IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 12 June 2023, accepted 25 June 2023, date of publication 5 July 2023, date of current version 2 August 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3292582

== RESEARCH ARTICLE

An Integrated Solution to Improve Performance
of In-Memory Data Caching With an Efficient
Item Retrieving Mechanism and a Near-Memory

Accelerator

MINKWAN KEE™, CHIWON HAN, AND GI-HO PARK ", (Member, IEEE)

Computer Science and Engineering, Sejong University, Gwangjin-gu, Seoul 05006, Republic of Korea

Corresponding author: Gi-Ho Park (ghpark @sejong.edu)

This work was supported by the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (MSIT)

under Grant 2018R1A2B6002534 and Grant 2021R1H1A2013419.

ABSTRACT This paper proposes both software and hardware mechanisms based on the near-memory
processing (NMP) accelerator to improve the linked list traversal of the in-memory caching. From a software
perspective, we propose a simple but an effective mechanism called ITEM JUMP to reduce the number of
traversal on list iteration, and additionally, LSB-first parallel linked list traversal unit, which is an NMP-based
hardware accelerator is proposed to improve parallel comparison performance of items. The evaluation result
shows LSB-first parallel linked list traversal unit can achieve about 34 times better performance in item
comparisons than the case where there is no hardware accelerator, and ITEM JUMP can reduce the number
of items retrieved by up to 42%. The proposed NMP-based hardware accelerator also reduces the memory
access overhead by 61%—-83% compared to a simple parallel linked list traversal unit that simply loads and

compares data as fast as possible.

INDEX TERMS Database system, accelerator architectures, memory architecture, in-memory database,
linked list traversal acceleration, near memory processing, parallel comparison.

I. INTRODUCTION

Since the emergence of the big data concept, technologies for
analyzing and utilizing big data have been rapidly developed.
Many services based on big data are also expanding into
real-time areas such as traffic analysis, financial and media
services. For such a real-time service, a large amount of
data must be accessed at high speed, however the memory
access speed of the existing database (DB) is slow, which is
insufficient to support a real-time service based on big data.
An in-memory caching is developed to enable fast memory
accesses by caching the database in main memory for this
reason. Main memory is mainly composed of DRAM, and
because DRAM has a faster memory access speed than HDDs
(hard disk drives) and SSDs (solid state drives), data can
be retrieved and utilized at high speed through in-memory

The associate editor coordinating the review of this manuscript and

approving it for publication was Mario Donato Marino

caching. Various in-memory caching techniques have already
been developed [1], [2] and various companies such as
Youtube, Twitter, and Facebook [3], [4], [5] are using them.
Although in-memory caching using DRAM provides fast data
accesses, recent high-performance computing systems have
deep memory hierarchy [6], which results in high power
consumption and high latency when large key-value data is
loaded into the core from DRAM through the multi-level
cache layer. In-memory caching using DRAM provides fast
data access, but modern high-performance computing sys-
tems have a deep memory hierarchy. That causes high power
consumption and high latency when loading large key-value
data from DRAM to core through multi-level caches. The size
of the key-value data handled by in-memory caching is very
large, and a lot of data is loaded into upper level memory
like cache memory while data retrieving. It can deepen cache
memory traffic and degrade system performance by evicting
other data that is more likely to be used within the cache.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

78726

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME 11, 2023

https://orcid.org/0000-0003-4506-1061
https://orcid.org/0000-0001-7998-4302
https://orcid.org/0000-0001-8336-9150

M. Kee et al.: Integrated Solution to Improve Performance of In-Memory Data Caching

IEEE Access

[.. 1
: Bucket ! Bucket Symbolic items '
1 [1
1 NULL 4-| Prev | Key | Value | Next |<- Prev | Key | Value | Next ‘4— 0 1 ' 0 -P{ Prev | It_ptr | Next H Prev | It_ptr | Next I'VNULL !
1 [1
! NULL « | L 1 bwurr :
' |
: - <'| Prev | Key | Value | Next |4-| Prev | Key | Value | Next |4- 2 : i 2 | Prev | It ¢ ptr | Next |-PNULL i
i i :
! [1
1 Iy 1
1 e [e 1
1 [1
E NULL | Prev | Key | Value | Next | N-2 E ' | N-2 BNULL !
1 1
H 4-| Prev | Key | Value | Next |<- Prev | Key | Value | Next [« N-1 i 1 N-1 -P‘ Prev | It J)lr‘ Next H Prev | It Jlr’ Next I'VNU'LL \
' |
1 1 : :
(a) Hash table (b) Shadow table

FIGURE 1. A structure of hash table and shadow table.

It is a well-known fact that most in-memory database
systems maintain items of DB using linked list and hash
function. It facilitates for the insertion/removal of a specific
dataset from the chain, while the list iteration operation suf-
fers a lot from a low speed by entailing the pointer-chasing
operation for the datasets scattered irregularly within the
memory. Various operations of in-memory DB such as GET,
SET, INSERT, DELETE are processed accompanied with
linked list traversal. In fact, there is a need for processing
of linked list traversal to find a specific item in almost all
in-memory DB queries, such as data insertion, update, and
deletion, as well as data reference-related operations. For
example, before the insert query is performed, the data is
actually inserted after checking whether the data is already
cached in memory db. Therefore, making faster the linked
list traversal plays an important role in improving the query
processing performance of the in-memory DB.

This paper proposes an integrated solution combining
both software and hardware mechanism to improve the per-
formance of a linked-list traversal (LLT) which is kernel
operation of in-memory caching. To effectively process LLT,
we propose (1) an ITEM JUMP mechanism to reduce average
LLT depth as a software approach and (2) near-memory pro-
cessing (NMP)-based hardware accelerator for parallel LLT
as a hardware approach. The NMP is a concept of a computer
architecture that processes data-intensive workloads using
processing elements adjacent to the memory without transfer-
ring data to the host CPU. Further, the NMP has the advantage
of being able to swiftly receive data from memory due to
its inherent memory adjacent nature. An LLT is a typical
data-intensive operation that simply consists of loading items
and comparing them; therefore, the NMP-based hardware
accelerator is recommended and appropriate for processing
LLT operation. The proposed ITEM JUMP mechanism and
LSB-first parallel linked list traversal unit (LFP-LLT) is able
to achieve about 34 times better performance in item com-
parisons than the case where there is no hardware accelerator
and can reduce the memory access overhead by 50%—80%
compared to a simple parallel LLT unit (SP-LLT) that simply
loads and compares data as fast as possible.

Il. BACKGROUND
This section briefly explains the analysis on the structure of
cached items in Memcached, the characteristics of the LLT

VOLUME 11, 2023

operation, and the overview of the NMP technology that aims
to process operations in the memory layer.

A. MEMCACHED OVERVIEW
Memcached implements a simple and light-weight key-value
tuple interface using the least recently used (LRU) eviction
policy. It operates on simple data types of key-value pairs
stored in memory, similar to NoSQL databases, but it is not
persistent like NoSQL. Communication with multiple clients
is executed through the network communication, and clients
can issue instructions using various command queries (e.g.,
GET(key), SET(key, value), DELETE(key), and so on.).
Figure 1(a) illustrates the data structure of hash tables used
to lookup cache items in Memcached. The hash table data
structure is an array of bucket and each of that consists of the
multiple cache items. The array size () is always a power
of 2 to facilitate in finding the correct bucket quickly using
2"=1 as a hash mask. The bucket that is having the hash
value is quickly determined by the bit-wise AND operation.
Each bucket is constructed as single-linked list of cache item
and is terminated with a NULL pointer. The cache item
data structure consists of the key, data, flags, and pointers.
Cache items are sorted by recent access time and the LRU
entry is replaced by a newly inserted cache item when the
cache is full. The number of buckets in the hash table is
determined during the run time of Memcached. If items are
continuously inserted, these will result in large item retrieving
time due to long-linked list and it will affect the performance.
Memcached supports to extend the hash table during run time
to solve this problem, but it incurs a large overhead because
the process of expending a bucket involves creating a new
hash table and copying all of data to the new hash table from
the old hash table. To minimize the latency overhead incurred
by the expansion of hash table, both the old and new hash
tables can be accessed while the hash table is being expanded.
Each bucket in the old and new hash tables has a flag to check
whether items in the bucket have been moved or not, so the
flag is referred to determine which hash table to access.

B. NEAR-MEMORY PROCESSING ARCHITECTURE

In recent times, interest in the concept of NMP, as an inherited
architecture model from processor-in-memory (PiM), has
been reignited with the emergence of big data applications.
We assume a NMP system which is directly connected with

78727

IEEE Access

M. Kee et al.: Integrated Solution to Improve Performance of In-Memory Data Caching

Package

(a) Conventional memory architecture (b) Near-memory processing memory architecture

FIGURE 2. Near memory processing architecture.

memory controller of main memory as shown in Figure 2,
and NMP is operated as a co-processor of host processor like
a GPU. The target application can be efficiently processed
on the NMP accelerator opposed to the conventional manner
that suffers from high memory overhead on access huge
amount of data by loading all data to CPU for processing it.
Figure 2(a) shows a conventional system architecture. When
processing data in CPU or GPU that is physically distant
to DRAM, physical distance between the processor and the
main memory causes high latency and energy consumption,
besides, it is not easy to increase the bandwidth of the data.
As can be seen in Figure 2(b), our baseline NMP architec-
ture has logic die within stacked DRAM, which is a hybrid
memory cube (HMC). An accelerator in logic die accelerates
offloaded operations of target applications with low memory
overheads. The stacked DRAM of NMP architecture supplies
data directly to the accelerator on the logic die via Through
silicon vias (TSVs), which makes it possible to process appli-
cations efficiently by reducing data movement overhead in
memory hierarchies in aspects of energy consumption, high
bandwidth and low latency of handling data. The architecture
of HMC can achieve high density of memory by stacking
DRAM dies, and stacked DRAM is divided into vertically
aligned partitions which is called a vault. A vault contains a
memory controller called a vault controller that allows access
to data, and TSVs are placed vertically through the stacked
memory for providing high I/O bandwidth.

Similar to SIMD/GPU engines, the manner of accelera-
tion in the NMP engine is triggered by allocating specific
workloads/tasks in the application, such as kernels, functions,
codes, or threads. Thus, the workload determination that will
be running on the NMP engine is one of the most important
key factors for reaping the benefit from NMP-based sys-
tem. We analyze Memcached application to decide the NMP
workload which can be expected to obtain performance and
memory overhead benefits from NMP accelerator execution.

IIl. MOTIVATION AND ANALYSIS

A. PROFILING METHODOLOGY

GPROF [7] and KCachegrind [8] are used as profiling tools
to extract the NMP workload within Memcached applica-
tion. Furthermore, the detailed statistics are obtained by
attaching several performance counters at the standard Mem-
cached. Additionally, a machine that contains Intel i7-6700K
@3.80 GHz, 32 GB of total system memory in the system
platform is used for profiling. A last-level cache has 8§ MB and

78728

TABLE 1. The types of workloads.

Abbreviation ‘Workload Operations App example

Work-A Update heavy Read: 50%, Update: 50% Session store recording
recent actions

Work-B Read mostly Read: 95%, Update: 5% Photo tagging

Work-C Read only Read: 100% User profile cache, where
profiles are constructed
elsewhere

Work-D Read latest Read: 95%, Insert: 5% User status updates, people

want to read the latest

Work-E Read-modify-write Read: 50%, User database, where user
Read-modify-write: 50% records are read and
modified by the user or to
record user activity

1 Item *assoc_find(const char *key, const size_t nkey, const uint32_t hv){
2 item *it; /* cache item */

3

4 /* Indexing a hash bucket array */

5 it = hashtable[hv & hashmask(hashpower)];

6

7 /* Item scanning */

8 while(it) {

9 if((nkey == it->nkey) && (memcmp(key, it->key, nkey) == 0))
10 return it; /* item hit */

11 else{ it =it->h_next; } /* chasing of the next cache item */

12 }

13 |}

FIGURE 3. Kernel codes of the Memcached.

it is shared among all cores. Yahoo! datasets from YCSB [9]
benchmarks and five workloads of YCSB having diverse
fractions of Memcached commands are used in our work. The
workloads used in this paper are summarized and presented
in Table 1.

B. DETAILED ANALYSIS OF MEMCACHED

We identified two functions that had the largest contribu-
tion on execution time of the Memcached workloads. The
assoc_find function contributed most to program execution
time. This function used approximately 40%, on average,
of the total execution time in the Memcached. The execution
time of assoc_find always depends on the amount of cached
data, the frequency of data access, and the hash table setting
of Memcached; it takes a large portion of the execution time at
most cases. The function was invoked from almost all func-
tions related to various commands to retrieve a cache item,
such as GET, DELETE, UPDATE, and INSERT. The second
time consuming function is related to the hashing function
(Jenkins_hash in standard Memcached), which computes a
hash value using the key and hash mask. On average, this
function occupied about 17% of total execution time for our
workloads. We focus on the assoc_find function as a target
NMP workload to accelerate in this paper.

The pseudocode of the assoc_find function is shown in
Figure 3. All the items are traversed by this function for
a cache item associated with the provided key. To perform
this work, the function is composed of two operating parts:
indexing of a bucket array using a result forwarded from the
hash function through a bit-wise AND operation (line 5) and

VOLUME 11, 2023

M. Kee et al.: Integrated Solution to Improve Performance of In-Memory Data Caching

IEEE Access

retrieving cache items stored in the indexed bucket (line 8—
12). The item traversal consists of comparison between an
nkey value and a key value. The nkey is a one-byte variable
that refers to the length of the key, so if the nkey of the target
item and that of the retrieved item is different, comparison
of key values that relatively take much larger then nkey is
skipped. It is possible from the code sequence to point out that
the item traversal operation is composed of a linked list chain,
which is one of the main reasons for the high contribution to
the total execution time.

The LLT depth for retrieving items in a bucket is one of the
most important factors in memory access time for keys and
nkeys. As mentioned above, the in-memory caching applica-
tion expands the hash table when the number of cached items
increases. However, since the maximum LLT depth of the
bucket is not limited, LLT depth can be deeper when items are
gathered in a same bucket. In addition, the method of reducing
the depth of the linked list by expanding the hash table needs
to perform a hash function operation on all items, so it causes
the large overhead about aspects of memory I/O and energy
consumption if the huge amounts of items had been already
cached. The recent research about in-memory caching [10]
showed that item accesses are concentrated on hot spots,
so performance of LLT operation is significantly degraded if
the data in the hot spot is not located at the head of the linked
list. These characteristics of LLT operation require a quick
item search mechanism even when a LLT depth is deep. If this
is possible, It can be also minimized the expansion of the hash
table of the bucket mentioned above to reduce unnecessary
memory overhead. For this purpose, we first analyze the item
hit position under different average LLT depths.

The analysis for item hit position under various LLT depths
is presented in Figure 4. The average results of five tasks,
as shown in Table 1, are plotted according to item load in
Figure 4. The x-axis represents the depth of an LLT while the
y-axis represents the cumulative value of the hit ratio from
the corresponding depth value. We categorize the item access
load based upon three categories, low depth, middle depth
and high depth for the analysis of hit position according to
various item access loads. Low depth, middle depth and high
depth are workloads with an average linked list search depth
of 2, 4, and 8, respectively. The three types of workload are
simulated by controlling the number of buckets in the hash
table of Memcached. This is simulated by increasing the item
access load in the bucket as the number of buckets decreases.

The analysis of hit position of items shows that ratio of
hit on head position slightly decreases when the item load
in the bucket increases, and the cumulative curve of the hit
ratio becomes linear curve. As the item access load increases,
an item in head position, which inserted in recently, is pushed
out speedily and the hit ratio cumulative curves gradually
become linear curves.

A cache item is retrieved through the memory compar-
ing operation (i.e., memcmp function), comparing the item
key against the provided key as presented in Figure 3. The
default implementation, however, can be surprisingly slow

VOLUME 11, 2023

—low_depth ——middle_depth high_depth
= 100
= 90

§ 80
2
- -
'-S 70

=2
2%
5 50

5 40

£

= 30

S
< 20

13 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Linked-list searching depth

FIGURE 4. The analysis of linked list traversal depth in buckets.

for long key lengths on the in-memory caching system, as it
compares byte-by-byte sequentially from the front of the key.
It is already shown by [11] that the default implementation
memcmp function suffers a lot from long latency due to
the method of comparison. Particularly, when keys that only
differ near the tail are compared, the operation suffers from
latency which is proportional to the length of the key. Item
misses can be determined after comparing about 70% of the
key string length in the item comparison operation in our
evaluated workloads.

C. ANALYSIS RESULTS

It is found that LLT operation is the most important per-
formance bottleneck of Memcached and hits that were
concentrated in the head position spread evenly to the tail of
the linked list as the item access load increases. Considering
these analysis results, we derived two directions to improve
the LLT operation performance as (1) reducing the average
number of key comparisons to mitigate the reduction of hit
ratio of the head position caused by high item access load
in the bucket, and (2) executing parallel comparison of key
values for rapid execution of LLT opertion even when the
average LLT dpeth is high. Furthermore, two mechanisms
are proposed based on analysis results, which are (1) ITEM
JUMP mechanism to increase a hit ratio of the head position
in each bucket and (2) an NMP-based hardware accelerator
to perform the comparison of a key of an item in parallel.

IV. ITEM JUMP: A SOFTWARE SOLUTION TO
ACCELERATE THE CACHE LINKED LIST TRAVERSAL

It is already confirmed that the efficiency of LRU policy
decreases when the item access load in buckets increases
from the analysis of hit position of various workloads. In this
case, items that are likely to be re-retrieved are continuously
pushed out from the MRU(Most recently used) position, then
the mechanism is required to maintain items that are likely
to be accessed frequently first. A simple mechanism called
ITEM JUMP is optimized and adopted, which is proposed in
our prior work [12], to have a different data structure to reduce
the average linked list traversal depth as a software solution.

78729

IEEE Access

M. Kee et al.: Integrated Solution to Improve Performance of In-Memory Data Caching

Data access unit
\ MC-NMP Interface |

Item scanning unit

Scanner controller

TIfJB —‘1: Return register |
VPN PPN —> Status register |
Item table
f [key] [ey {] [key][key!]
Address generation unit = = 5 =
L
Item register file éﬁ
[cmp][emp] [emp][cmp |

| Item address |

| Item (item key, nkey, next) |

‘ Targe item (koy, nkey) ‘ |[Conilparlson result buffer

t l

v
| HOST-NMP Interface | Comparison Unit

FIGURE 5. An overview of proposed NMP-based item scanner
architecture.

A. STRUCTURE OF ITEM JUMP

Figure 1(b) presents the data structure for the ITEM JUMP
mechanism. ITEM JUMP has a shadow table that maintains
a shadow bucket corresponding to the bucket in the hash table,
and each shadow bucket is constructed with symbolic items.
Contrary to items in a hash table, each symbolic item in a
shadow bucket consists of a pointer to the actual item in the
hash table and pointers to the previous and next symbolic
item. And each symbolic item is logically linked to a specific
item within the bucket array. The key in the item structure can
be longer than 200 bytes, and the value occupies memory usu-
ally larger than the key value. On the other hand, a symbolic
item only have 3 pointers, so it takes up to 24 bytes under the
64 bits addressing environment. Since the size of a symbolic
item is generally less than one key value, it does not cause
significant overhead. There is a possibility for the breaking
of link between the actual and symbolic item when the linked
original item is evicted from the bucket. So, a background
thread called the symbolic cleaner is implemented to handle
an unlinking item, which removes a symbolic item whenever
the original cache item is evicted from its LRU chain. We add
a flag to the item structure for checking if the item is linked
to the symbolic item in the shadow bucket. If the evicted item
is linked to the shadow item, a thread which is deleting the
item signals the symbolic cleaner to remove the symbolic
link, and then evicts the cached item. Since the shadow
bucket has only the address of the data, it is not necessary
to maintain data consistency, and it is important to remove
the symbolic link when the actual data is deleted. The flag
only needs 1 bit for each item, and removing symbolic link
is executed in the background thread, so the overheads of
synchronization between the shadow bucket and the normal
bucket are negligible.

B. OPERATION MODEL OF ITEM JUMP

The proposed ITEM JUMP has a simple operation model.
First, the retrieval score of the inserted item into the bucket
is initialized to zero and the score is increased when the item

78730

is retrieved. Note that in the insertion policy, a cache item
with two or more retrieval scores (i.e., a re-retrieved item)
in the bucket array is registered as a symbolic item in the
corresponding shadow bucket. If the shadow bucket is filled
in the process of item registration, symbolic item of the tail
is evicted. The replacement policy (LRU or FIFO etc.) is
adopted when a hit occurs in a symbolic item within a shadow
bucket. Note that the shadow bucket is constructed with the
limited number of symbolic items. Our method preferentially
scans the symbolic items contained in the shadow bucket
rather than the bucket in the linked list traversal operation.
Thus, the proposed ITEM JUMP mechanism can alleviate the
critical performance degradation and data traffic caused by
list iteration for entire items, by jumping to a few of cached
items within the bucket resulting in improved performance.

If the item retrieval fails in the shadow table, it will expe-
rience further higher performance penalty when the item in
MRU position shows higher hit count than symbolic item in
shadow bucket. Therefore, the number of symbolic items to
be maintained in the shadow bucket array should be care-
fully considered to alleviate item retrieval failure penalties.
To decide the number of items in the shadow bucket, we ana-
lyzed the efficiency of shadow table according to the number
of symbolic entries in Section VI to decide the number of
items in the shadow bucket.

V. NMP KERNEL ACCELERATOR: A HARDWARE
SOLUTION TO ACCELERATE THE CACHE LINKED LIST
TRAVERSAL

NMP-based hardware accelerator is proposed for improving
performance of key comparison in this section. Even if ITEM
JUMP is applied, the performance of linked list traversal can
be degraded in a situation where the item access load is high.
To solve this problem, the proposed hardware accelerator is
designed to perform parallel comparisons with minimal data
load based on access characteristics based on the measure-
ment result.

A. PARALLEL ITEM SCANNER OVERVIEW

Figure 5 shows the overview of the NMP-based parallel
item scanner with two units: data access unit and linked list
traversal unit.

The scanner controller is primarily responsible for the
management of register files, chasing of cache items, and
notification of the list traversal result. The scanner controller
notifies the list iteration result into the host processor, and
the item register file is used to extract the specific fields from
the item structure and chase the next cache item. The TLB
and address generation unit are used to load data from main
memory to parallel item scanner.

In our method, the item table is used to store the fetched
key and nkey data from the main memory and each entry is
connected to item comparators. The key or nkey data in the
item table are passed to comparators and, then, comparison
results are stored into the comparison result buffer. Finally,

VOLUME 11, 2023

M. Kee et al.: Integrated Solution to Improve Performance of In-Memory Data Caching

IEEE Access

Memcached Bucket

(a) Simple parallel item comparator

FIGURE 6. The comparison scheme of each hardware accelerators.

the scanner controller provides the retrieved item to the host
from this buffer.

The item comparator is used for comparing the key or
nkey values and that is the part where optimization has to be
performed practically. The scanner controller can send enable
signals to each comparator, and the key value of the target
item is transmitted to all comparators. We will discuss two
types of proposed parallel item scanners. The first one is a
simple parallel item scanner (SPIS) that is simple but executes
effective comparison. The LSB-first parallel item scanner
(LFPIS) is more improved parallel item scanner design based
on the profiling results.

B. SPIS: SIMPLE PARALLEL ITEM SCANNER

We can simply think of deploying a large number of compara-
tors to execute the key comparisons in parallel. In general,
when performing SIMD operations, it is processed by reading
multiple data word at once and then performing compari-
son operations simultaneously for each word, so SPIS is a
hardware structure that describes this existing method. For
example, if the key value is 32 bytes, the SPIS operates
by method of reading eight 4 bytes words and comparing
them in parallel. In this way, practically the lack of memory
bandwidth limits the performance improvement so, it is more
important to find the appropriate number of comparators.
It is assumed that 16 of 4 bytes-comparators are placed
taking into account the comparison cycles and memory band-
width in this work. We can use these hardware resources
to compare 16 items in 4 bytes units at the same time and
comparing single item with the size of 64 bytes is also
possible.

Considering that the items in buckets follow LRU(Least
recently used) policy, the SPIS uses the method of search-
ing items sequentially from MRU position. As the YCSB
utilizes a key size of 32-33 bytes, we configured load data
and performed parallel comparisons on two items in units of
32 bytes. The corresponding operation of SPIS is simplified
and expressed in Figure 6(a). In Step 1, two keys are loaded
and processed on two 32 bytes-comparator, and then the other
item is processed in Step 2. If the key is larger than 32 bytes
and the comparison result of 32 bytes from MRU is missed,

VOLUME 11, 2023

Load & compare

(b) LSB prioritized parallel item comparator

the scanner controller does not load remaining bytes. The
SPIS is easy to implement because it does not require com-
plex control mechanism. Further, it also has the advantage of
being able to achieve high performance if the many item hits
occurred in MRU position by the high efficiency of the LRU
policy in the bucket.

C. LFPIS: LSB-FIRST PARALLEL ITEM SCANNER

It is found out from the hit position analysis that the increased
number of items connected in linked list and actively access to
them will reduce the efficiency of the LRU policy. It neces-
sitates further increase in the parallelism of the comparison
of items to ensure high performance in this case; however,
as mentioned earlier, simply increasing parallelism will make
comparison slow for a single item when memory bandwidth
is not enough to support the parallel comparison. For mini-
mizing this problem, we can control the missed items after
comparison in first 4 bytes do not load additional remaining
data, and after that, memory resources are assigned for hit
items. However, this method also cannot prevent performance
degradation for single item comparison, because it was pos-
sible to determine whether the item was hit after comparing
70% of the average key length in YCSB. To prevent the
performance degradation of a single item comparison while
supporting parallel comparison of multiple items, it is nec-
essary to identify the part of key values used to efficiently
determine the item misses. As we were able to discrim-
inate key misses after comparing 70% of the key values
when the memcmp function compares key values from MSB,
we inversely compared key values from LSB. Figure 7 shows
the number of bytes of key values from LSB that can effi-
ciently determine item misses.

The x-axis in Figure 7 represents the size of the bytes
performing the comparison from the LSB, and the y-axis
shows miss ratio determined by the comparison of that bytes.
It was possible to determine almost 90% of all misses with
just one byte of LSB, and the ratio increased up to 3 bytes.
Then, in low depth work and middle depth work, it was
possible to distinguish all misses by comparing 4 bytes from
LSB, and 5 bytes comparison had a little improvement only
for high depth work.

78731

IEEE Access

M. Kee et al.: Integrated Solution to Improve Performance of In-Memory Data Caching

mlow_depth middle depth ®high depth

1

1 2 3 4 5 6

Comparison size of bytes from LSB

o
N=3
©

=]
o
[N

distinguished
3 ¥

Ratio of misses can be
(=)
Nl

=
%

FIGURE 7. The analysis for comparison size of bytes from LSB.

Based on the analysis results of Figure 7, LFPIS is pro-
posed and its operation is described in Figure 6(b). In the
proposed LFPIS, 16 items are allocated to the 4 bytes-
comparator and compared them with LSB (Step 1). The
LFPIS then allocates its hardware resources to matched items
and continues comparison for hit items (Step 2). We designed
LFPIS to achieve relatively higher performance than SPIS
when the average item searching depth becomes so deeper.
Conversely, low average item searching depth can degrade
the performance of LFPIS. However, it is negligible as most
misses can be determined in the first 4 bytes comparison
itself.

D. DATA REQUEST OPTIMIZATION FOR LFPIS

It can be seen that the nkey comparison is performed prior to
the key comparison in Figure 3. The nkey is a variable to store
a length of the key. If the nkey of a retrieved item are different
from the nkey of a target item, then there is no necessity to
load and compare the key of retrieved item. Because the size
of a key value is more than 30 times larger compared to the
size of an nkey value in the YCSB workload, it can effectively
reduce the unnecessary requested data size. However, as the
size of nkey is only 1 byte, there is a disadvantage that
it is not possible to efficiently use hardware resources in
parallel comparison operations. The other disadvantage is the
occurrence of delay between loading the keys and comparing
nkeys restricting scanner controller from loading keys before
comparison of nkeys. To resolve these issues, the proposed
LFPIS is optimized so that it loads a couple of bytes of
the keys together with nkeys. This reduces the number of
unnecessary data requests and simplifies the steps of loading
key comparisons after nkey comparisons. It is assumed that
the 1 byte nkey and the 3 bytes key of items are loaded
together and assigned to 16 comparators in this work. Only
the 3 bytes of a key can determine 99% key misses, as shown
in Figure 7, so the performance benefit is rarely reduced. If a
miss occurs in the nkey, only 3 bytes of unnecessary memory
load is added. Since the overhead of 3 bytes per item is not
small, the memory overhead may increase in an environment
in which the key length is highly variable. Moreover, the
benefit of improving the comparison performance due to

78732

Function

void* itemKeyCompare(void* ptrl, uint32 offset_key,
uint32 offset_nkey, uint32 offset next, const char* key, uint32 nkey)
/* Parameters
ptrl: starting address of item in the linked-list chain
offset_key: offset of key field in the item
offset_nkey: offset of nkey (length of key) field in the item
offset_next: offset of starting address of the next item
key: requested key
nkey: length of requested key
*/

Item *assoc_find(const char *key, const size_t nkey, const uint32_t hv){
item *it; /* cache item */

/* Indexing a hash bucket array */
it = hashtable[hv & hashmask(hashpower)];

/* Item scanning */
it = itemKeyCompare(it, offset_key, offset_nkey, offset_next, key, nkey);

N R e N N S N

}

FIGURE 8. An application programming interface for proposed hardware
accelerator.

the simplified comparison operation step can be maintained
regardless of the overhead. The length of the target key and
the retrieved key is different approximately 20%—30% in the
YCSB benchmark.

E. PROGRAMMING MODEL FOR PROPOSED ITEM
SCANNER

To fully utilize our ITEM JUMP with parallel item scan-
ners, a dedicated application programming interface (API) is
defined that triggers the proposed parallel item comparator,
as presented in Figure 8. The defined parallel item comparator
API has six parameters. Parameters ptr_l and offset_next
are used to chase the subsequent cache item, and offset_key
parameter is used to extract the key field data from the item
structure. Similar to an offset key, an offset_nkey parameter is
used to extract the length of the key information in the item
structure. The code in Figure 3 modified to use the API is
shown in Figure 8. A software developer can easily execute
the proposed parallel item comparator by just transferring a
few bytes of information without any data manipulation.

VI. EVALUATION RESULTS

A. EVALUATION ENVIRONMENT

We used MacSIM cycle-level architecture simulator [13].
Table 2 summarizes the detailed simulation configuration.
We used five workloads included in YCSB, as described in
Section II (see Table 1). We modified the PINTool [14] to
allow recognition of the defined API and some traces are
reshaped to enable running at parallel item comparator.

B. PERFORMANCE OF ITEM JUMP

The main goal of the ITEM JUMP is to lower the depth of
linked list traversal for searching items in buckets. To achieve
this goal, LRU was maintained for the management of items
in buckets, and a separate shadow table was created to main-
tain symbolic items likely to be accessed. At this point,

VOLUME 11, 2023

M. Kee et al.: Integrated Solution to Improve Performance of In-Memory Data Caching

IEEE Access

TABLE 2. Simulation configurations.

(a) Host processor
Cores X86 000 core 3.4GHz
L1 I-cache 32KB, 4-way, 3-cycle latency
L1 D-cache |32KB, 4-way, 4-cycle latency
L2 Cache Private, 256KB, 8-way, 15-cycle latency
L3 Cache Shared, 1MB, 8 banks, 16-way, 24-cycle latency

(b) ITEM SCANNER

Frequency 1.6GHz
Item 16 comparators, 2 cycle latency per each comparator
comparator 4B comparison for each comparator

(¢) Main memory
Timing Activation 34 cycles, Precharge 17 cycles, Column 6
parameters cycles
Bus width 16 Bytes per cycle

the number of symbol items in the shadow table can be an
important factor in performance. Then, the average linked
list traversal depth was analyzed according to the number of
symbolic items in the shadow bucket from low depth work
to high depth work, and the results are shown in Table 3.
The results showed that more than one symbolic item in the
shadow buckets have no significant improvement in linked
list traversal depth. The difference of average linked list
traversal depth was only up to 1.9%. Based on the analysis
results, our proposal is designed to have only one symbolic
item for each bucket of shadow table. If the number of
symbolic items is more than one, a replacement policy is
required for shadow bucket. Considering these aspects of the
efficiency of item retrieval and the overhead of implementing
a replacement policy, it is appropriate to use one symbolic
item in each shadow bucket.

The average linked list traversal depth of the proposed
ITEM JUMP mechanism compared to the LRU method is
presented in Figure 9. The x-axis in Figure 9(a) represents
workloads of the YCSB, and the y-axis displays the average
linked list traversal depth. The evaluation results show that
the ITEM JUMP has a lower average linked list traversal
depth for almost all of workloads. The workload D was
the only workload that conventional LRU achieved slightly
lower linked list traversal depth than that of ITEM JUMP.
The LRU policy also works efficiently in workload D of
high depth work since the workload D mainly deals with
the latest reading data (Table 1). However, ITEM JUMP has
shown a difference of only 3.6% compared to LRU even in
workload D of low depth work, and ITEM JUMP has reduced
linked list traversal depth by 42% on average for overall
low depth work. The proposed ITEM JUMP achieved high
efficiency in a relatively simple way. However, as the item
load increases, the average linked list traversal depth is also
increased. Moving from low depth work to high depth work,
we were able to realize that the improvement of linked list
traversal depth reduction of the ITEM JUMP dropped from

VOLUME 11, 2023

TABLE 3. The average depth according to the number of symbolic items.

#shadow items | Low_depth | Middle_depth | High_depth
1 1.82616 3.69444 7.4794
2 1.80852 3.65878 7.43352
3 1.8417 3.69722 7.36114
4 1.83142 3.6545 7.3417

42% to 24%. Further, to achieve high performance in this
case, this paper proposes a hardware accelerator to perform
parallel comparison for items as well.

The proposed item jump uses a shadow table to reduce the
search depth of the linked list. Since the shadow table occu-
pies additional memory space, it is necessary to calculate the
overhead of the additional memory space of the shadow table.
The shadow table of this paper is configured to have one item
per bucket, and each item consists of three address pointers.
Therefore, a memory overhead of 24 bytes per bucket occurs.
However, it is not easy to infer the memory overhead value
because the linked list depth varies at each bucket in the hash
table, and the size of the key-value varies according to system
settings. For memory overhead calculation, it was calculated
by assuming that the depth of the linked list is two and the
size of the key-value pair is 256 bytes based on the workload
characteristics used in this paper. Since the length of the key
alone sometimes exceeds 200 bytes, assuming that the size
of the key-value is 256 bytes is one of the common sizes.
In order to maintain two items in the bucket, 544 bytes of
memory space is required because two data and four pointers
are contained in the bucket. Therefore, the overhead of the
shadow table is maintained at around 4% on each bucket in
this case. Assuming that the length of the linked list is at a
low depth, it is 4%, so if the linked list is prolonged, the
ratio of memory overhead will be further reduced as the depth
increases. So, the memory overhead of shadow table is not
significant unless the key-value size is very small.

C. PERFORMANCE OF PARALLEL ITEM SCANNER

1) SPEED UP OF PROPOSED ARCHITECTURE

The speedup of four architectures is evaluated, including the
normal model without hardware accelerators, SPIS, LFPIS,
and LFPIS-opt. Here, the LFPIS with data request opti-
mization is represented as LFPIS-opt. This is for observing
the effect of data request optimization separately, and these
architecture models are evaluated under the environment that
ITEM JUMP mechanism is applied.

Figures 9(b) and 9(c) show the performance improvement
of the asoc_find kernel function according to item access
load for each architectures. In this graph relative performance
of baseline, which is architecture does not have any hard-
ware acceleration is considered 1. The SPIS achieves at least
18 times higher performance than the architecture without
hardware accelerator. The LFPIS shows up to 33 times of
performance improvement compared to the model without

78733

IEEE Access

M. Kee et al.: Integrated Solution to Improve Performance of In-Memory Data Caching

SPIS
Hitem_jump_low_depth
item_jump_middle_depth
Hitem_jump_high_depth

8
6
: |
2 _am . .
o 1 I 1 -

A B ¢ D I

Workload

LRU_low_depth
LRU_middle_depth

B LRU_high_depth
1 “

Average

50
45
40
35
30

20
15

10

Average linked-list
traversal depth

worka workb

Performance improvement

(a) Average scanning depth of ITEM JUMP

LFPIS

worke

Workload

(b) Performance for low depth work

LFPIS-opt SPIS ®=LFPIS w»LFPIS-opt

10 ‘T

worke workd workf

Workload

workd workf Average worka workb Average

Performance improvement

(c) Performance for high depth work

FIGURE 9. The results of performance for ITEM JUMP and proposed hardware accelerators.

——Ilow_depth ——middle_depth high_depth ——Ilow_depth ——middle_depth high_depth i low_depth middle_depth high_depth

- 22 - 70 . ——Ilow_depth =——middle_depth =——high_depth

= = M

5} S = 500000 o

£ 2l £ 60 = 03 2

o o =

Z 20 2z . £ 025 400000

2 2 50 z Z

g9) — g 0 £

E E w0 N\ £ 02 300000 §

o I8 B ‘ £ 015 z

§ § \ —~ &

g g 30 . — 2 ‘ 200000 ¢

R g " £ o1 E

£ £ , o ‘ £
20 £

E 16 E E‘ 0.05 L L 100000 <

515 5 10 R 0 g

= worka workb worke workd workf Average A~ worka workb worke workd workf Average = SPIS LFPIS LFPIS-opt @

Workload Workload Architecture models
(a) SPIS (b) LFPIS (c) Energy consumption

FIGURE 10. The performance and data usage of proposed hardware accelerator according to various item access load.

hardware acceleration and 42.5% higher performance than
SPIS even in low dpeth work, which does not have high paral-
lelism. As most key misses can be determined by one step of
parallel comparison operation in the LFPIS, the overhead of
slow single key-value comparison is hidden. It could be seen
that the performance difference between LFPIS and SPIS
was even greater at 188% in the high depth work. We can
also check the efficiency of data reqeust optimization by
comparing the performance of LFPIS and LFPIS-opt. LFPIS-
opt which showed higher performance of 30%-36% over
LFPIS from low depth work to high depth work. As a reulst,
the LFPIS-opt can achieve 92%-292% higher performance
than SPIS. It is confirmed that the efficiency of data request
optimization is not significantly affected by item access load,
but the data request optimization is affected when the nkey
value of the target item is different from the nkey value of the
retrieved item.

Figures 10(a) and 10(b) present the results of the per-
formance evaluation by increasing the item access load for
SPIS and LFPIS. It is possible to note that the performance
improvement increases in proportion to the item access load
in the case of the SPIS. The results also show that the per-
formance improvement of the high depth work are increased
by 116%. Moreover, the SPIS is heavily influenced by the
average linked list traversal depth of buckets. On the con-
trary, LFPIS showed that the performance improvement are
increased only 6% for the same situation. Note that because
comparison of 16 items is performed in parallel, there is no
significant change in performance for the various item access
load in LFPIS.

78734

2) EFFICIENCY OF MEMORY TRAFFIC REDUCTION OF THE
PROPOSED ARCHITECTURE

Tens to hundreds of bytes must be read from memory to
compare the key of an item. The NMP loads all data form
DRAM and costs of access to DRAM is rather costly. There-
fore, minimizing memory overhead by preventing the loading
of unnecessary data as much as possible is needed for better
performance and minimizing energy consumption. In this
paper, energy consumption and total requested data size
were measured to analyze the memory traffic overhead and
the results are presented in Figure 10(c). The bar graph in
Figure 10(c) displays energy consumption of memory, and
the line graph displays size of total memory request. To calcu-
late energy consumption, CACTI 6.5 [15] was used for obtain
values such as dynamic power consumption and static power
consumption. As a result, LFPIS reduced 32.6%-67.5%, and
LFPIS-opt reduced 51%-76% of enenrgy consumption com-
pared to SPIS from low depth work to high depth work. Total
size of memory requested was also reduced 43%-75% and
61%-83% in LFPIS and LFPIS-opt, respectively. As item
access load is increased, the LFPIS and LFPIS-opt only rose
up to 15%, and 11% in data request count and total requested
data size, respectively, while simple architecture increased
by 155% on two metrics. One of the important points of
the result is that LFPIS-opt showed lower values than LFPIS
for requested data size, as well as data request count. The
data request optimization reduces the data request count, but
since 99% of key misses can be distinguished by 3 bytes,
1 byte data size can be saved compared to LFPIS for each
key comparison operation.

VOLUME 11, 2023

M. Kee et al.: Integrated Solution to Improve Performance of In-Memory Data Caching

IEEE Access

VII. RELATED WORK

A. IN-MEMORY CACHING SYSTEM

There are many approaches for improving the performance
of in-memory big data management and processing. The
approaches can be categorized into a software-level opti-
mization and hardware-based acceleration. First, in software
approaches, [16] modifies LRU update strategy, called a bag
LRU, in which hash table locking mechanism is changed to
allow for parallel access. [17] optimizes Memcached using
optimistic cuckoo hashing and LRU-approximating eviction
policy based on CLOCK. Byungchul Hong [18] applied
request-level parallelism in his paper for parallel search of
linked list. The author grouped the data hashed in different
indexes and stored them in different memory banks, pro-
posed mechanism allows different requests to be processed
in parallel. Scott Lloyd [19] also changed the data place-
ment mechanism to reduce the memory latency of linked list
traversal. To improve pointer chasing performance of items in
buckets, the author reduced the latency required for random
access by storing data in the next index instead of linking
items to a connected list. Kevin Hsieh [20] modified TLB to
improve the performance of virtual to physical address trans-
lation operation by pipelining the address generation part and
memory access part separately. Meanwhile, [21] proposes an
on-chip coprocessor that is able to accelerate the hash index
lookups operation in a hardware-based approach. Addition-
ally, MICA [22] improves the performance for both read- and
write-intensive workload by enabling parallel access to the
partitioned data.

Previous researches to increase item searching perfor-
mance of in-memory caching has been conducted in the
direction of performing request-level parallel access to par-
titioned data, or keeping the linked list short by improving
hash functions. In contrast, we utilized a simple and effective
shadow table to reduce the traversal latency of the linked
list without using complex hash functions, and designed a
hardware accelerator that can achieve a short latency by
performing list traversal linked in parallel to a single query
request.

We proposed an integrated approach by including a soft-
ware and hardware mechanism. This enabled relatively
simple mechanisms and hardware to have high performance
and reduced data traffic.

B. NEAR-MEMORY PROCESSING

The concept of NMP has been studied as forms of PiM in
the 1990s. The logic and DRAM are integrated by [23], [24]
by connecting the SIMD-based engine and DRAM sense
amplifiers.

Recently, [25] proposed an accelerator with a multiple
coarse-grained reconfigurable architecture to accelerate a
large loop body in big data applications. In [26], they
employ a lot of in-order core in an NMP logic layer for
in-memory analytics frameworks to offload the mass data
traffic through the on-chip memory hierarchy. Different from

VOLUME 11, 2023

these approaches, we decided to use a dedicated hardware
accelerator rather than general computation engines to accel-
erate the linked list traversal operation of in-memory caching
applications significantly.

VIil. CONCLUSION
The goal of this work is to improve the performance of
a linked list traversal operation, which is the most impor-
tant kernel operation of in-memory caching applications.
We focused on reducing the average linked list traversal
depth from software perspective, as well as supporting the
parallel comparison to accelerate list iteration from hardware
perspective.

From a software perspective, the proposed ITEM JUMP is
a simple mechanism that maintains symbolic items to give
priority access to items that are repeatedly re-referenced. The
symbolic items in the shadow bucket are accessed prior to
accessing items in the normal bucket. The proposed ITEM
JUMP can reduce 42% of the average linked list traversal
depth by maintaining only one symbolic item per bucket.

From a hardware perspective, we proposed the LFPIS
mechanism and there were two optimization points of the
LFPIS for linked list traversal performance. First, most
misses of the key comparison can be determined by com-
paring only small LSB part of the key values. Second, the
linked list traversal performance can be further improved
by loading nkey and small part of key values at the same
time. As a result, ITEM JUMP and LFPIS-opt improved
the performance improvement of linked list traversal oper-
ation by up to 3,381% compared to the model that does
not have hardware accelerator and 92%-292% performance
improvement over the SPIS. LFPIS-opt can reduce data
access overhead up to 83% compared to SPIS in terms
of memory access overhead. In terms of performance and
memory overhead, the LFPIS-opt has showed the highest
performance, but depending on the characteristics of the
item, SPIS and LFPIS can also be good choices. SPIS has
the advantage of high performance and simple control in an
environment where the average linked list traversal depth is
low, and the memory overhead of the LFPIS may be lower
than that of the LFPIS-opt in an environment where the
nkey value of the item is highly variable. Therefore, it is
necessary to design a hardware accelerator considering the
characteristics of a given hardware resource and given data.

We focused on Memcached in this work, but similar
approaches that are proposed in this paper can be applicable
in various in-memory caching schemes, since the linked list
traversal process is essential in in-memory caching applica-
tion and it will be a future research topic.

REFERENCES

[1] S. Robbins. Memcached: A Distributed Memory Object Caching System.
Accessed: 2023. [Online]. Available: http://memcached.org/

[2] J. Ousterhout, P. Agrawal, D. Erickson, C. Kozyrakis, J. Leverich,
D. Mazieres, S. Mitra, A. Narayanan, G. Parulkar, M. Rosenblum,
S. M. Rumble, E. Stratmann, and R. Stutsman, ““The case for RAMClouds:
Scalable high-performance storage entirely in DRAM,” ACM SIGOPS
Oper. Syst. Rev., vol. 43, no. 4, pp. 92-105, Jan. 2010.

78735

IEEE Access

M. Kee et al.:

Integrated Solution to Improve Performance of In-Memory Data Caching

[3]

[4]
[51
[6]

[71

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]
[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski, H. Lee, H. C. Li,
R. McElroy, M. Paleczny, D. Peek, P. Saab, D. Stafford, T. Tung, and
V. Venkataramani, “Scaling memcache at Facebook,” in Proc. 10th
USENIX Symp. Netw. Syst. Design Implement., Lombard, IL, USA, 2013,
pp. 385-398.

M. Rajashekhar and Y. Yue. (2012). Twemcache: Twitter Memcached.
[Online]. Available: https: llgithub.comltwitter/twemcache

Lior Abraham et al., “Scuba: Diving into data at Facebook,” Proc. VLDB
Endowment, vol. 6, no. 11, pp. 1057-1067, Aug. 2013.

R. Balasubramonian, J. Chang, T. Manning, J. H. Moreno, R. Murphy,
R. Nair, and S. Swanson, ““Near-data processing: Insights from a MICRO-
46 workshop,” IEEE Micro, vol. 34, no. 4, pp. 3642, Dec. 2013.

S. L. Graham, P. B. Kessler, and M. K. McKusick, “Gprof: A call graph
execution profiler,” ACM SIGPLAN Notices, vol. 17, no. 6, pp. 120-126,
1982.

Kcachegrind. Accessed: 2023. [Online]. Available: http://kcachegrind.
sourceforge.net/html/Home.html and https://hparch.gatech.edu/macsim.
html

B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking cloud serving systems with YCSB,” in Proc. 1st ACM
Symp. Cloud Comput., Indianapolis, IN, USA, Jun. 2010, pp. 143-154.

J. Chen, L. Chen, S. Wang, G. Zhu, Y. Sun, H. Liu, and F. Li, “‘HotRing:
A hotspot-aware in-memory key-value store,” in Proc. 18th USENIX
Conf. File Storage Technol. (FAST), Santa Clara, CA, USA, Feb. 2020,
pp. 239-252.

R. T. Saunders. (2011). A Study in Memcmp. [Online]. Available:
http://www.picklingtools.com/study.pdf

H. Lim and G. Park, “JUMPRUN: A hybrid mechanism to accelerate item
scanning for in-memory databases,” in Proc. Int. Conf. Big Data Smart
Comput. (BigComp), Jeju, South Korea, Feb. 2017, pp. 231-238.
MacSim: A CPU-GPU Heterogeneous Simulation Framework. [Online].
Available: http://comparch.gatech.edu/hparch/macsim.html

C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace,
V.J. Reddi, and K. Hazelwood, “Pin: Building customized program analy-
sis tools with dynamic instrumentation,” ACM SIGPLAN Notices, vol. 40,
no. 6, pp. 190-200, Jun. 2005.

CACTI6.5. [Online]. Available: https://github.com/Chun-Feng/CACTI-6.5
J. T. Langston Jr. (2012). Enhancing the Scalability of Memcached.
[Online]. Available: https://software.intel.com/content/www/us/en/
develop/articles/enhancing-the-scalability-of-memcached.html

B. Fan, D. G. Andersen, and M. Kaminsky, “MemC3: Compact and
concurrent MemCache with dumber caching and smarter hashing,” in
Proc. 10th USENIX Symp. Netw. Syst. Design Implement., Lombard, IL,
USA, 2013, pp. 371-384.

B. Hong, G. Kim, J. H. Ahn, Y. Kwon, H. Kim, and J. Kim, “Accelerating
linked-list traversal through NDP,” in Proc. Int. Conf. Parallel Archit.
Compilation Techn. (PACT), Haifa, Israel, Sep. 2016, pp.‘113-124.

S. Lloyd and M. Gokhale, ‘“Near memory key/value lookup acceleration,”
in Proc. Int. Symp. Memory Syst., Alexandria, VA, USA, Oct. 2017,
pp. 1-10.

K. Hsieh, S. Khan, N. Vijaykumar, K. K. Chang, A. Boroumand, S. Ghose,
and O. Mutlu, “Accelerating pointer chasing in 3D-stacked memory: Chal-
lenges, mechanisms, evaluation,” in Proc. IEEE 34th Int. Conf. Comput.
Design (ICCD), Scottsdale, AZ, USA, Oct. 2016, pp. 25-32.

0. Kocberber, B. Grot, J. Picorel, B. Falsafi, K. Lim, and P. Ranganathan,
“Meet the walkers: Accelerating index traversals for in-memory
databases,” in Proc. IEEE MICRO, Dec. 2013, pp. 468—479.

H. Lim, D. Han, D. G. Andersen, and M. Kaminsky, “MICA: A holistic
approach to fast in-memory key-value storage,” in Proc. NSDI, Apr. 2014,
pp. 429-444.

D. G. Elliott, W. M. Snelgrove, and M. Stumm, “Computational RAM:
A memory-SIMD hybrid and its application to DSP,” in Proc. IEEE
Custom Integr. Circuits Conf., May 1992, pp. 30.6.1-30.6.4.

78736

(24]

[25]

[26]

i

K. Mai, T. Paaske, N. Jayasena, R. Ho, W. J. Dally, and M. Horowitz,
“Smart memories: A modular reconfigurable architecture,” in Proc.
27th Int. Symp. Comput. Archit., Vancouver, BC, Canada, Jun. 2000,
pp. 161-171.

A. Farmahini-Farahani, J. H. Ahn, K. Morrow, and N. S. Kim, “NDA:
Near-DRAM acceleration architecture leveraging commodity DRAM
devices and standard memory modules,” in Proc. IEEE 21st Int. Symp.
High Perform. Comput. Archit. (HPCA), Burlingame, CA, USA, Feb. 2015,
pp. 283-295.

M. Gao, G. Ayers, and C. Kozyrakis, ‘Practical near-data processing for
in-memory analytics frameworks,” in Proc. Int. Conf. Parallel Archit.
Compilation (PACT), San Francisco, CA, USA, Oct. 2015, pp. 113-124.

MINKWAN KEE received the B.S., M.S., and
Ph.D. degrees in computer engineering from
Sejong University, in 2012, 2014, and 2021,
respectively. His research interests include hard-
I ware accelerators in embedded system and
near-memory processing focused on performance
and power consumption aspect of accelerators for
next-generation computing systems.

CHIWON HAN is currently pursuing the Ph.D.
degree with Sejong University. His research inter-
ests include AI accelerator design, computer
architecture, distributed processing, FPGA, low-
power edge system design, and sparse matrix
optimization.

GI-HO PARK (Member, IEEE) received the B.S.,
M.S., and Ph.D. degrees in computer science from
Yonsei University, Seoul, South Korea, in 1993,
1995, and 2000, respectively. He is currently a Pro-
fessor with the Department of Computer Science
and Engineering, Sejong University, South Korea.
Before joining Sejong University, he was with the
Processor Architecture Laboratory, System LSI
Division, Samsung Electronics, as a Senior Engi-
neer, from 2002 to 2008. His research interests

include advanced computer architectures, Al accelerator design, memory
system design, system on chip (SOC) design, and low-power edge system
design.

VOLUME 11, 2023

