
Received 23 May 2023, accepted 30 June 2023, date of publication 5 July 2023, date of current version 17 July 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3292314

Embedding Imputation With Self-Supervised
Graph Neural Networks
URAS VAROLGUNES , SHIBO YAO , YAO MA, AND DANTONG YU
New Jersey Institute of Technology, Newark, NJ 07102, USA

Corresponding author: Uras Varolgunes (uv27@njit.edu)

This work was supported by the Department of Energy under Grant DE-SC0022346.

ABSTRACT Embedding learning is essential in various research areas, especially in natural language
processing (NLP). However, given the nature of unstructured data and word frequency distribution, general
pre-trained embeddings, such as word2vec and GloVe, are often inferior in language tasks for specific
domains because of missing or unreliable embedding. In many domain-specific language tasks, pre-existing
side information can often be converted to a graph to depict the pair-wise relationship between words.
Previous methods use kernel tricks to pre-compute a fixed graph for propagating information across
different words and imputing missing representations. These methods require predefining the optimal graph
construction strategy before any model training, resulting in an inflexible two-step process. In this paper,
we leverage the recent advances in graph neural networks and self-supervision strategy to simultaneously
learn a similarity graph and impute missing embeddings in an end-to-end fashion with the overall time
complexity well controlled. We undertake extensive experiments to show that the integrated approach
performs better than several baseline methods.

INDEX TERMS Embedding imputation, graph neural networks, natural language processing.

I. INTRODUCTION
Embedding techniques [1], [2], [3] have attracted numer-
ous attention, especially in the domain of natural language
processing, because high-quality word representations are
indispensable for most language learning tasks. Specifically,
many NLP tasks employ transfer learning by creating an
embedding lookup layer using a set of pre-trained word
embedding vectors trained on a large corpus. Transfer learn-
ing is preferred over training a language model from scratch
to learn completely new embeddings becausemost real-world
datasets contain a large volume of rare words, making it dif-
ficult to find the right representation for them. Additionally,
when embeddings are trained from scratch, the number of
trainable parameters increases, and the training process slows
down significantly.

Despite all these advantages of pre-trained embedding
vectors, some words in the dataset of a specific task may
not have a pretrained embedding vector. For example, thou-
sands or even millions of terminologies and abbreviations in

The associate editor coordinating the review of this manuscript and
approving it for publication was Chuan Li.

the medical field do not have pretrained embedding vectors
because they are often not contained in a general corpus.
When employing a set of pretrained embeddings for an
NLP task, such words without any pretrained embedding
are usually assigned a randomly sampled embedding vec-
tor. This phenomenon hinders the downstream NLP tasks
from benefiting from these words’ embeddings. Fortunately,
it is possible to leverage some side information to miti-
gate the problem of missing word embedding. For example,
a knowledge graph in the form of a medical taxonomy and
ontology, or even a collection of chemical or physiological
attributes of the terminologies, can serve as side information
and be fused into the semantic space to impute missing word
embeddings.

In this work, we aim to design a semi-supervised learning
model that leverages side information to define pair-wise sim-
ilarities between entities (words) and propagates information
between entities with known targets (embeddings) and the
ones with unknown targets based on their similarities. Graphs
can naturally be used to model such relationships. Most
of the existing graph-based methods require a given/pre-
constructed graph to start with; however, such a graph may

70610 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0002-9821-4183
https://orcid.org/0000-0003-0962-7195

U. Varolgunes et al.: Embedding Imputation With Self-Supervised Graph Neural Networks

not always be readily available. In this work, we aim to
learn and optimize a graph and use it for propagating node
attributes.

In [4] and [5], the authors first build a fixed graph between
words based on side information and then use it to propa-
gate information between nodes. This approach is depicted
in Fig. 1. First, the side information matrix X is used to
learn pair-wise similarities between words and construct the
fixed similarity graph G. Then, the parameterized mapping
function f (G,X) learns to map the side information vector
for a word wi to its corresponding pre-trained embedding by
updating its parameters.

Hence, for these methods: 1) the graph has to be
pre-constructed and fixed, 2) the optimal parameters for the
mapping function have to be computed for the fixed graph.
If the pre-constructed graph is not suitable for the impu-
tation task, i.e., it does not accurately capture the pairwise
relationships between words, it may significantly limit the
capacity and hurt the performance of the model. Optimizing
the graph structure is costly because it requires repeating
the two-step process every time. To address these challenges
caused by the two-step approach, we propose to infer a graph
from the data, similar to latent graph learning approaches,
such as [6], [7], and [8] instead of calculating a fixed graph.
These methods are more flexible compared to fixed graphs
due to their ability to adjust graph structure to minimize the
embedding learning loss function. For embedding imputation
using side information, latent graph learning is a promising
approach, because it does not impose any constraint on graph
structure and allows joint learning of the graph and the neural
network parameters in an end-to-end manner.

One challenge for latent graph learning approaches is that
they heavily rely on limited labels and suffer from poor
generalization because of over-fitting. This happens partic-
ularly when labeled training data are scarce [9]. In [8], the
authors identify a supervision starvation problem in latent
graph learning approaches in which the edges between pairs
of unlabeled nodes that are far from labeled nodes receive
insufficient supervision, leading to unreliable graphs during
test time. Because our embedding imputation is concerned
with imputing rare words, such as terminologies or proper
nouns, it is likely that the domain for side information also
consists of only some related rare words, resulting in a limited
amount of labeled training data. Any embedding imputation
on these rare words suffers from over-fitting and supervision
starvation issues. In this paper, we tackle the embedding
imputation problem by leveraging the recent advances in
self-supervised learning with latent graph structure.

Additionally, graph learning often incurs quadratic costs
concerning the number of graph nodes, and this may cause
some challenges for large-scale data. To reduce the complex-
ity of the method, we leverage the anchor-graph idea [10]
to build an approximate graph where the prior knowl-
edge is translated into the word-word pairwise relationship,
with guaranteed linear time complexity and provable alge-
braic properties. Overall, our method generates superior

FIGURE 1. Side information matrix X and target embedding matrix Y for
words w1, w2, w3 and w4. The i -th rows in X and Y correspond to the
side information vector and pre-trained embedding of word wi ,
respectively. For all words, the side information vectors are available, but
target embeddings for w3 and w4 are missing.

experimental results compared to previous works and is scal-
able for building large graphs. The contributions of this work
are as follows:
• We design a powerful embedding method built on top of
the recent advances in latent graph learning to address
the critical problem of word embedding imputation in
natural language processing.

• We learn a dynamic graph from prior knowledge that
best fits the embedding learning problem and use it
to propagate and transform the prior knowledge into
effective embeddings.

• We customize the graph construction using an anchor
sampling process to reduce the complexity from
quadratic to linear. Consequently, the overall approach
is scalable to large datasets.

• We demonstrate the effectiveness of the approach with
thorough experiments.

II. RELATED WORKS
The embedding imputation problemwas formulated and stud-
ied in Latent Semantic Imputation [4], where the authors
first use a piece of side information to construct a weighted
graph based on the non-negative least squares approach
defined in Locally Linear Embedding [11] and convert
it into a minimum-spanning-tree-k-nearest-neighbor-graph.
The missing embedding vectors are then imputed via a matrix
power iteration process that theoretically guarantees deter-
ministic convergence. KG2Vec [5] also uses prior knowledge
to build a similarity graph where each node corresponds to
a word. Similar to [4], the authors formulate the imputation
problem as graph-based semi-supervised learning and apply
graph convolutional networks (GCN) [12] to learn missing
embedding vectors. The advantages of using GCN in the
solution include the incorporation of graph topology into
embedding and enlarged model capacity provided by the
neural network parameters. Another line of work addressing

VOLUME 11, 2023 70611

U. Varolgunes et al.: Embedding Imputation With Self-Supervised Graph Neural Networks

the problem of missing word embedding vectors includes
federated learning based on character-level information [13]
and the robust backed-off approach [14] based on sub-word
information. These two approaches do not incorporate side
information or prior knowledge. We follow the same problem
setting as the first line of work that integrates prior knowledge
into the solution. Differently from these works, we learn
graph topology and embeddings within the same network
architecture in an end-to-end fashion as shown in Fig. 2,
rather than using a non-flexible, fixed graph to propagate
information. The method in this paper is closely related to
the graph-based semi-supervised learning, including the early
endeavors [15], [16], where the modeling process takes into
consideration the feature vectors of all samples and uses the
pair-wise relationships in a graph to enforce locality and
smoothness. Graph neural networks [12], [17], [18] further
enhance the solution with the rich capacity of neural network.

Another line of work considers solving classification prob-
lems with GNNs when a graph structure is unavailable.
LDS-GNN [6], jointly learns the graph structure and the
parameters of a GCN by approximately solving a bilevel
program that learns a discrete probability distribution on the
edges of the graph. The method allows applying GCNs in
scenarios where the given graph is not available, incom-
plete, or corrupted. IDGL [19] uses an iterative approach
and alternates over projecting the nodes to a latent space
and constructing an adjacency matrix from the latent rep-
resentations multiple times. In [8], the authors propose to
simultaneously learn the adjacency andGNNparameters with
self-supervision for inferring a robust graph structure. Our
method is closely related to this line of work.

Most GNN application scenarios assume that the graph
topology is given. However, graph topology is often unknown
in our problem setting and may have to be constructed
from prior knowledge multiple times during training. Graph
construction is based on some distance metric among node
vectors and incurs quadratic time complexity in the number of
nodes. A brute-force approach does not scale to large datasets.
To address this issue, we look into near-linear-time geometric
graph construction. The recent theoretical work [20] sys-
tematically investigates the problem and presents a solution
based on well-separated-pair-decomposition, coupled with
Johnson-Lindenstrauss lemma if the node feature vector is
high-dimensional. Fast approximate k-NN graph construc-
tion is also tackled in [21] using locality-sensitive hashing.
In our work, we employ a relatively simple yet effective
approach that samples anchors and is similar to the idea
in [10]. Our experiment results show that the straightforward
anchor sampling achieves efficacy and efficiency simul-
taneously. Moreover, when combined with self-supervised
GNNs, the final model performance is robust against graph
variation and randomness due to the anchor sampling.

III. PROBLEM DEFINITION
Given a set of words {wi|1 ≤ i ≤ n} = {wl}

⋃
{wu}, {wl} is

the set of words with known embedding vectors {yl}, where

yi ∈ Rd , and {wu} is the set of words without embedding
vectors (for notational convenience the missing embedding
vectors are denoted as {yu}). Given {yl} and some prior
knowledge about the words from an external knowledge base
represented by feature vectors {xi|1 ≤ i ≤ n} = {xl}

⋃
{xu},

where xi ∈ Rf , the objective is to infer {yu}. To apply graph-
based semi-supervised learning methods, we need to build a
graph based on prior knowledge {xi}, where each word wi is
a node. Note that, |{wi}| = |{xi}| = n, |{wl}| = |{xl}| =
|{yl}| = p and |{wu}| = |{xu}| = |{yu}| = q, where
n = p+q. n, p and q represent the total number of words, the
number of words which have pretrained embedding vectors
and the number of words without pretrained a embedding
vector, respectively.

IV. PRELIMINARIES
We define a weighted, attributed graph as G = {V, Ã,X},
where V = {v1, v2, . . . , vn} is the node set, Ã ∈ Rn×n is
the adjacency matrix with Ãij (the element at i-th row, j-th
column) indicating the edge weight from node i to node j,
(Ãij = 0 implies there is no edge) andX ∈ Rn×f is the feature
matrix with f representing the dimensionality of the feature
vector of each node.

The graph convolutional neural network (GCN) [12] aims
to improve the quality of the representations by aggregating
information from neighbor nodes and applying transforma-
tions to the representations in each layer. For a graph G =
{V, Ã,X}, the output of the l-th layer of a GCN is defined as:

H(l)
= σ (AH(l−1)W(l)) (1)

H(l)
∈ Rn×dl and H(l−1)

∈ Rn×dl−1 are the node repre-
sentations of the current and the previous layers, respectively
and the representations in the first layer are initialized as
H(0)
= X. A = D̃−

1
2 ÃD̃−

1
2 + I is the normalized adjacency

matrix with the added self-loop, where I represents the n× n
identity matrix. W(l)

∈ Rdl−1×dl is a trainable weight matrix
and σ is an activation function, such as tanh.

V. METHODOLOGY
In this section, we introduce the framework of our
self-supervised imputer (SSI). Our goal is to define a map-
ping from the side information data space to the embedding
space, i.e., for each word, the feature vector (side informa-
tion) will be mapped to its embedding vector. We propose to
use a GCN to incorporate the affinity information between
words and thereby improve the quality of the learned
representations. However, most GCN based architectures
assume a pre-defined graph structure. Our problem setting
does not have a pre-defined graph structure and requires
graph construction from available side information. Exist-
ing approaches often adopt kernel-tricks and the nearest
neighbors to construct a fixed similarity graph based on
side information. However, these fixed graphs may not be
appropriate for our imputation objective due to the difference
between the two spaces and the lack of flexibility in domain
adaptation. Hence, we propose to learn the graph structure

70612 VOLUME 11, 2023

U. Varolgunes et al.: Embedding Imputation With Self-Supervised Graph Neural Networks

FIGURE 2. Network architecture. Side information matrix X is input into the generator to
obtain the processed adjacency matrix A. A is then used for both tasks. GNNS tries to
reconstruct the original feature matrix X and the self-supervision loss LS is computed based
on its output. GNNR predicts the embedding for each word and the regression loss LR is
computed based on known embeddings. During test time, the unknown embeddings are
replaced with the predictions made by GNNR .

and optimize the model weights simultaneously in an end-
to-end fashion similar to the graph construction algorithm
in [8]. Fig. 2 shows the overall architecture of the proposed
embedding imputation framework, consisting of the follow-
ing components:

1) Graph generator module: transforms the original node
features using an MLP and computes a kNN -graph based
on the similarity of the transformed features. The generated
graph is then used in both the Regression module and the
Self-supervision modules to increase the robustness of the
learned graphs, 2) Regression module (GNNR): this module
consists of a GCN that learns to map the original node
features to the target embeddings based on the kNN -graph
generated by the previous module, and 3) Self-supervision
module (GNNS): it randomly masks (converts to zero) a
subset of the entries in the original feature matrix and then
uses the Graph AutoEncoder and the kNN -graph generated
from the prior steps as input graph to reconstruct the original
features from the masked (corrupted) version of the original
node features.

A. GRAPH GENERATOR
The graph generator uses side information (node features)
in order to construct the affinity graph. Formally, the graph
generator G : Rn×f

→ Rn×n is a function that takes the
side information matrix X ∈ Rn×f as input and produces the
affinity matrix Ã ∈ Rn×n as output. First, X is passed to a
multi-layer perceptron,MLP : Rn×f

→ Rn×f ′ , which outputs
the transformed node representations X′ ∈ Rn×f ′ . Based on
X′, the k-nearest-neighbors function kNN : Rn×f ′

→ Rn×n,
selects the top k neighbors for each node and generates the
sparse k-nearest-neighbor graph.

Let x′i denote the transformed representation of node vi.
To select the nearest neighbors for vi, we compute the dot
product between x′i and x′j for all j = {1, 2, . . . , n} and select
the top k nodes with the largest dot product. Finally, for all
selected nodes vj, we set Ãij = x′i · x

′

j, where · represents the
dot product operation.

The output matrix Ã may contain negative and positive
values, may be asymmetrical and needs to be normalized,
so we further process Ã to obtain the affinity matrix of the
learned graph:A = 1

2 D̃
−1/2(P(Ã)+P(Ã)⊤)D̃−1/2 where D̃ is

the matrix of node degrees and P is an element-wise function
with non-negative range, such as ReLU .

B. REGRESSION MODULE
The GNN-based regression moduleGCNR : Rn×f

×Rn×n
→

Rn×d , takes the original node features X and the gener-
ated adjacency matrix A as input and outputs the predicted
embedding, where d is the dimensionality of the embedding
vector to be imputed. TheGNNmodule parameterized by two
matricesW(1)

R andW(2)
R of trainable weights generates output

as follows:

GCNR(A,X;W(1)
R ,W(2)

R) = AReLU (AXW(1)
R)W(2)

R (2)

The regression loss LR for training is defined as the mean
squared difference between the original embedding and the
predicted embedding, which is computed for all nodes with
available target embedding. Here, target embeddings serve
the same role as labels in supervised learning. We generalize
the definition of label to be the learning target regardless of
whether the model is for classification or regression.

C. SELF-SUPERVISION MODULE
The graph generator learns to generate graphs mainly based
on the regression loss LR computed on only labeled nodes.
In [8], the authors identify the problem of starved edges and
argue that only relying on the supervision from labels may
not be sufficient while learning a dynamic graph. A starved
edge is defined as an edge generated between two nodes that
receives no supervision from the labels because it is more than
k-hops away from any labeled node when using a k-layer
GCN. They show that a graph suitable for predicting node
features can also be useful in predicting node labels and such
a graph can be used to regularize the starved edges. We use

VOLUME 11, 2023 70613

U. Varolgunes et al.: Embedding Imputation With Self-Supervised Graph Neural Networks

this idea and introduce the self-supervision module which is
useful for learning a more robust graph.

First, we augment the node features by masking out some
node attributes with a binary mask matrix M ∈ {0, 1}n×f

and obtain a randomly sampled version X̃ of X. A different
M is created randomly at each epoch and contains a fixed
number of zero entries. X̃ = X⊙M, where ⊙ represents the
Hadamard product.

We define an Autoencoder GCNS : Rn×f
× Rn×n

→

Rn×f with parameters W(1)
S and W(2)

S that takes the node
features X̃ and the generated adjacency matrix A and tries
to reconstruct X̃. The self-supervision loss is defined as:

LS = MSE(Xidx ,GCNS (A, X̃;W(1)
S ,W(2)

S)idx) (3)

where idx = {(i, j)|Mij = 0} is a set of indices selected
uniformly at random in each epoch. MSE is the mean-
squared-error loss. The final model is trained to minimize
L = LR + λLS . λ is a hyperparameter that controls the
relative importance between the embedding regression loss
LR and the self-supervision loss LS .

D. ANCHOR-kNN GRAPH CONSTRUCTION
The graph generator computes a new kNN graph at each
epoch. This may result in scalability issues for large datasets
because conventional kNN graph construction requires
quadratic time with respect to the number of nodes. To mit-
igate the scalability issue, we adopt the idea of anchor-
graph [10].

The Anchor-kNN process is outlined in Algorithm 1.
choice() is the random sampling process on a uniform dis-
tribution. choice(X,m) samples m unique rows from X and
constructsXm. We take the inner product of the feature matrix
X and Xm to construct the similarity matrix C, where Cij
denotes the similarity between nodes vi and vj. The graph
adjacency Ã is initialized as a matrix of zeros. NN_index
takes in Ci (the i-th row of C, i.e., the list of similarities for
vi) and an integer k (the node degree) as inputs, and returns
a list of indices, γ , corresponding to the largest k elements
in Ci. Then, for all indices j ∈ γ , the corresponding entry in
Ãij is set to be the similarity score Cij. To use anchor graph,
we replace the kNN function in the Graph Generator module
with the Anchor-kNN function.

1) COMPLEXITY ANALYSES
In addition to the model effectiveness, we need to evaluate
whether the end-to-end approach for embedding imputation
is scalable to large datasets. During graph construction, the
anchor sampling process takes O(1) time, the similarity com-
putation between n nodes and m anchors takes O(fmn) time
where f denotes the dimension of the original feature vector.
Overall time complexity for k nearest neighbor search is
O(mn). The time complexity of the GNN model evaluation
is also linear in n given that the graph is sparse. Therefore,
the end-to-end approach with a learnable graph has a time
complexity O(n) with m≪ n.

Algorithm 1 Anchor-kNN

Input : (X, k , m) ; // X ∈ Rn×f :feature
matrix; k:desired node degree;
m:number of anchors

Output: Affinity matrix Ã ∈ Rn×n

1 Xm = choice(X,m)
2 C = X · XT

m where C ∈ Rn×m

3 Ã← 0 ; // initialize as zero matrix
4 for i in 1, 2, . . . , n do
5 γ = NN_index(Ci, k);
6 for j in γ do
7 Ãij = Cij;
8 end
9 end

VI. EXPERIMENTS
We carry out comprehensive experiments on various real-
world datasets, including the finance industry and online
application markets, to demonstrate the effectiveness, scala-
bility and robustness of the proposed approach. Specifically,
we try to answer the following questions:
• Is SSI more effective in mapping the side information to
the semantic space and facilitate downstream tasks than
the baseline methods?

• Can the anchor sampling process reduce graph construc-
tion complexity while retaining model performance?

• What is the impact of self-supervision on model perfor-
mance?

We use LSI [4], GCN [12], IDGL [19] and LDS-GNN [6]
as the baselinemethods for comparison. Thesemethods cover
a variety of machine learning models with different archi-
tectures. LSI is based on the standard (linear) matrix power
methodwhile GCN takes advantage of the rich capacity of the
multi-layer-perceptron (MLP) and the graph neural networks.
IDGL and LDS-GNN jointly learn the graph structure and
the parameters of a GCN and SSI further improves upon all
the aforementioned methods by deriving robust graphs from
self supervision. Implementation and hyperparameter tuning
details are provided in Appendix A.

A. DOWNSTREAM TASKS
When we want to avoid building a language model from
scratch, we typically utilize a pretrained embedding set such
as GloVe [3]. However, some word embedding in the dataset
corpus may not be available in this pretrained embedding
set. To impute those missing words, we can utilize a side
information source and apply an imputation model. Note that,
for data imputation, we do not need to have side information
for all the words in the corpus. It is enough to have side
information only for a subset of the words which includes
the missing words and some selected words from the corpus
having the pretrained embedding available. For example, in a
finance sentiment analysis task, the corpus may consist of a

70614 VOLUME 11, 2023

U. Varolgunes et al.: Embedding Imputation With Self-Supervised Graph Neural Networks

collection of financial articles, which include some company
names along with some other more commonly used words.
After picking a pretrained embedding set for the task, we may
observe that some of the company names in the corpus do not
have a pretrained embedding. Suppose that we identify a side
information source (e.g., daily stock returns) that contains
information about n companies in the corpus: q of those n
companies do not have a pretrained embedding, while the
remaining p = n − q companies have a pretrained embed-
ding. Then, we apply the designed imputation algorithm to
predict the embedding vectors for those q companies using
the guidance from the other p companies. Below, we conduct
experiments on two real-world datasets and demonstrate the
effectiveness of our imputation model.

1) IMPUTING FINANCE COMPANY EMBEDDINGS
For this task, we adopt the datasets from [4]. There are two
datasets of different sizes. The small dataset has a word set
of 488 company names retrieved from S&P500 index. The
large dataset has a word set of 4092 company names covering
almost all publicly listed stocks in US market retrieved from
NYSE and NASDAQ. The goal is to successfully impute the
missing embeddings that are not available in the pretrained
embeddings using the available side information (historical
return data). This is done separately for all three pretrained
embedding sets. A more detailed description of the dataset
is provided in the Appendix B. As LSI and GCN require
a fixed graph, we follow the steps in [4] to construct an
MST-kNN graph using the side information matrix X as the
domainmatrix, solve for the optimal edgeweights usingNon-
Negative-Least-Squares and normalize the weights to obtain
the graph. LDS-GNN, IDGL and SSI do not require this as
they learn the graph during training. For GCN, LDS-GNN,
IDGL and SSI, side information matrix X is used as the
feature matrix.

2) IMPUTING MOBILE APPLICATION EMBEDDINGS
Mobile App Statistics dataset contains more than 7000 Apple
iOS mobile application details extracted from the iTunes
SearchAPI at the Apple Incwebsite. Each app has a name and
a primary genre such as Games, Sports, or Business. There
are 23 possible genres. Each app also has categorical (e.g.,
content maturity rating) and numerical features (e.g., price)
and a textual description. For each app, we process and merge
the features and obtain a feature vector of size f . Details of the
dataset and the processing steps are provided in the Appendix
B. Side information matrix X ∈ Rn×f is obtained by stacking
the individual feature vectors of all apps. Again, X is used to
construct the fixed graph for LSI and GCN and also as the
feature matrix for GCN, LDS-GNN, IDGL and SSI.

3) EVALUATION
After the imputation, we obtain a set of predicted embedding
vectors {ŷ1, ŷ2, . . . , ŷn} for all words. Any word wi which
previously had a pretrained embedding retains its original
embedding yi, while we set yj = ŷj for all the remanining

TABLE 1. kNN accuracies (%) for the small finance dataset. E denotes the
name of the embedding set.

words wj (the words without any pretrained embedding).
After this step, we refer to {y1, y2, . . . , yn} as the completed
set of embeddings. To evaluate and compare the quality of
the learned embeddings using different methods, we per-
form the k-Nearest-Neighbors (kNN) evaluation described in
Algorithm 2 in the Appendix C and provide the reasoning
for this evaluation. Essentially, we iteratively leave one com-
pany/app out of the set and try to predict its label (industry
for finance, app category for app statistics dataset) using its
k-Nearest-Neighbors.

The results are shown in Table 1, Table 2, Table 3 for
the small finance, large finance and Mobile App Statistics
datasets, respectively.We run every experiment five times and
compute the mean and standard deviation. We perform the
kNN classification and gradually change the k to examine the
robustness of different methods under different choices of k .
From Table 1, Table 2 and Table 3 (see Appendix D for more
detailed tables) we make the following observations: (1) SSI,
LDS-GNN and IDGL often outperform GCN, demonstrating
the effectiveness of using latent graph learning compared to
using fixed graphs. This result highlights the potential of
these approaches in improving the mapping function from the
side information space to the embedding space and conse-
quently, their ability to improve overall embedding quality;
(2) LSI outperforms GCN, LDS-GNN and IDGL. This result
shows that neither the capacity improvement brought by the
MLP parameters nor the latent graph learning approach can
bring enough improvement to outperform LSI. A possible
explanation for this is LSI’s deterministic convergence, which
guarantees the model to reach the optimal solution once the
hyperparameters are set, which is not the case for the other
models. (3) SSI outperforms LDS-GNN and IDGL, indicat-
ing that latent graph learning guided by self-supervision is
able to learn more robust graphs for domain adaptation com-
pared to the alternative approaches offered by LDS-GNN and
IDGL. (4) SSI outperforms all baselines, proving that GCN
based methods combined with a robust latent graph learning
strategy is the most effective way to perform embedding
imputation.

VOLUME 11, 2023 70615

U. Varolgunes et al.: Embedding Imputation With Self-Supervised Graph Neural Networks

TABLE 2. kNN accuracies (%) for the large finance dataset.

TABLE 3. kNN accuracies (%) for the mobile app statistics dataset.

B. SENSITIVITY ANALYSES
1) NUMBER OF ANCHORS (m)
In this section, we evaluate the effectiveness of the anchor
sampling process in reducing computation complexity while
retaining the model’s accuracy. For the large finance dataset
and fastText, fixing the found optimal hyperparameters and
only varying the number of anchors, we train SSI multiple
times and observe the kNN accuracies (for k = 30) and
runtimes for building a single graph. The reported results
are the averages of five different runs for each configu-
ration. Figure 4 confirms that the Anchor-kNN achieves a
comparable accuracy based on an approximate graph that
only considers the node affinity concerning a small subset
of nodes (anchors) in comparison with the exact solution
that has quadratic time complexity and requires comprehen-
sive pair-wise calculations among all nodes. With 500 and
1000 anchors, Anchor-kNN loses around 1%-2% accuracy,
but manages to decrease construction time significantly,
by 77.6% and 63.3%, respectively. Using 2000 anchors
(approximately half of all the nodes) roughly preserves orig-
inal performance while reducing the construction time by
43.4%. Recall that the complexity of anchor graph construc-
tion is linear to the number of anchors and the number
of all graph nodes. Our algorithm uses a constant num-
ber of anchors, achieves comparable performance to those
full-scale graph-based algorithms, and has the advantage
of the overall linear complexity in terms of the number
of nodes.

FIGURE 3. Effect of λ. Missing word2vec and GloVe embeddings are
imputed. kNN results (k = 30) for different λ are shown. We report the
mean of 5 different runs.

FIGURE 4. Effect of Anchor-kNN on model performance and runtime.
kNN classification results (k = 30) and Anchor-kNN graph construction
times (for building a single graph) are shown versus different number of
anchors. Dashed lines indicate the original accuracy/runtime without
Anchor-kNN . We observe that the graph construction time can be
reduced by 43.4% while preserving the original accuracy.

2) SELF-SUPERVISION STRENGTH (λ)
Figure 3 shows the results for the Mobile App Statistics
dataset for different values of λ. We train multiple models
with varying λ values using the optimal hyperparameters.
Note that λ = 0 corresponds to no self-supervision.
For both word2vec and glove embeddings, we observe
that when λ increases up to a particular value, the model

70616 VOLUME 11, 2023

U. Varolgunes et al.: Embedding Imputation With Self-Supervised Graph Neural Networks

TABLE 4. Detailed kNN accuracies (%) for the small finance dataset. Mean and standard deviation of 5 different runs are reported. k denotes the number
of neighbors in a kNN classifier and E denotes the name of the embedding set.

TABLE 5. Detailed kNN accuracies (%) for the large finance dataset. Mean and standard deviation of 5 different runs are reported.

TABLE 6. Detailed kNN accuracies (%) for the Mobile App Statistics dataset. Mean and standard deviation of five runs are reported.

accuracy improves for both glove and google, confirming that
self-supervision indeed enhances the model robustness and
performance.

Once λ reaches a specific value, the model performance
peaks. After this point, increasing λ deteriorates the perfor-
mance. This behavior is similar to cases where applying too
much regularization starts to introduce a lot of bias. In fact,
the self-supervision loss term indeed serves as a regulariza-
tion mechanism to ensure that the model trades off between
the supervised learning objective and graph robustness in
preserving node features.

VII. DISCUSSION AND CONCLUSION
In this paper, we tackle the problem of embedding impu-
tation with the recent advances in graph neural networks.
Instead of using a pre-computed graph, we use the idea
of self-supervision to learn and evolve graph structure dur-
ing training to address the challenge of converting the side
information into a suitable network structure for imputation.
Combining the reconstruction loss of the original node fea-
tures and the actual prediction task has a close connection
to regularization and is highly effective. We also integrate
the idea of anchor sampling into our framework to reduce

VOLUME 11, 2023 70617

U. Varolgunes et al.: Embedding Imputation With Self-Supervised Graph Neural Networks

the complexity of graph construction for scalability. The
approach yields performance superiority and robustness on
multiple tasks and numerous datasets compared to previous
works. We anticipate our embedding imputation technology
will be especially useful in domain NLP tasks.

APPENDIX A
IMPLEMENTATION DETAILS
The hyperparameters for all models are tuned using the losses
on the validation set (mean squared error between predicted
and original embedding). After finding the optimal hyperpa-
rameters, we train and test each model using 5 random seeds
and report the average results and standard deviations on the
test sets. We use the Adam [22] for all models except LSI
unless stated otherwise, and tune the weight decay parameter
from (0.0, 1e-7, 1e-6, 1e-5).

For LSI and GCN, we tune the number of neighbors δ for
constructing the MST-kNN graph from (10, 20, 30). We tune
the learning rate from (1e-5, 1e-4, 1e-3) and apply dropout on
the adjacency matrix and the weight matrices with the keep
probabilities selected from (1.0, 0.75, 0.5), applied at each
layer. We train for 400 epochs. For LSI, stopping criterion η

is set to 1e-4.
For LDS-GNN, the inner objective function is set as the

regularized mean-squared error and optimized with Adam.
The outer objective is set as the unregularized mean-squared
error and optimized using Stochastic Gradient Descent.
We further split the validation set evenly to form the vali-
dation and early stopping (patience = 20) sets. We use the
kNN-LDS version and tune: outer optimization learning rate
from (1e-5, 1e-4, 1e-3, 1e-2), inner optimization learning
rate from (1e-5, 1e-4, 1e-3, 1e-2), hyper batch size from
(5, 10, 15), distance metric from (cosine, minkowski) and
k from (10, 20, 30) for building the initial kNN graph,
keep probability for dropout on the GCN weight matrices
from (1.0, 0.75, 0.5), L2 regularization on the weights from
(0.0, 1e-7, 1e-6, 1e-5, 1e-4).

For IDGL, input graph knn size is tuned from (10, 20, 30).
Weight dropout and adjacency dropout rate is tuned from (0.0,
0.25, 0.5). A two layer GCN is used for the GNN module.
Weighted cosine is used for the graph metric type. λ is to 0.9,
η is set to 0.2, δ is set to 8.5e-5. Number of perspectives is
set to 4. Learning rate is tuned from (1e-5, 1e-4, 1e-3, 1e-2),
early stopping is applied with a patience of 20 epochs.

For SSI, we apply dropout on the weight matrices for
GNCR with keep probability selected from (1.0, 0.75, 0.5),
applied at each layer. We tune the learning rates for GCNR
and GCNS from (1e-5, 1e-4, 1e-3), the mask out ratio, i.e.,
what portion of entries to mask out (convert to zero) on the
feature matrix from (0.1, 0.2, 0.5, 0.9), k for the kNN function
in the Graph Generator from (10, 20, 30), self-supervision
strength parameter λ from (0.1, 1, 2, 3, 4, 5, 10), all MLP
activations from (tanh, ReLU). Graph Generator uses two
300×300 diagonal weight matrices. We train for 400 epochs
and the first 20% of the epochs are used to train only the
self-supervision module.

Finally, for a fair comparison, we keep the capacity of the
regression modules the same, i.e., GCN, inner objective GCN
of LDS-GNN, GNN module of IDGL and GCNR of SSI all
have two layers of 600 hidden units.

APPENDIX B
DATASET DETAILS
A. FINANCE DATASET
For the small dataset, GloVe [3] pretrained embedding
contains 207 out of 488 company names, fastText [1] con-
tains 263, and Word2vec [2] contains 119 respectively. For
the large dataset, GloVe, fastText and Word2vec pretrained
embedding contain 192, 399, 764 of those 4092 company
names, respectively.

Each company has an industry category label, e.g., Google
belongs to the IT industry, while Blackrock belongs to the
financial industry. There are eleven different category labels
representing eleven industry sectors. Every company also has
a historical daily trading return vector r⃗ = [rt1 , rt2 , . . . , rtf]
available as side information. For the small dataset, this
vector contains the daily stock returns from 2016-08-24 to
2018-08-27. For the large dataset, this vector contains the
daily returns for 400 trading days ending on 2018-11-01. For
each dataset, we obtain the matrix of returns X ∈ Rn×f by
stacking the individual return vectors of all companies.

For all three pretrained embedding sets, the companies that
are not contained in the embedding set form the test set.
We perform a stratified split on the remaining companies by
forcing the distribution of the industry category labels to be
same across training and validation sets. We designate 80%
of the data as training set and the remaining 20% as the
validation set. Training and hyperparameter tuning details are
provided in A.

B. MOBILE APP STATISTICS DATASET
The Mobile App Statistics dataset from Kaggle1 contains
more than 7000 Apple iOS mobile application details
extracted from the iTunes Search API at the Apple Inc web-
site. Each app has a name and a primary genre such as Games,
Sports, or Business. There are 23 possible genres in total.

Each app also has numerical features including: "price":
Price amount, "size_bytes": Size (in Bytes), "ratingcounttot":
User Rating counts (for all version), "ratingcountver": User
Rating counts (for current version), ‘‘user_rating’’: Average
User Rating value (for all version), "userratingver": Aver-
age User Rating value (for current version), "ver": Latest
version code, "sup_devices_num": Number of supporting
devices, "ipadSc_urls.num": Number of screenshots showed
for display, "lang.num": Number of supported languages.
There are also categorical features including: "cont_rating":
Content (Maturity) Rating (e.g., 7+, 13+), "vpp_lic": Vpp
Device Based Licensing Enabled (True or False). "currency":
Currency Type. We drop the ver and currency (only one
currency) columns because they to do not provide any useful

1https://www.kaggle.com/ramamet4/app-store-apple-data-set-10k-apps

70618 VOLUME 11, 2023

U. Varolgunes et al.: Embedding Imputation With Self-Supervised Graph Neural Networks

information. We also drop the ratingcountver and userrat-
ingver columns because they are only valid for the current
version of the app. Instead, we keep ratingcounttot and
user_rating.

We convert the categorical features into one-hot vectors
and normalize the numerical features using a min-max nor-
malization. We use word embeddings to transform textual
descriptions of each app into an average representation vec-
tor v⃗ = 1

n

∑n
i=1 w⃗i, where n is the number of words in

the description and w⃗i is the pre-trained embedding from
Word2vec or Glove (the same one as the task) for the i-th
word. If there are anywords in the textual descriptionwhich is
not contained in the pretrained embedding, it is excluded from
the computation. We merge the textual representation v⃗, the
numerical features and the one hot vectors for the categorical
features to obtain a final feature vector, x⃗ ∈ Rf , for each app.
We obtain the side information matrix X ∈ Rn×f by stacking
the individual feature vectors of all app names. Same with the
finance task, X is used as the domain matrix to construct the
fixed graph for LSI and GCN and also as the feature matrix
for GCN, LDS-GNN and SSI.

Word2vec, GloVe, and fastText embeddings already con-
tain 190, 260, and 10 app names, respectively while the
remaining app names are missing from these embedding sets.
We only work with Word2vec and GloVe (fastText contains
only a few apps) and try to impute the missing embeddings
using the app features as side information.

For both Word2vec and GloVe, the app names which are
not contained in the embedding set form the test set. We per-
form a stratified split on the remaining companies by forcing
the distribution of the primary genre labels to be same across
training and validation sets. We designate 80% of the data
as training set and the remaining 20% as the validation set.
Training and hyperparameter tuning details are provided in A.

APPENDIX C
kNN EVALUATION
The algorithm takes in the completed set of embeddings
{y1, y2, . . . , yn}, the list of industry category labels l with the
i-th element li representing the industry category (or primary
genre for the mobile apps dataset) label for wi and an integer
k . The classification is conducted by leaving out one word at a
time and predicting its label based on the labels of its k nearest
neighbors in terms of Euclidean distance in the embedding
space (lines 8-10). We repeat this for all the words in the
dataset and compute the overall accuracy, i.e., the ratio of the
number of correct predictions to the number of all predictions
(line 12).

A company is expected to be semantically more similar
to a company from the same industry compared to another
from a different industry. For example, Google is more sim-
ilar to another tech company, Apple, than it is to Walmart.
Any effective word imputation method should preserve the
semantic locality in the embedding space, in other words,
similar words should be embedded closely in the embedding
space. Hence, if the imputationmethodworkswell, we should

be able to accurately infer the industry of a company based
the industry labels of the nearby companies in the embed-
ding space, resulting in a high k-Nearest-Neighbors accuracy.
A similar reasoning also applies to mobile apps and their
genres.

Algorithm 2 kNN Evaluation

Input : (y1, y2, . . . , yn, l, k) ; // each yi ∈ Rd:
embedding vector for i-th
word, l ∈ Rn: category labels,
k: number of neighbors

Output: knn_accuracy

1 preds← [] ; // initialize empty list
2 for i in {1, 2, . . . , n} do
3 distances← [] ; // initialize empty

distance list for yi
4 for j in {1, 2, . . . , n} \ {i} do
5 dist = ||yi − yj||2

; // distance of yj to yi
6 distances.append(dist)

; // add to end of list
7 end
8 nbrs = get_nearest_neighbors(distances, k)
9 l̂i = get_majority_label(nbrs)
10 preds.append(l̂i)
11 end
12 knn_accuracy = compute_accuracy(preds, l)

APPENDIX D
DETAILED RESULTS
This appendix provides detailed results for the downstream
tasks.

ACKNOWLEDGMENT
The content is solely the responsibility of the authors and does
not necessarily represent the official views of the DOE.

REFERENCES
[1] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, ‘‘Enriching word

vectors with subword information,’’ Trans. Assoc. Comput. Linguistics,
vol. 5, pp. 135–146, Dec. 2017.

[2] T.Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, ‘‘Distributed
representations of words and phrases and their compositionality,’’ in Proc.
Adv. Neural Inf. Process. Syst., 2013, pp. 3111–3119.

[3] J. Pennington, R. Socher, and C. Manning, ‘‘GloVe: Global vectors for
word representation,’’ in Proc. Conf. Empirical Methods Natural Lang.
Process. (EMNLP), 2014, pp. 1532–1543.

[4] S. Yao, D. Yu, and K. Xiao, ‘‘Enhancing domain word embedding via
latent semantic imputation,’’ inProc. 25th ACMSIGKDD Int. Conf. Knowl.
Discovery Data Mining, Jul. 2019, pp. 557–565.

[5] Z. Yang, C. Zhu, V. Sachidananda, and E. Darve, ‘‘Embedding imputation
with grounded language information,’’ in Proc. 57th Annu. Meeting Assoc.
Comput. Linguistics, 2019, pp. 3356–3361.

[6] L. Franceschi, M. Niepert, M. Pontil, and X. He, ‘‘Learning discrete
structures for graph neural networks,’’ in Proc. 36th Int. Conf. Mach.
Learn., vol. 97, PMLR, 2019, pp. 1972–1982.

[7] A. Kazi, L. Cosmo, S. Ahmadi, N. Navab, and M. M. Bronstein, ‘‘Dif-
ferentiable graph module (DGM) for graph convolutional networks,’’
IEEE Trans. Pattern Anal. Mach. Intell., vol. 45, no. 2, pp. 1606–1617,
Feb. 2023.

VOLUME 11, 2023 70619

U. Varolgunes et al.: Embedding Imputation With Self-Supervised Graph Neural Networks

[8] B. Fatemi, L. El Asri, and S. M. Kazemi, ‘‘SLAPS: Self-supervision
improves structure learning for graph neural networks,’’ in Advances
in Neural Information Processing Systems, vol. 34, M. Ranzato,
A. Beygelzimer, Y. Dauphin, P. S. Liang, and J. W. Vaughan, Eds.
Curran, 2021, pp. 22667–22681. [Online]. Available: https://proceedings.
neurips.cc/paper_files/paper/2021/file/bf499a12e998d178afd964adf
64a60cb-Paper.pdf

[9] Y. Liu, M. Jin, S. Pan, C. Zhou, Y. Zheng, F. Xia, and P. S. Yu, ‘‘Graph self-
supervised learning: A survey,’’ IEEE Trans. Knowl. Data Eng., vol. 35,
no. 6, pp. 5879–5900, Jun. 2023.

[10] W. Liu, J. He, and S.-F. Chang, ‘‘Large graph construction for scalable
semi-supervised learning,’’ in Proc. 27th Int. Conf. Int. Conf. Mach. Learn.
(ICML), Jun. 2010, pp. 679–686.

[11] S. T. Roweis and L. K. Saul, ‘‘Nonlinear dimensionality reduction by
locally linear embedding,’’ Science, vol. 290, no. 5500, pp. 2323–2326,
Dec. 2000.

[12] T. N. Kipf and M. Welling, ‘‘Semi-supervised classification with graph
convolutional networks,’’ 2016, arXiv:1609.02907.

[13] M. Chen, R. Mathews, T. Ouyang, and F. Beaufays, ‘‘Federated learning
of out-of-vocabulary words,’’ 2019, arXiv:1903.10635.

[14] N. Fukuda, N. Yoshinaga, and M. Kitsuregawa, ‘‘Robust backed-off
estimation of out-of-vocabulary embeddings,’’ in Proc. Findings Assoc.
Comput. Linguistics, EMNLP, 2020, pp. 4827–4838.

[15] X. Zhu and Z. Ghahramani, ‘‘Learning from labeled and unlabeled data
with label propagation,’’ School Comput. Sci., Carnegie Mellon Univ.,
Pittsburgh, PA, USA, CMUCALDTech. Rep. CMU-CALD-02-107, 2002.

[16] X. J. Zhu, ‘‘Semi-supervised learning literature survey,’’ Dept.
Comput. Sci., Univ. Wisconsin-Madison, Madison, WI, USA,
Tech. Rep. TR1530, 2005. [Online]. Available: https://minds.wisconsin.
edu/handle/1793/60444?show=full

[17] M. Defferrard, X. Bresson, and P. Vandergheynst, ‘‘Convolutional neural
networks on graphs with fast localized spectral filtering,’’ in Proc. Adv.
Neural Inf. Process. Syst., vol. 29, Dec. 2016, pp. 3844–3852.

[18] J. Gasteiger, A. Bojchevski, and S. Günnemann, ‘‘Predict then prop-
agate: Graph neural networks meet personalized PageRank,’’ 2018,
arXiv:1810.05997.

[19] Y. Chen, L. Wu, and M. Zaki, ‘‘Iterative deep graph learning for graph
neural networks: Better and robust node embeddings,’’ in Advances
in Neural Information Processing Systems, vol. 33, H. Larochelle,
M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, Eds. Curran, 2020,
pp. 19314–19326. [Online]. Available: https://proceedings.neurips.cc/
paper_files/paper/2020/file/e05c7ba4e087beea9410929698dc41a6-
Paper.pdf

[20] J. Alman, T. Chu, A. Schild, and Z. Song, ‘‘Algorithms and hardness for
linear algebra on geometric graphs,’’ in Proc. IEEE 61st Annu. Symp.
Found. Comput. Sci. (FOCS), Nov. 2020, pp. 541–552.

[21] M. Slaney and M. Casey, ‘‘Locality-sensitive hashing for finding nearest
neighbors,’’ IEEE Signal Process. Mag., vol. 25, no. 2, pp. 128–131,
Mar. 2008.

[22] D. P. Kingma and J. Ba, ‘‘Adam: A method for stochastic optimization,’’
2017, arXiv:1412.6980.

URAS VAROLGUNES received the B.A. degree
in economics from Bogazici University, in 2019.
He is currently pursuing the Ph.D. degree in busi-
ness data science with the New Jersey Institute of
Technology. His research interests include graph
neural networks and their applications in recom-
mender systems, healthcare, and natural language
processing.

SHIBO YAO received the B.S. degree in manage-
ment science from the University of Science and
Technology of China, in 2015, the M.S. degree
in technological systems management from Stony
Brook University, in 2016, and the Ph.D. degree
in business data science from the New Jersey
Institute of Technology, in 2022. He is currently
affiliated withMeta as a Research Scientist mainly
working on large-scale recommendation systems.
He has authored papers in top-tier conferences,

such as KDD and ACML. His research interests include graph learning and
embedding and their applications.

YAO MA received the B.S. degree in mathe-
matics and applied mathematics from Zhejiang
University, in 2015, the M.S. degree in statis-
tics, probability and operations research from the
Eindhoven University of Technology, in 2016, and
the Ph.D. degree from Michigan State Univer-
sity, in 2021, under the supervision of Dr. Jiliang
Tang. He is currently an Assistant Professor with
the Department of Computer Science, New Jersey
Institute of Technology (NJIT). He has published

innovative works in top-tier conferences, such as WSDM, ASONAM,
ICDM, SDM, WWW, KDD, and IJCAI. For more information visit the link
(https://web.njit.edu/ỹm329).

DANTONG YU received the B.S. degree in com-
puter science from Beijing University, China,
in 1995, and the Ph.D. degree in computer sci-
ence from the State University of New York
at Buffalo, USA, in 2001. He designed and
implemented a novel high-dimensional indexing
algorithm (termed ClusterTree) using the seman-
tics of datasets. He has published papers in lead-
ing technical journals and conferences. Recently,
he has published papers in ACM Knowledge Dis-

covery and Data Mining, ACM Transactions on Knowledge Discovery
from Data (ACM TKDD), IEEE TRANSACTIONS ON KNOWLEDGE AND DATA

ENGINEERING, Quantitative Finance, and Journal of Behavior and Experi-
mental Finance. His research interests include FinTech, machine learning,
business data science, high-performance computing, data mining, database,
and data warehouse. He serves on the Organization Committee for ACM
KDD2022. He is also a PCMember of CIKM, ICDM,KDD, and SIAMData
Mining. He served in the review panels for NSF CDI and DOE Early Career
Principal Investigator for networking research and DOE Small Business
Innovative Research (SBIR) and the Co-Chair of several DOE Advanced
Networking Workshops for Distributed Petascale Science.

70620 VOLUME 11, 2023

