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ABSTRACT Remote teleoperation has shown significant advancements since the first teleoperation system
was proposed by Goertz in the 1940s. In recent years, the research on shared control methodologies in
which the robot assists the operators in accomplishing the desired tasks has gained extensive attention.
One such important task in teleoperation is object grasping. In this paper, we propose a shared control
framework to enhance the teleoperated grasping performance. The proposed framework is built upon a virtual
reality device-based direct teleoperation system. In this framework, a template matching-based object point
cloud compensation is introduced for multi-angle grasping pose generation. Then, the feasible grasping
candidates are selected considering joint constraints-aware manipulability. Finally, the grasping assistance
is achieved by trajectory blending with dynamic authority adjustment. To validate the performance of the
proposed framework, we carried out experimental evaluations. The output results indicate improved grasping
performance in terms of reduced task completion time, linear trajectory, and workload.

INDEX TERMS Grasping assistance, point cloud compensation, shared control, teleoperation.

I. INTRODUCTION
Robotic teleoperation has been widely and extensively
studied throughout robotics history since the idea was first
proposed by Goertz in the 1940s [1]. Generally, direct
teleoperation systems are designed to constantly follow
operators’ control, and operators receive visual, haptic,
or proprioceptive sensory feedback to achieve a remote
presence. The quality of sensory perception was later
denoted as transparency. The quality of transparency directly
affects task performances and control intuitiveness in a
direct control framework [2]. However, due to the degraded
quality of long-range signal transmission and human-robot
embodiment heterogeneity, perfect transparency only exists
in ideal situations [3]. This facilitated the development of
new approaches which integrate direct teleoperation with

The associate editor coordinating the review of this manuscript and

approving it for publication was Tao Liu .

some level of automation on the follower side for operational
assistance. The approach is referred to as shared-control [4],
in which the human cognitive skills and the robustness of the
follower robots are both leveraged [5].

The shared control research has been widely conducted
in application areas such as space exploration [6], surgical
robotics [7], hazardous material handling [8], multiple robots
teleoperation [9], and assistive robotics [10]. In most of the
above-mentioned application cases, human operators have
to teleoperate complex multi-degrees-of-freedom (DOF)
robotic systems to accomplish object manipulations. In this
context, object grasping takes on a particularly significant
and fundamental role, which serves as a critical component
in the success of these operations [11]. However, controlling
all DOFs of complex robotic systems to precisely grasp
a desired object presents a significant challenge. This
difficulty is due to the degraded sensory perception of depth
information [12], the requirement for simultaneous control of
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the end-effector’s position and orientation, and the presence
of robot constraints [13]. To overcome these challenges and
successfully execute a grasp, operators have to persistently
monitor the condition of the robotic system, which can
be both physically and mentally demanding, leading to
operators’ fatigue and degraded task performance [14].

Hence, it is of great necessity to develop grasping assis-
tance systems to reduceworkloads and enhance remote grasp-
ing performance. In [15], Abi Farraj et al. introduced a novel
haptic shared-control approach, in which a point cloud-based
autonomous grasping pose detection algorithm [16] was
integrated with the haptic guidance for assisting a human
operator in the sorting and segregation of different objects
in a cluttered environment. Ghalamzan et al. [17] extended
grasping assistance to the post-grasping phase and proposed
a shared control approach to help operators select a stable
grasping pose by considering post-grasping manipulability.
For the non-haptic guidance approach, grasping assistance is
also applied to the control of a multi-DOF robotic arm for
the target grasping task through a simple non-invasive Brain-
Computer Interface and computer vision guidance [18]. Xu et
al. designed a system in which the operators only need
to send two kinds of signal instructions to achieve the
transnational motion of the robot arm, and once the end
effector reaches the predefined visual guidance area, the
control is switched to full autonomy to complete the grasping.
Unlike the approach of switching on-off of automation in
the grasping assistance process, in [19], Laghi et al. has
developed a grasping assistance algorithm for a bimanual
teleoperation system in which the end effector trajectories
are blended based on the user’s willingness to grasp. The
system utilizes flexible Virtual Reality (VR) controllers as
input devices and assists the operation through the automatic
coordination of bimanual motions to grasp a single object
with different sizes. Moreover, rather than assisting in
full DOF, Bowman et al. [20] adopted a DOF-wise control
authority allocation between the human and the robot to
achieve flexible grasping assistance.

Above mentioned grasping assistance algorithms are
dependent on the grasping poses generated directly on the
perceived point cloud. Suitable grasping poses are detected
based on the input point cloud and the internal classification
network [16]. However, this makes the quality of generated
grasping poses directly affected by the input point cloud.
In most cases, the depth camera mounted on the robot can
only obtain the point cloud from a single fixed direction either
from the side or from the top. For example, in the works
of [15], [18], and [19], the depth camera was mounted on top
of the workspace to simplify the grasping pose generation and
achieve the grasping from above for higher manipulability.
However, for cutting-edge multi-purpose robotic platforms
such as Tiago (Pal Robotics) [21], Human Support Robot
(TOYOTA, HSR) [22], and PR2 (Willow Garage) [23], the
depth camera is mounted on the robot head to provide point
clouds from the front side of the object. Due to the object
self-collision, the grasping poses are generated only in the
part of the object that is visible to the depth camera and

all facing the same direction. This limits the diversity of
generated grasping poses and makes it difficult to select
suitable assistive grasping poses from multiple angles, which
potentially can be used to meet the robot constraints such as
joint limits or manipulability [24].

Moreover, a strategy to select an adequate assistive
grasping pose from multiple candidates is still an open
problem. In human-robot teleoperation systems, due to the
embodiment difference between humans and robots, grasping
commands that are given by human operators may violate
the kinematic constraints of follower robots and make
them fall into singularities [21]. Although, most of the
previously mentioned grasping assistance systems assumes
that the robot approaches the target with high manipulability,
in practice, it is important to consider robot constraints
and manipulability [24] to guarantee robot execution when
generating feasible grasping poses. Thus, to address the
challenges of generating multi-directional grasping poses,
and avoiding robot constraints for smooth task execution, this
paper develops a shared control framework that can generate
grasping poses from multiple angles and considers robot
manipulability constraints when selecting feasible assistive
grasping poses.

On the other hand, compared with conventional fixed-base
teleoperation interfaces, VR devices have the advantage of
lower cost, flexibility, and extended workspace, which makes
it ideal to be utilized as a teleoperation interface [25].
In addition, unlike Liquid Cristal Display (LCD) screens
which are commonly used as the visual feedback interface
to provide a monocular view [26], VR devices can be
integrated with stereo cameras to present a stereo vision
to operators through Head Mounted Display (HMD) for
improved spatial perception [27]. In this study, a VR device-
based teleoperation system is developed. The follower robot
is controlled to follow human arm motion intuitively, and a
stereo vision is provided for visual feedback with enhanced
spatial perception. The proposed shared control framework
that assists grasping is built upon this VR device-based
teleoperation system.

In this paper, we propose a grasping assistance shared
control framework for enhanced grasping performance in a
VR device-based teleoperation system. The contributions of
this paper are summarised as follows:

1) A VR device (HTC, Vive Pro) based teleoperation
system is proposed for intuitive direct control. Human
arm and head motions are captured by the optical
trackers on the Head Mounted Display (HMD) and the
VR controller. Captured motions are then mapped to an
anthropomorphous robotic manipulator (Pal Robotics,
Tiago++) through inverse kinematics with null space
resolution. A stereo video stream is displayed on the
HMD for stereo visual feedback.

2) A shared control framework is proposed for grasping
assistance. In this framework, a multi-angle grasping
poses generation is achieved by template-matching
based point cloud compensation. These multi-angle
grasping poses are then used to select feasible grasping
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FIGURE 1. The proposed shared control framework and the VR device-based teleoperation system. The Head Mount Display (HMD) and the
controller of HTC Vive Pro are used as the leader devices to track the operator’s head and hand motion. The 7-DoF robot arm and the parallel
gripper of Tiago are used as the follower device. A stereo camera (Stereo Labs, ZED Mini) is used for stereo visual feedback. The shared control
method compensates for the objects’ missing point cloud and generates feasible grasping poses based on manipulability. Then a trajectory
blending is performed for grasping assistance.

poses by referencing joint limit-aware manipulability
measurement. A trajectory blending method with
dynamic authority adjustment is introduced to achieve
smooth grasping assistance.

3) The contribution of point cloud compensation on
the improved manipulability distribution over the
workspace is analyzed. Moreover, human subject
experiments are conducted to evaluate the system’s
performance through the metrics of task completion
time, linear trajectories, and NASA TLX workload
ratings.

II. VR DEVICE-BASED TELEOPERATION SYSTEM
This section describes the VR device-based teleoperation
system that is proposed in this paper. The entire software
architecture is built upon Robot Operating System (ROS).
To achieve intuitive teleoperation, coordinated control of the
robot arm and end-effector according to the operator’s arm
and hand motions is important. Hence, as the leader device,
a VR device (HTC, Vive Pro) is used to capture human
hand and head motions. For the follower device, a redundant
robot manipulator with a 7-DOF arm and a 2-DOF head (Pal
Robotics, Tiago++) is used to execute the human command.
A parallel gripper is attached to the wrist of the robot arm as
an end-effector and can be controlled by the trigger of the VR
controller. The stereo vision is provided by displaying images
captured by the stereo camera (Stereo Labs, ZED mini) on
the HMD. Fig. 1 shows the architecture of the proposed
teleoperation system.

A. MOTION MAPPING
In the proposed system, only arm motion mapping is
considered. Tiago’s arm has 7-DOFs which is a redundant
manipulator that can be used to intrinsically track human
arm motions in cartesian space. Tiago’s head has two motors

that can be used to generate pitch and yaw motions to
track human head movement. Arm motion tracking and head
motion tracking are performed individually.

The end-effector pose in the base frame of the follower
robot can be defined as a homogeneous transformationmatrix
in SE(3) as follows:

Tbe =

[
Rbe pbe
0 1

]
(1)

where Rbe is a rotation matrix in the robot base frame which
satisfies Rbe ∈ SO(3), and pbe ∈ R3 is a translational vector
that contains translational information in each cartesian
coordinate axis. Similarly, the captured human hand pose is
used as the desired end-effector position Tbe,d .

Firstly hand motion tracking is performed. Since the HTC
Vive base station and robot base have different origins in each
coordinate system, direct mapping would not be possible.
Hence, for translational motion tracking, the relative position
with respect to the initial tracker position is used.

pbe,d,k = pbe,0 + (phtchand,k − phtchand,0) (2)

where, k represents k’th sampling step, and 0 means the onset
of the motion. Then, for the rotational motion mapping, the
absolute orientation originating from the robot base frame is
used as follows:

Rbe,d,k = Rbhtc · Rhtchand,k (3)

where a rotation matrix Rbhtc maps the rotation in the HTC
coordinate system to the robot base coordinate system.

B. INVERSE KINEMATICS
Once the desired end-effector pose is obtained from the
previous section, an inverse kinematics solver is performed
to solve the desired joint angles, which is denoted as:

θ = [θ1, . . . , θ7]T ∈ R7 (4)

69206 VOLUME 11, 2023



Y. Zhu et al.: Shared Control Framework for Enhanced Grasping Performance in Teleoperation

Firstly, the end-effector position and orientation error can
be defined as:

ee =

[
ee,p
ee,o

]
=

[
pe,d − pe,k
log(1Re)

]
(5)

where, log(1Re) is the logarithm mapping of the orientation
error 1Re which can be described as Re,dRTe,k . Note that in
the practical implementation, unit quaternions are used to
describe the orientation. Here, the task space error ee ∈ R6

and the joint space configuration θ ∈ R7, which makes the
robot manipulator redundant.

Then, in order to track the desired end-effector pose Tbe
with Tiago’s redundant manipulator arm, an inverse kine-
matics solver with the null-space resolution is implemented.
The general form of the inverse kinematics that contains null
space projection can be described as follows [28]:

θ̇ = J#ee + (I − J#J)φ (6)

where θ̇ ∈ R7 is the desired joint velocities, and J#

is the Moore-Penrose pseudo-inverse of the task Jacobian.
The Moore-Penrose pseudo-inverse is solved by using the
Singular ValueDecomposition (SVD)method. The null space
projection (I−J#J) projects the subsequent vector to the task
Jacobian J , and the φ is a vector that contains the error of the
task with secondary priority. In which the vector φ can also
be interpreted as the desired null space velocity that modifies
joint space behavior and does not interfere with the execution
of the prioritized task.

For a redundant manipulator, the null space vector φ

can be used to optimize the null space behavior based on
some criteria such as manipulability indices, joint limits,
or joint velocities [29]. In this paper, we employ the null
space optimization criterion proposed in [30] and [31] with
a preferred arm posture to avoid unreachable task poses. The
cost function of the criterion is defined as follows:

G(θ ) =
1
2
(θ − θprefer )TKw(θ − θprefer ) (7)

where the Kw is a diagonal weighting matrix and θprefer is the
preferred arm posture described in joint space. This criterion
is computationally simple and has been used to create
human-like motions in anthropomorphic robot arms [30].
The null space velocity φ can be given by taking the
gradients of the cost function (7) in the descending direction.
Moreover, the joint limit is implemented by setting a software
constraint. This inverse kinematics is implemented under
ROS framework with Pinoccio motion library [32].

III. SHARED CONTROL FRAMEWORK FOR GRASPING
ASSISTANCE
In this section, the proposed shared control frame-
work is introduced. The framework is composed of a
point cloud compensation-based grasping pose generator,
a manipulability-based grasping candidate selection, and a
shared control framework with dynamic authority adjustment
that complements human commands for grasping assistance.
As stated earlier, most of the point cloud-based grasping

FIGURE 2. Process of object point cloud compensation. (a) shows the
central axis detection. In (b) based on the central axis, the object point
cloud is rotated 90◦, 180◦, and 270◦. (c) shows examples of the created
templates. (d) shows examples of the compensated point clouds through
template matching.

assistance shared control generates grasping pose from
only one direction [15], [18], [19]. Hence, we propose
the multi-angle grasping pose generation method, in which
the diverse grasping poses can be used as candidates to
select feasible grasping poses according to manipulability
measurement.

A. MULTI-DIRECTIONAL GRASPING POSE GENERATION
In this paper, a state-of-the-art grasping pose detection (GPD)
algorithm [16] is adopted to generate 6-DOF grasping candi-
dates. However, given a partially observed point cloud of an
object, it is unable to calculate the curvature of the missing
surface, and some grasp candidates from the side direction
are not considered as successful grasp. This constrains the
generated grasping poses to only one direction. Hence,
the most straightforward way to generate multi-directional
grasping poses is to compensate for the object’s missing point
cloud and then apply the GPD algorithm.

To compensate for the objects’ point cloud, an object point
cloud library-based template matching is applied. The first
step for point cloud compensation is to establish a template
library. Since the performance of the template matching can
be affected by point cloud distribution characteristics, the
depth camera (ASUS, Xtion) is used to create the template
library and to do the real-time point cloud compensation.

Given the point cloud of the objects with a symmetric
shape, the process of point cloud compensation is shown in
Fig.2 and follows the following steps:

1) Central axis calculation: The point cloud of the object’s
top part (cap) is fully obtainable. By segmenting the top
part and calculating its central axis, the central axis of
the object can be obtained in vector form, as shown in
Fig.2 (a).

2) Obtain the copies of the point cloud at four different
angles: The rotation around the central axis can be
applied to the point cloud to approximate the process
of obtaining the point cloud from four different angles
(Fig.2 (b)).
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Algorithm 1 Point Cloud Compensation
Input: Point Cloud P, Template Library L
Initialization: Output Point Cloud O
Segment P To Get Object-Based Sub-Set P∗

for Object Point Cloud pi in P∗ do
Initialization: Best Matched TemplateMi,
Best Score Si, Transform Ti
for Template lj in L do

Initialization: Matching Score Sj, Transform Tj
Sj, Tj = MATCH(pi, lj)
if Sj > Si then

Si = Sj, Ti = Tj, Mi = lj
end if

end for
Apply Transform Ti to Mi
Add The Transformation Result to O

end for
Output: O

FIGURE 3. Differences in the distribution of generated grasping poses
with and without point cloud compensation. (a) without compensation,
the grasping poses are facing the forward direction. (b) with
compensation, multi-angle grasping poses are generated.

3) Create a template: These rotated point clouds are
merged, and voxel grid filtering is applied to remove
the overlap before it is finally used as a template of the
object. (Fig.2 (c)).

4) Point cloud compensation by template matching: A
template matching algorithm (Algorithm 1) is per-
formed to compensate for the missing point clouds.
The result of point cloud compensation is illustrated in
Fig.2 (d).

Algorithm 1 describes the process of point cloud matching
and compensation. The input is the real-time point cloud P
obtained by the depth camera, and the object point cloud
template library L. Firstly, the P is segmented into sub-
sets P∗ that contain the point cloud of each object in the
scene. Then, the template matching is performed to each
point cloud inside the sub-sets P∗. Here, each segmented
point cloud pi is used as a template to match each point
cloud template lj in the library. Based on the highest
matching score Si, the corresponding transformation matrix
Ti is applied to the matched template Mi and added to the
output point cloud set O. The Algorithm is implemented
under the framework of Point Cloud Library (PCL) [33],

FIGURE 4. Error of the object’s central axis in the compensated point
cloud. (a) the angular error between the compensated central axis and
the vertical axis, and (b) the position error between the compensated
centroid and the ground truth centroid. Targets indicate three objects
shown in Figure 9 (b).

with RANSAC-based SAC-IA function [34] to estimate the
transformation matrix and matching scores. The output point
cloud set O is then fed separately into the GPD for grasping
pose generation. The difference between with and without
point cloud compensation and corresponding grasping poses
are shown in Fig. 3. The point cloud compensation for one
object can be run within 1s.

Figure 4 shows the error of the object’s central axis
after point cloud compensation. Target 1, Target 2, and
Target 3 represent three different target objects used in the
experiments (Figure 9 (b)). Figure 4 (a) presents the angular
error between the object’s compensated central axis and
an axis that is vertical to the table. Since the object is in
a symmetrical shape, the angular error can be given by
using the axis-angle representation, without considering the
rotation around the Z-axis. The median of the angular error is
5.057 degrees, 4.597 degrees, and 4.900 degrees for Target 1,
Target 2, and Target 3, respectively. The positional error
is shown in Figure 4 (b), which is the Euclidean distance
from the object’s centroid position in the compensated point
cloud to its ground truth centroid position. The median of the
positional error is 0.011m, 0.009m, and 0.009m for Target 1,
Target 2, and Target 3, respectively.

B. MANIPULABILITY-BASED GRASPING POSE SELECTION
Among the generated multi-directional grasping poses, some
of them may cause the Tiago arm to fall into the singularity,
making both prior and subsequent arm motions unfeasible to
execute. Therefore, in this section, a manipulability index-
based grasping pose selection method is proposed to choose
the most feasible grasping candidate.

1) MANIPULABILITY CALCULATION
Manipulability index [35] which describes the distance to
the singular configuration, is a well-known criterion for
determining the ability of robot manipulators to maneuver in
the workspace. A larger manipulability value indicates that
the robot arm can move smoothly around the corresponding
joint configuration. By applying the manipulability index to
grasping pose selection, the unfeasible grasping poses can be
effectively filtered out. The manipulability measurement is
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defined as follows:

M (θ ) =

√
det(J(θ )J(θ )T ) (8)

where, M (θ ) is the manipulability value in the joint
configuration θ corresponding to a grasping pose, and J(θ )
is the jacobian matrix under the joint space configuration θ .

2) MANIPULABILITY WITH JOINT LIMIT PENALIZATION
The equation (8) calculates the manipulability without
considering robot joint limits, which can also bring the
robot arm to unfeasible configurations. To further ensure the
feasibility of the selected grasping poses, this paper follows
the suggestion in [36] to introduce the following penalization
term that considers the influence of the lower (l−j ) and the
upper (l+j ) joint limits:

P(θ) = 1 − exp(−k
n∏
j=1

(θj − l−j )(l
+

j − θj)

(l+j − l−j )
2

) (9)

where, k is a scaling factor that can be used to adjust the
behavior near joint limits, n represents the number of the
joints in the manipulator (n = 7), l−j and l+j are the lower and
upper limit of jth joint and θj is the angle value of jth joint. The
penalization term is designed to be rapidly decreasing when
the joint configuration given by a grasping pose approaches
the joint limits.

By multiplying theM (θ ) with P(θ), a penalized manipula-
bility can be obtained as follows:

C(θ ) = P(θ )M (θ ) (10)

In this way, the configurations that are near joint limits are
penalized and make the corresponding grasping poses less
likely to be selected. The comparison of selected grasping
candidates with and without joint limit penalization when
the object is at the same position is illustrated in Fig. 5.
In Fig. 5 (a), two joints of the arm are reaching the joint limits
(θ4 and θ6), which makes the arm motion unfeasible to reach
the target pose. On the other hand, Fig. 5 (b) shows that by
penalization, the arm joints are kept away from limits, which
makes reaching motion feasible.

The change in the manipulable workspace of the shared
control system before and after point cloud compensation
is compared by drawing a heatmap of the manipulability
(Fig. 6). The workspace is set as x ∈ [0.4m, 0.9m],
y ∈ [−0.7m, 0.3m], and z ∈ [0.5m, 0.8m] with respect
to the robot base frame. Then, an object is placed in
the workspace with its position changes 1cm steps at a
time for a total of 150,000 positions. The GPD generates
grasping candidates for each position. Using the obtained
data, heat maps that contain the penalized manipulability
greater than 0.05 (equation (10)) are generated. By comparing
the heat map Fig. 6 (a), and Fig. 6 (b), after the point cloud
compensation, the range of high manipulability grows by
about 124%. This indicates the increased assistive area for
the proposed shared control framework.

FIGURE 5. Comparison of manipulability calculation (a) without and
(b) with joint limit penalization. The blue markers show the generated
grasping poses, and the markers with the RGB axes are the selected
grasping poses.

C. SHARED CONTROL FRAMEWORK WITH DYNAMIC
AUTHORITY ADJUSTMENT
In shared control, the distribution of authority between the
operator’s input and robot execution is an important factor.
This factor is generally represented as a function α that
represents the level of human control [37]. In this study, the α

is designed to be a Sigmoid function with respect to distance,
as follows:

α(t) =
1

1 − e−σ (a(t)−0.5) (11)

where σ is a scaling factor. And a(t) = |Ph(t) − Pg|/d,

d = 0.3m is a function that maps the distance between
the end-effector and the target into the range of [0.0, 1.0].
The design of the authority function α(t) ensures the smooth
convergence of the operator’s authority towards 0 when
approaching the target object.

As Fig. 7 shows, in the proposed shared control frame
work, the whole grasping process can be divided into four
states based on the value of α. The T e, Th, Tg, and D =

|Ph−Pg| represent the pose of the end-effector, the operator’s
hand, the grasping target, and the distance to the grasping
target, respectively. In Fig. 7 (a), the system is initialized and
a grasping pose is generated for each object in the scene, the
operator is in full control of the robot arm, and selects the
target object using the VR controller. In the assistance state
(Fig. 7 (b)), whereD ∈ [0.12m, 0.3m], the end-effector tracks
the blended trajectory. In the grasping state (Fig. 7 (c)), where
D ∈ [0.0m, 0.12m], the robot takes full control to complete
the grasp by automatic interpolation. And in the post-grasping
state (Fig. 7 (d)), the operator takes back the control authority.
The shared control process is illustrated in Figure 8 as motion
curves.

In the assistance state (Fig. 7 (b)), the trajectory is blended
following the equations listed below. For the translational
trajectory:

pe(t) = (1 − α)pg + αph(t) (12)
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FIGURE 6. Heat map of manipulability distribution with and without point cloud compensation. After the point cloud compensation, the
range of high manipulability increases by about 124%.

FIGURE 7. Shared control framework.

where, pe(t), pg, and ph(t) represent the desired end-effector
position at time t , the grasping target position, and the
position of the human hand at time t , respectively. For rota-
tional trajectory blending, the spherical linear interpolation
(SLERP) is used:

Re(t) = SLERP(Rh(t),Rg, 1 − α) (13)

where Re(t), Rh(t), and Rg are the quaternion representation
of the desired end-effector orientation, human hand orienta-
tion, and orientation of the target grasping pose, respectively.
The authority factor α in the equation (12) and (13) is the
value computed according to equation (11).

To prevent the gripper from touching the object during the
adjustment process, the pg calculated is shifted by 12cm from
the target grasping pose. The system enters into the automatic
grasping state (Fig. 7 (c)) either the operator presses the
controller grasping trigger or the end-effector reaches the
region within 12cm from the object.

IV. EXPERIMENTS AND DISCUSSION
We conducted two experiments: Fig. 9 (a) a single object
grasping experiment, and Fig. 9 (b) multiple objects grasping
experiment to evaluate the system’s performance. In the first
experiment, we consider a single object to grasp, comparing
the proposed shared control approach with the proposed VR
device-based direct teleoperation and an LCD screen-based
direct teleoperation. Then, in the second experiment, more
complex multiple objects grasping is considered, comparing
the shared control approach with the direct teleoperation
approach. Before starting each experiment, the experimenter
explained the experimental procedures for each subject.
Each subject is then given time to practice the control of
the teleoperation system. The experiments are carried out
with 10 right-handed subjects (average age 24.4). All study
participants provided informed consent, and the study was
approved by the Ethics Committee of Nagoya University
(No. 22-3).

A. EXPERIMENT #1: SINGLE OBJECT GRASPING
1) EXPERIMENTAL SETUP AND CONDITIONS
In this experiment, only one object is considered for grasping.
The experiment setup is shown in Fig. 9 (a), the target
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FIGURE 8. Motion Curves that show the process of the shared control. The first row shows the positional changes of the human hand
and the robot end-effector along the X-axis, Y-axis, and Z-axis, respectively. The second row shows the angular changes in the roll,
pitch, and yaw components of both the human hand and the robot end-effector, respectively. The colors of the shaded areas indicate
the different states during the shared control process (Figure 7). The light-yellow area shows the initial state where the human is in full
control. The light-green area shows the assistance state where the human trajectory and robot trajectory is blended to reach the target.
The light-blue area indicates the grasping state where the robot is in full control to complete the grasp. The light-pink area indicates
the post-grasping state where the human is in full control to place the object inside the box. Rg indicates the orientation of the target
grasping pose. Note that, to prevent the gripper from touching the object during the assistance state, the pg calculated is shifted by
12cm from the target grasping pose p′g.

FIGURE 9. Grasping experiments. (a) single object grasping, and
(b) multiple objects grasping.

object is a cylinder-shaped bottle (r=6cm, height=20.5cm)
placed at (x=0.74m, y=−0.07m) with respect to the robot
base frame. The experimental task is to teleoperate the robot
end-effector to grasp the object 5 times and place the objects
in the cardboard box. During the experiment, the robot head
angle is fixed to reduce the influence of other factors. The
operators are required to complete the grasping under three
separately given conditions:

LCD: A direct teleoperation, where operators control the
robot end-effector by VR controller, and receive
visual feedback from an LCD screen.

HMD:A direct teleoperation with VR display. The
operators receive visual feedback from the Head
Mounted Display (HMD) which presents stereo
vision for enhanced spatial perception.

FIGURE 10. Comparison of the given visual feedback, the HMD and the
LCD. The above shows the HMD with stereo-image feedback, and the
number is displayed to indicate the user-selected target. The bottom
shows the LCD screen with monocular image feedback.

SC: The proposed shared control framework, in addition
to stereo vision enhanced visual feedback, the oper-
ators receive the grasping assistance for automatic
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alignment to feasible grasping poses and automatic
grasping completion.

The comparison of the visual feedback is shown in
Figure 10. The HMD is capable of displaying stereo vision to
the operator, in which the left and right images are captured
through the stereo camera (Stereo Labs, ZED mini). On the
other hand, the LCD screen displays the monocular image to
the operator.

The force applied to the object is controlled through the
inner position controller provided by the parallel gripper
mounted on the Tiago wrist. When the operator pushes the
trigger of the VR controller to close the gripper, the position
controller controls the position of the two gripper fingers
to close completely without the gap. The maximum force
applied to the object is set to 50N to guarantee the stability of
the grasp. The grasping poses generated by the GPD ensure
force closure grasps will be formed with respect to the target
objects. Furthermore, the target objects considered in the
current experiments are rigid cylinder-shaped objects, with
which we have observed stable grasps.

In the experiment, the grasping procedure is as follows:
(1) the operators are asked to first place their hand in the home
position (Fig. 7 (a)), (2) then move the hand for grasping
and placing (Fig. 7 (b), (c), (d)), and (3) finally move back
to the home position (Fig.7 (a)). The task completion time
and linear trajectories are recorded to compare the operators’
performance under each condition. The experiment starts
when the first time the robot end-effector appears on the
display, and task completion time records the time duration of
each grasping starting from the robot end-effector appearing
on the HMD until the object is placed in the box.

2) RESULTS AND DISCUSSION
To compare different metrics, one-way ANOVA tests are
performed on the data. Fig. 11 (a) shows the box plot of the
task completion time. Note that, ‘‘***’’, ‘‘**’’, and ‘‘*’’ in
the figure represent for p < 0.001, p < 0.01, and p < 0.05,
respectively. The median value of task completion time is
9.39s, 10.94s, and 13.56s for the condition of SC, HMD,
and LCD, respectively. The one-way ANOVA test shows a
statistical significance in the task completion time across
the conditions between SC vs. HMD (p < 0.05), SC vs.
LCD (p < 0.001), and HMD vs. LCD (p < 0.01). The
results (SC vs. HMD, SC vs. LCD) indicate that for a single
object grasping, the proposed shared control framework could
enhance the operator’s performance regarding reduced task
completion time. This also indicates that the grasping task
is made easier by integrating robot automation. The result of
HMD vs. LCD indicates that, by using stereo vision for visual
feedback, operators have the better spatial perception that can
accelerate the process of grasping pose alignment.

Fig. 11 (b) shows the box plot of the linear trajectory of the
human hand. The one-way ANOVA test reveals a statistical
significance in the task linear trajectory across the conditions
between SC vs. HMD (p < 0.001), and SC vs. LCD
(p < 0.001). The median value of linear trajectory is 0.38m,

FIGURE 11. Experimental result of single object grasping. (a) Task
Completion time, and (b) Linear trajectory.

0.49m, and 0.48m for the condition of SC, HMD, and LCD,
respectively. This result indicates that with shared control
human hands travel shorter distances compared with direct
teleoperation. The shorter moving distance could reduce the
workload of the operators during the grasping process. On the
other hand, statistical significance is not observed in the
condition of HMD vs. LCD. Since both condition HMD and
LCD are based on direct teleoperation, where the follower
end-effector constantly tracks operators’ hands, the operators
must reach the full distance towards the targeted object.
This additional movement potentially increases the workload
during teleoperation.

B. EXPERIMENT #2: MULTIPLE OBJECTS GRASPING
1) EXPERIMENTAL SETUP AND CONDITIONS
In this experiment, multiple objects are considered for grasp-
ing. The experiment setup is shown in Fig. 9 (b), the target
objects are cylinder-shaped bottles with different colors: #1
red (r=6.5cm, h=21.5cm), #2 green (r=6.5cm, h=22.5cm),
#3 blue (r=6cm, h=20.5cm), and placed at different places
(x=0.70m, y=0.07m), (x=0.74m, y=−0.07m), (x=0.76m,
y=−0.23m) in the robot base frame, respectively. The
experimental task is to teleoperate the robot end-effector to
grasp the 3 objects and place the objects to the cardboard box.
Each operator is asked to perform the task 3 times. During
the experiment, the robot head is fixed to a predefined angle
to reduce the influence of other factors. The operators are
required to complete the grasping task under two separately
given conditions: (1) SC, and (2) HMD. The details of each
condition are described in experiment #1.

The process to generate grasping poses for different target
objects follows Algorithm 1. The algorithm first takes the
environment point cloud which contains target objects as an
input. It then segments this point cloud to acquire individual
clusters for each object, each representing a partially
observed point cloud of the object. By applying template
matching for each cluster, the compensated object point cloud
which contains positional information can be obtained. The
grasping poses for each object can be acquired by running
the Grasping Pose Detection algorithm to the compensated
point cloud. These poses are filtered by manipulability score
to yield feasible grasping poses.

In the experiment, operators teleoperate the robot to grasp
each object following the procedures in experiment #1. The
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FIGURE 12. Screenshots that show the process of multiple objects grasping with shared control.

FIGURE 13. Experimental result of multiple objects grasping. (a) Task
Completion time, and (b) Linear trajectory.

shared control for grasping each target object is achieved
following the four states described in Section III, subsection
C and depicted in Figure 7. Operators are asked to grasp the
target object following the order of object #1, object #3, and
object #2. After grasping each object, operators return to the
home position and select the next target object by using the
trackpad of the VR controller. The ID of the selected object is
displayed on the HMD. The task completion time is measured
starting from the first time the robot end-effector appears on
the HMD until the last object is placed in the box. The linear
trajectories track the whole grasping process. The screenshots
given by Figure 12 illustrate the process of multiple objects
grasping with shared control.

2) RESULTS AND DISCUSSION
Fig. 13 (a) shows the box plot of the task completion time.
The one-way ANOVA test shows a statistical significance
in the task completion time between the condition of
SC and HMD (p < 0.01). The median value of task
completion time is 46.52s, and 57.54s, for the condition

FIGURE 14. NASA TLX evaluation for multiple objects grasping.

of SC, and HMD, respectively. The statistical significance
between SC and HMD reveals that even for more complex
multiple objects grasping, in addition to the enhanced visual
perception, the proposed shared control can enhance the
grasping performance by means of auto-alignment of the
grasping pose and auto-completion.

Fig. 13 (b) shows the box plot of the linear trajectory of
the human hand. A statistical significance is revealed by the
ANOVA test for the condition of SC and HMD (p < 0.001).
Themedian values are 1.196m, and 1.841m for SC andHMD,
respectively. The result is similar to single object grasping,
by using the proposed shared control, human hands travel
shorter distances and hence decrease the workload. Note
that, none of the subjects have previous experience with
the operation of the teleoperation system. In addition, the
Interquartile Range (IQR) of the completion time is 8.92s,
and 19.64s for SC and HMD, respectively. The IQR of the
linear trajectories is 0.420m, and 0.513m for SC and HMD,
respectively. The IQR of the box plots suggests that the
data of the shared control condition has less dispersion. This
could imply that despite the operator’s experience, the shared
control approach can assist the operators to execute the task
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in a more stable way. Moreover, the NASA TLX subjective
evaluation (Fig. 14) shows less mental demand, physical
demand, effort, and frustration during the experiment #2.
This result further verifies the previous results which indicate
the reduced workload when using the proposed shared
control. As a result, the subjective measurement of the shared
control’s performance is greater than the direct teleoperation.

V. CONCLUSION
This paper proposes a shared control framework for grasping
assistance in teleoperation. The presented shared control
framework is built upon an intuitive VR device-based direct
teleoperation system. In which, human hand and head
motions are captured by HTC VR devices, and then mapped
to an anthropomorphous robotic manipulator (Pal Robotics,
Tiago) through an inverse kinematics solver with null-space
resolution.

In the shared control framework, a template matching-
based point cloud compensation is performed for multi-angle
grasping pose generation. Then a joint limit penalized manip-
ulability analysis is applied to the generated grasping poses to
acquire the most feasible pose candidates. By applying for the
object point cloud compensation, the assistive area with high
manipulability is increased about 124%. The shared control
is then achieved by dynamic authority adjustment-based
trajectory blending. Two grasping experiments are carried
out for system evaluation. For both experiments, enhanced
performances are observed by means of faster task comple-
tion time, and reduced linear trajectories. The NASA TLX
subjective evaluation also showed a reduced workload for
multiple object-grasping tasks.

The current point cloud compensation is targeted for sym-
metrically shaped objects with controlled lighting conditions.
In the future to further improve the system capability, the
point cloud compensation for the asymmetrically shaped
object given more complex lighting conditions and back-
grounds is going to be carried out. The future approach will
be guided by methodologies reported by computer vision
researchers [38], [39], [40]. Additionally, the use of tactile
sensing technology can be explored in the future to control
the force applied to the objects and enable the stable grasping
of deformable objects or complex shaped objects such as
fruits. Human comfortableness is also an important factor in
designing an effective teleoperation system, and this aspect
will be explored in the future. The collision avoidancemethod
can be integrated into the current system for task execution
in a more complex and cluttered environment. In addition,
the assistance in the post-grasping phase such as placing an
object in the desired location, or handover an object to a
human can be explored.
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