 21 low-dimensional functions and 15 test
functions of LSOPs, comparing it with nine other peer
algorithms. The results show that ISCSO has excellent per-
formance on unimodal functions, multimodal functions, and
fixed-dimension multimodal functions. Moreover, it demon-
strates strong adaptability for solving LSOPs problems.

To further validate the practicality of the ISCSO algorithm,
we applied it to the field of spraying and optimized spraying
parameters using ISCSO and each of the other seven peer
algorithms. The experimental results demonstrate that ISCSO
is highly practical and shows good promise for engineering
optimization problems.

In the future, we will continue to investigate the real-world
applications of ISCSO and further improve the performance
of the algorithm.
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