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ABSTRACT The scene text segmentation task provides a wide range of practical applications. However,
the number of images in the available datasets for scene text segmentation is not large enough to effectively
train deep learning-based models, leading to limited performance. To solve this problem, we employ paired
data generation to secure sufficient data samples for text segmentation via Text Image-conditional GANs.
Furthermore, existing models implicitly model text attributes such as size, layout, font, and structure, which
hinders their performance. To remedy this, we propose a Multi-task Cascade Transformer network that
explicitly learns these attributes using large volumes of generated synthetic data. The transformer-based
network includes two auxiliary tasks and one main task for text segmentation. The auxiliary tasks help the
network learn text regions to focus on, as well as the structure of the text through different words and fonts,
to support the main task. To bridge the gap between different datasets, we train the proposed network on
paired synthetic data before fine-tuning it on real data. Our experiments on publicly available scene text

segmentation datasets show that our method outperforms existing methods.

INDEX TERMS Scene text segmentation, paired data synthesis, GANSs, transformer, multi-task cascade.

I. INTRODUCTION

Scene text segmentation is a crucial task in computer vision
that involves making precise predictions for the presence of
text in a scene at the pixel level. This task is vital for various
text-related applications, such as text recognition, font style
transfer, text image editing, and scene text removal [3]. Effec-
tive text segmentation approaches are necessary to extract
textual information accurately from natural images in such
applications. However, despite significant progress in recent
years, text segmentation in real-world scenarios remains a
significant challenge due to the unconstrained nature of the
scene environment. Such environments typically feature text
in various sizes, colours, fonts, and spatial layouts, along
with uncontrolled backgrounds. Additionally, the lack of
annotated data in this task, as pointed out in [3] and [8],
further exacerbates this problem. Table 1 demonstrates that
the currently available human-annotated datasets suffer from
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limitations in terms of the volume of data for pixel-level text
segmentation.

CNN-based methods have made significant strides in
dealing with data scarcity. Several approaches have been
proposed to address this issue, including the use of syn-
thetic word datasets, which have been successful in various
works, such as [9]. For example, in [10], Tang and Wu used
a similar generation process to produce a more extensive
collection of synthetic word images. They then employed a
supervised-learning model to segment text in word images,
rather than whole scene text images. Other techniques, such
as those introduced in [11] and [12], have employed deep
learning-based methods to generate pixel-level supervisions.
The resulting annotations were then utilized to train deep
convolutional neural networks for semantic segmentation.
However, the quality of machine-generated ground truth data
can be poor, as highlighted in [3] and [8], which can limit
the final results. Our proposed method differs from the afore-
mentioned approach in that it utilizes the generated ground
truth data from the text image generator to generate a realistic
scene text image that adheres to this generated ground truth.
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TABLE 1. Statistical list of common human-annotated scene text datasets. The ground truth for pixel-level text segmentation occupies a very small ratio
compared to the annotation of detection and recognition in available datasets. The “/” and “x” markers indicate that the corresponding annotation is

present and absent in the dataset.

Pixel-level
#Images Word Word
Dataset (traing/val/test) Detection | Recognition g‘ext . Text Type
egmentation

ICDAR13 FST [1] 229/0/233 v v v Scene
Total-Text [2] 1255/0/300 v v v Scene
TextSeg [3] 2646/340/1038 v v v Scene+Design
COCO-Text [4] 43686/10000/10000 | v v X Scene
ICDAR MLT 2017 [5] | 7200/1800/9000 v v X Scene
ICDAR MLT 2019 [6] | 10000/0/10000 v v X Scene
ICDAR Art 2019 [7] 5603/0/4563 v v X Scene

This ensures that the quality of the ground truth data used
for training is of high standard, as depicted in Figure 1.
Previous research has explored the use of weak labels to
improve text segmentation. For instance, Wang et al. [8] uti-
lized polygon-level text masks that were extracted from text
detection annotations as weak labels to aid in text segmen-
tation. Meanwhile, Ren et al. [13] employed the annotation
of text recognition to further support the text segmentation
process. In a recent publication [3], a dataset containing
human-annotated text segmentation ground truth was intro-
duced. However, the dataset is limited by its small size and
by the fact that only a portion of the images are scene text,
while the rest are comprised of design text images.

Based on the preliminary results in [14], we expand the
paired data generation process to enhance diversity in terms
of words and fonts. Our approach involves leveraging Text
Image-conditional GANSs to tackle the challenges associated
with scene text segmentation by generating a wide range
of realistic text images. The proposed GANs facilitate the
generation of paired data by synthesizing scene text images
based on diverse ground-truth images obtained from the Text
Image Generator. By producing scene text images that follow
different ground-truth images, our GANs effectively increase
the diversity of generated texts, resulting in a naturally var-
ied set of paired data. This means that with just one given
scene text image and different text images, our GANs can
generate various paired data for the text segmentation task,
as demonstrated in Figure 1. Additionally, we propose the
Multi-task Cascade Transformer to overcome the challenges
in text segmentation and effectively learn the generated data.
To this end, we utilize a transformer-based backbone [15]
for the shared encoder, which benefits from being trained
on large amounts of our synthetic data. The cascade decoder
consists of three stages that are dedicated to tasks involving
polygon-level text region, text skeleton, and pixel-level text.
The input for the later stages comes from the earlier stage
outputs. Predicting the polygon-level text region helps the
main task know which parts of the image to pay attention to.
The synthetic data used in the experiment comprise scene text
images with varying fonts and word versions. To improve text
segmentation, we employ the task of predicting text skeletons
to encourage the network to learn the text structure explicitly.
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This approach is inspired by the fact that text skeletons can
assist the network in better understanding the text structure,
as mentioned in [16].

We propose using multi-level features from the encoder to
each branch, aiming to leverage multiple knowledge repre-
sentations (MKR) for improved performance and robustness
in text segmentation. The concept of MKR is supported
by previous research [17], which highlights the benefits of
combining multiple sources of information to enhance fea-
ture representation. By incorporating MKR into our model,
we harness the power of diverse knowledge representations
to capture better and understand the complexities of the text.
This approach helps us achieve more comprehensive and
accurate conceptual modelling, leading to superior perfor-
mance in text segmentation tasks.

Our motivation for developing the Multi-task Cascade
Transformer is to address the specific challenges of text seg-
mentation, which differ from those of object segmentation.
Text possesses unique properties, such as font, shape, size,
layout, and location, that require a specialized model for
accurate segmentation. We observe limitations in the baseline
model, originally designed for object segmentation when
applied to text segmentation.

To overcome these limitations, we extend the baseline
model to focus on text properties, resulting in superior per-
formance. By leveraging a transformer-based model, we take
advantage of its effectiveness in handling large volumes of
synthesized data, surpassing the performance of previous
CNN-based approaches in scene text segmentation tasks. Our
innovative decoder module plays a crucial role in integrating
different tasks and knowledge representations, prioritizing
text region location and capturing the unique structure of the
text. These contributions establish our paper as pioneering
work in transformer-based methods for text segmentation,
addressing the unique challenges of the task and achieving
improved performance compared to existing approaches.

In summary, this paper’s key contributions are divided
into three categories: (1) A synthetic scene text segmentation
dataset having different font and word versions is constructed
with the help of our proposed Text Image Generator and Text
Image-conditional GANs. The data generation process does
not incur labour-intensive costs, yet compared to the existing
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FIGURE 1. Results of paired synthetic data on the training set. The
generated text images (a) from the proposed text image generator have
different words and fonts. The original image is from the public scene
text image dataset. With one given original image and the different text
images, the proposed GANs can generate different scene text images
naturally (b). As a result, we have new paired data (scene text image and
text segmentation ground truth) for the scene text segmentation task.

datasets, the dataset provides high-quality and high-diversity
segmentation ground truth; (2) We propose a scene text seg-
mentation network, called Multi-task Cascade Transformer,
to explicitly learn distinctive text attributes. We design two
auxiliary tasks and one main task for text segmentation. The
functions of the two auxiliary tasks are to learn the text region
to pay attention to and the structure of the text through various
words and their fonts, and then they support the main task;
(3) We perform extensive experiments on three text segmen-
tation benchmarks, and show the superior performance of the
proposed method compared to current models.
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Il. RELATED WORKS
Traditional approaches to scene text segmentation. Prior

to the advent of deep learning, scene text segmenta-
tion was extensively studied using conventional techniques.
In [18], Yang et al. proposed a modified K-means clustering
algorithm to generate initial text region candidates. These
candidates were subsequently verified utilizing a Markov
Random Field model that incorporated collinearity weight,
enabling better alignment of the detected text regions. Build-
ing upon character-level properties, Zhang and Kasturi [19]
introduced a text extraction approach that employed stroke
edge similarity and link energy to group individual characters
into coherent text objects. In [20], Mishra et al. focused on
addressing the binarization problem, formulating it within
a Markov Random Field framework. They devised an iter-
ative graph cut scheme to minimize an energy function, thus
enhancing the robustness of the segmentation process to vari-
ations in colour. Additionally, Lafferty et al. [21] presented
a framework utilizing Conditional Random Fields (CRFs)
for segmenting and labelling sequence data. This approach
offered advantages over hidden Markov models by relaxing
independence assumptions and achieving more accurate text
segmentation results. These works demonstrate a comprehen-
sive understanding of the conventional techniques employed
in scene text segmentation.

Deep learning-based scene text segmentation. CNNs have
recently shown promising results in a variety of applications
that include object classification [22], binarization [23], and
detection [24]. Furthermore, pixel-level scene text segmen-
tation has attracted the interest of the scientific community.
However, in the early stage, only two public datasets, i.e.,
ICDARI13-FST [1] and Total-Text [2], contain less than 3k
pixel-level annotated images that do not meet large-scale
standards for the deep learning-based model. Therefore, the
researchers employed the extra annotation of text detection
to support pixel-level scene text segmentation. A CNN-based
approach was proposed in [10], with three stages: detecting,
segmenting, and filtering candidate text regions. In [11]
and [12], Bonechi et al. proposed a weakly supervised method
by generating the pixel-level annotations for COCO-Text [4]
and MLT dataset [5], resulting in two new datasets, COCO-
TS and MLT-S. Then, these two datasets were employed
to train a text segmentation network. Because the ground
truth of the proposed dataset is machine-generated, its quality
is very low compared to that of human annotation. In [8],
Wang et al. proposed a dual-task mutually guided network,
which comprises a common encoder, but two decoders for
two tasks: the pixel-level and polygon-level masks. However,
the method did not take advantage of the structural informa-
tion of the text, but only relied on the text area, leading to
missing parts of the strokes of the scene text segmentation
results when the strokes are ambiguous. In [3], Xu et al.
proposed a new text segmentation dataset that includes only
part of the scene text images and the remaining part of the
design text source. Additionally, they also presented a Text
Refinement Network that could be fully supervised-trained
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with available datasets for text segmentation. Recently, the
ARM-Net method proposed in [13] improved the accuracy
of scene text segmentation by using both implicit low-level
text appearance information and higher-level text semantic
information.

Generative adversarial networks (GANs). GANs aims to
generate realistic-looking images by training a generator to
produce synthetic samples that resemble real images. The
synthetic samples are evaluated by a discriminator network
that assesses their similarity to real images. GANs enable a
wide range of applications, such as image-to-image transla-
tion [25], [26], de-raining [27], [28], inpainting [29], [30],
and editing text [16]. The image-to-image translation is the
mapping task from image to image. Under the given con-
ditions, the model in [31] generated the required images.
The modified model can generate new images with the con-
straints of the given text image. However, to produce an image
with a complex scene background, the generated synthetic
image was far from real-world scene text images. De-raining
aims to recover clean image content by eliminating rain
components in scene images without artefacts. Inpainting
is the task of filling in missing pixels in an image such
that the completed image looks realistic and preserves the
original context. The missing region is empty, without any
prior condition inside. Editing text in natural images replaces
words in the original image with different ones that maintain
a natural-looking appearance. In the existing papers [16],
the style of generated text followed the original text, while
its content followed the given text. Therefore, the gener-
ated scene text image and the given text image were not
paired. Motivated by previous works, we introduce the Text
Image-conditional GANs that generate paired data, realistic
scene text image and corresponding text segmentation ground
truth for the scene text segmentation task. Paired data gen-
eration in the scene text image has never been tried before,
and to the best of our knowledge, this is the first attempt in
the literature. In [32], Zhan et al. introduced a multi-modal
spatial learning technique that transforms a source-domain
image into multiple images with different spatial views,
resembling the target domain. While this model produces
realistic scene text images, it cannot provide ground truth
for pixel-level text segmentation. The papers [33] and [34]
presented image synthesis techniques for generating anno-
tated scene text images to train robust text detection and
recognition models. These methods employed a geometry
synthesizer to learn the contextual geometries of background
images and randomly placed foreground objects, including
text, within them. However, this random placement may lead
to text appearing in unreasonable positions within the back-
ground. Additionally, these papers used background images
that already contained original text, lacking ground truth for
text segmentation. Consequently, although these methods can
offer ground truth for synthetic text segmentation, they cannot
provide ground truth for real text segmentation, limiting their
suitability for generating paired synthetic data for scene text
segmentation. In contrast, our proposed method realistically
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replaces the original text within background images with syn-
thetic text, ensuring the availability of corresponding ground
truth for text segmentation. Notably, our GAN is the first
to specifically generate synthetic data for pixel-level text
segmentation, setting it apart from previous works that mainly
focus on data generation for text detection and recogni-
tion tasks. By emphasizing these distinctions, we emphasize
the unique contributions of our proposed synthesis method,
addressing the limitations of prior studies and presenting a
novel approach for generating synthetic data for pixel-level
text segmentation.

Transformers for vision. The Transformer concept is orig-
inally designed for natural language sequence processing.
Transformers are now state-of-the-art in many Natural Lan-
guage Processing (NLP) tasks. Self-attention mechanisms
are used in these models, which capture long-range depen-
dencies between tokens (words) in a sentence. Transformers
are also well-suited to parallelization, making training on
large datasets easier. The success of transformers in NLP has
inspired various approaches in computer vision, including
handwriting text recognition [35], image captioning [36],
and human action recognition [37]. The Vision Transformer
(ViT) [38] presented a convolution-free transformer for image
classification that processes input images as token patch
sequences. SegFormer [15] has a unique transformer encoder
that can output features at different scales. It does not require
positional encoding, avoiding the requirement for interpola-
tion of positional codes, which results in worse performance
when the testing resolution differs from the training resolu-
tion. Here, our approach adapts the SegFormer backbone to
model long-range dependencies.

Ill. PAIRED DATA SYNTHESIS AND SCENE TEXT
SEGMENTATION NETWORK

The overview of the proposed framework is composed of the
text image generator and two deep learning-based networks:
Text Image Generator, Text Image-conditional GANs, and
Multi-task Cascade Transformer. Given the output of the Text
Image Generator, polygon-level masks of text and original
scene text image, Text Image-conditional GANs attempts to
create a new version of the scene text image by incorporating
the original scene background with various text foregrounds
naturally. Then, the Multi-task Cascade Transformer per-
forms text segmentation from the newly generated scene text
image, fully supervised by the new corresponding ground
truth. The overview framework is depicted in Figure 2.

A. PAIRED DATA SYNTHESIS

1) TEXT IMAGE GENERATOR

Text Image Generator, as in Figure 3, is based on a
non-parametric algorithm. This takes text string, bounding
polygon coordinates of words, and randomly selected fonts as
input. We generate text images from text strings by rendering
text based on the library Matplotlib [39]. Their locations
are aligned along the centre line of the bounding polygon.
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FIGURE 2. The overview of the proposed framework. This consists of two deep learning networks: Text
Image-conditional GANs, and Multi-task Cascade Transformers. In the phase for generating synthetic data, the
GANs takes the output of the Text Image Generator, together with polygon-level text masks and original image
as inputs to generate realistic scene text image. As a result, the generated paired data includes text images as
segmentation ground truths and synthetic scene text images. This is extra training data for the Multi-task
Cascade Transformer in the scene text segmentation task. In the testing phase, the trained segmentation
network applies to only the original images of testing data, independent of training and validation data,

to generate the model’s final output.

Their sizes are limited by text regions. We can choose text
strings randomly. However, for the content of the text to be
contextual, the text string is taken from the text recognition
annotations of the dataset or their semantically similar words.
We search similar words for an input word based on cosine
similarities that are computed between their corresponding
word vectors. The word vectors used in this process are
obtained from the pre-trained Glove model [40]. For example,
similar words to “hotel” are “hostel”, “motel”, “lodging”,
“house”, etc. Therefore, the different versions of text images
are based on the original word and semantically similar
words, along with their randomly selected fonts. If the lan-
guage is not English, the word is randomly chosen in the
Glove library as long as the length of the word is equal to
the original one.

2) TEXT IMAGE-CONDITIONAL GANS

In the phase for generating synthetic images, our goal is to
generate realistic paired data, including scene text image, and
corresponding text segmentation ground truth.

In the training process, we pre-train the proposed GANs
following the inpainting-based self-supervision approach to
the collection of large-scale public datasets that have the
annotation for text detection but do not have the ground truth
for pixel-level text segmentation. Then, we employ public
datasets having scene text image R and original ground truth
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for text segmentation image S, along with the polygon-level
text mask M (1 for the text region, O for the background)
extracted from text detection annotation to feed into GANS.
The masked image containing text in the polygon-level mask
is denoted R ©® (1 — M) + S. The mask M is stacked with
the masked image containing text, leading to the input for
GANs R = stack(R ©® (1 — M) + S, M). We employ a
feed-forward network Gy (.). The training is performed on the
masked image containing original text in polygon-level mask
R = stack(R ® (1 — M) + S, M) and real image R. The
predicted image is R = Gy(R)). Figure 4 shows the proposed
Text Image-conditional GANSs in the training phase.

In the testing process, we employ the synthetic text image
produced by the text image generator as the new segmentation
ground truth S’. We replace the ground truth S with syn-
thetic ground truth S’. Therefore, the testing is performed on
the masked image containing synthetic text in polygon-level
mask R” = stack(RO(1—M)+S’, M), and produces realistic
image R = Gy(R").

We employ a Fast Fourier convolution-based network [42]
for the generator network Gy(.). Fast Fourier convolutions
(FFCs) is based on a channel-wise fast Fourier transform [43],
and features an image-wide receptive field. Because of
the image-wide receptive field, which is critical for high-
resolution images, FFCs enable the generator to account for
the global context from the early layers. Furthermore, FFCs
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are highly suited to capturing periodic structures [42] found in
artificial environments, such as signs, doors, walls, etc. There
could be many reasonable fillings to the polygon-level mask
containing text.

Adversarial loss. We use adversarial objective L,g, [44] to
generate natural-looking text region details. A discriminator
D, (.) is defined to distinguish between real and fake patches,
as in Figure 5. Patches that overlap with text regions are
labelled as fake.

Lp = —Eg[logD,(R)] — Eg mllogD,(R) © (1 — M)]
— Eg mllog(1 — Dy(R)) © M] (1
LG = —ErumllogD,(R)] 2
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Feature matching loss Lg, [45] is proven to stabilize
training, while in some circumstances, also improving per-
formance. High receptive field perceptual loss Ly [42]
is in charge of the supervised signal and global structural
consistency. Therefore, we combine the loss functions for the
loss of the proposed GANSs:

Lean = o Laay + o2 Lpppr + 3Ly 4
where a1, o and a3 are weight parameters

B. SCENE TEXT SEGMENTATION NETWORK

With the generated paired data in the previous phase,
we propose the Multi-task Cascade Transformer network
for text image segmentation. Compared with the traditional
CNN-based methods, transformers have a better ability to
understand shape and geometry [46]. In addition, the local
nature of convolutional filters restricts access to global infor-
mation [47], which is critical for segmentation because
the labelling of local patches is frequently dependent on
the global image context. Furthermore, Transformer-based
models benefit from training on large data [38] that is
available from our synthetic data. Therefore, we employ
a transformer-based backbone for the shared encoder.
We choose the backbone based on [15] to avoid the inter-
polation of positional codes leading to reduced performance
when the testing image resolution varies from the training
one. The cascade decoder has three stages that address tasks:
polygon-level text region, text skeleton, and pixel-level text.
However, in our method, unlike many multi-task learning
applications, a later stage is conditional on the outputs of an
earlier stage, resulting in a causal cascade, as in Figure 6.
The polygon-level masks guide pixel-level text segmentation,
providing prior knowledge to help the network better local-
ize text regions and where to pay more attention. Because
the synthetic data comprises many scene text images with
different text versions, we use the text diversity to force the
network to learn the text structure. Specifically, we employ
text skeletons to help the network better understand the text
structure explicitly [16], leading to improved results.
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truth of pixel-level text segmentation.

1) SHARED TRANSFORMER ENCODER

Firstly, we develop a model based on a transformer. The
encoder uses image patches as inputs and takes the trans-
former to propagate global contexts among all patches,
modelling long-range dependencies to understand the whole
image generally. Specifically, we utilize a transformer-based
backbone [15] for the shared encoder that benefits from
training on large data of our synthetic data. Unlike ViT [38],
which can only build a single-resolution feature map, the
purpose of this module is to construct CNN-like multi-
level features from an input image. These features give
high-resolution coarse features as well as low-resolution fine-
grained features, which help semantic segmentation perform
better. Furthermore, it does not require positional encoding,
avoiding the need for positional code interpolation, which
leads to poor performance when the image resolutions in
testing and training differ.

2) MULTI-TASK CASCADE DECODER

To adapt the transformer-based encoder to the text segmenta-
tion task, we design a cascade decoder for text segmentation
on top of four multi-scale feature maps generated by differ-
ent four stages. Among these feature maps, high-resolution
coarse features in the first layer give detailed appearance
information of text, and low-resolution fine-grained features
in the later layers provide high-level features.

The multi-task cascade transformer uses a lightweight
decoder comprised of MLP layers, eliminating the
compute-complex components found in other CNN-based
methods. Our hierarchical Transformer encoder has a bigger
effective receptive field than typical CNN encoders. It is a
crucial factor in enabling such a straightforward decoder.
CNN’s limited receptive field necessitates the decoder to
resort to context modules, which expand the receptive field
but are inevitably heavy. Our decoder design takes advantage
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of Transformers’ non-local attention and results in a larger
receptive field while remaining simple. However, due to
the small receptive field, the same decoder design does not
operate well on CNN backbones. Furthermore, Using the
non-local attention solely from the final layer is insufficient
for good results. Our decoder design takes advantage of
features extracted from the transformer encoder that yields
both highly local and non-local attention simultaneously.
Our MLP decoder can unify them to provide complemen-
tary and effective representations with fewer parameters.
It is another important factor that influenced our decoder
design.

The cascade decoder has three stages that address tasks:
polygon-level text mask, text skeleton, and pixel-level text.
The input of the later stage is from the outputs of an earlier
stage. The task for predicting the polygon-level text mask
provides information on where to pay more attention to the
main task. The synthetic data comprises scene text images
with different text fonts and word versions. We use the task
to predict text skeletons to force the network to learn the
text structure, because text skeletons can help the network
better understand the text structure explicitly [16], resulting
in improved text segmentation. Specifically, multi-level fea-
tures from the encoder go through each branch, including
Fusion Module. Multi-scale features are fed to the Fusion
Module that unifies the channel dimension by MLP layer
before up-sampling and concatenating together, then fusing
the concatenated features by MLP layer. The fused features in
the task for predicting polygon-level text mask provide other
tasks for attention to text region. The fused features in the
task for predicting text skeleton provide the main task to get
text structure information. The similarity aggregation module
(SAM) [41] injects detailed text appearance and structural
features into the fused feature in the main task. Finally,
another MLP layer in each branch takes the fused feature to
predict the corresponding segmentation.
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FIGURE 7. Generated paired image examples from the proposed Text Image-conditional GANs. (a), (b), (c), (d), (e) and (f) show the generated paired
images based on scene background from ICDAR13 FST, Total-Text, TextSeg, ICDAR MLT 2017, ICDAR MLT 2019, and ICDAR Art 2019 datasets, respectively.
The first, second, and third columns of each are original images, synthetic images, and generated ground truths, respectively.

3) LOSS FUNCTION

Ground truth of polygon-level text mask (poly_gt) is gener-
ated from provided word detection annotation by the library
OpenCV [50].

The ground truth of the text skeleton (ske_gt) is extracted
from the ground truth of pixel-level text segmentation
(seg_gt) by the library OpenCV.

poly_pred, ske_pred and seg_pred indicate the result of
3 tasks, polygon-level text mask, text skeleton, and pixel-level
text segmentation, respectively.

Each task involves a loss term. Because a later task’s loss
relies on the output of an earlier task, the loss terms are
not independent. We train the proposed Multi-task Cascade
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Transformer with a unified loss function. This can be
formulated:

L = B1Lpoty + B2Lske + B3Lseg 5
Lyoty = BCE(poly_pred, poly_gt) (6)
L, = BCE((ske_pred, ske_gt) @)
Lgeq = BCE(seg_pred, seg_gt) (8)

where, Lpojy, Lske, and Ly are loss functions for polygon-
level segmentation, text skeleton prediction, and pixel-level
segmentation, respectively. All of them are only based on
modified binary cross-entropy (BCE) loss. Unlike the regular
BCE loss function [51], which considers all pixels identically,
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TABLE 2. Results on the F-score(Black) and loU(Blue) to ICDAR13 FST, Total-Text and TextSeg. The “-” marker indicates that the result is not reported in

the corresponding paper.

Method ICDAR13 FST | Total Text TextSeg Params
PSPNet [12] 0.804/- 0.753/- - 65.1M
SMANet [11] 0.858/- 0.781/- - -

DeeplabV3+ [48] 0.806/0.693 0.815/0.739 | 0.908/0.841 62.7M
Wang et al. [8] 0.745/- 0.805/- - -
HRNetV2-W48 + OCR [3], [49] 0.830/0.725 0.832/0.762 | 0.918/0.860 70.5M
ARMNet [13] 0.851/- 0.854/- 0.927/- -
TexRNet [3] 0.850/0.734 0.848/0.785 | 0.924/0.868 67.1M
TexRNet [3] (S.D.) 0.856/0.741 0.855/0.788 | 0.929/0.869 67.1M
Ours 0.846/0.732 0.851/0.779 | 0.916/0.863 66.9M
Ours (S.D.) 0.870/0.745 0.862/0.786 | 0.932/0.877 66.9M

"S.D." denotes using our synthetic data in the model. For instance, referring to "Ours (S.D.)" signifies that our proposed model incorporates

our synthetic data.

the modified BCE takes each pixel’s importance into account
and gives higher weights to hard pixels. 81, B> and B3 are
weight parameters.

IV. EXPERIMENTAL RESULTS

This section introduces the experimental datasets, implemen-
tation details, and experimental results. Then, we compare the
proposed text segmentation model to state-of-the-art meth-
ods.

A. DATASETS
We collect publicly available datasets. They are:

ICDARI13 FST [1]: This includes scene text images. It only
contains 229 training and 233 testing images with ground
truth for text segmentation, recognition, and detection. The
bounding box for each word is a rectangle.

Total-Text [2]: This contains 1255 training and 300 test-
ing scene text images, and has multi-oriented and curved
texts. The word-bounding polygons are available, along with
ground truth for text segmentation and recognition.

TextSeg [3]: TextSeg consists of 4024 text images, includ-
ing scene text and design text. It is split into training,
validation, and testing sets with (2646, 340, and 1038)
images, respectively. The ground truth for text segmentation,
recognition and detection is available.

We utilize a self-supervised inpainting technique to
pre-train GANs on a large-scale dataset that has annotations
for text detection but lacks ground truth for pixel-level text
segmentation. To achieve this, we combine four widely used
datasets in the field, namely Coco-text, ICDAR MLTS 17,
ICDAR MLT 19, and ICDAR Art 19, which provide a diverse
range of text data for the pre-training process.

Coco-text [4]: This is the largest scene text dataset, with
63686 images. It is split into training, validation, and testing
sets with (43686, 10000, and 10000) images, respectively.
Although annotation for text recognition and detection in the
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training and validation set is available, it does not have the
ground truth for text segmentation.

ICDAR MLT 2017 [5]: There are 18000 images in total,
which are divided into three sets: training, validation, and
testing, each comprising 7200, 1800, and 9000 images. The
annotation for text recognition and detection in the training
and validation set is available.

ICDAR MLT 2019 [6]: This has a total of 20000 images.
There are 10000 and 10000 images in each training and
testing set, respectively. The annotation for text recognition
and detection in the training set is provided.

ICDAR Art 2019 [7]: This consists of 10166 images. It is
split into training and testing sets with 5603 and 4563 images,
respectively. In the training set, there is an annotation for text
recognition and detection.

B. TRAINING

We pre-train the proposed GANSs following the inpainting-
based self-supervision approach on collected common
large-scale datasets that have the annotation for text detec-
tion but do not have the ground truth for pixel-level text
segmentation, such as Coco-text, ICDAR MLTS 17, ICDAR
MLT 19, and ICDAR Art 19. We use a polygon-level text
mask extracted from detection annotation. This is trained
on low-resolution 256 x 256 patches (1M iterations). The
patches are cropped as long as they overlap the text regions.
Then, we train the GANs on only the training set of
ICDAR13 FST, Total-Text, and TextSeg datasets to ensure
fairness. We employ the Adam optimizer to train our network
with the initial learning rate of 0.001 and 0.0001 for the
generator and discriminator of GANSs, respectively (600K
iterations). We take & = 10, ap = 30 and a3 = 80 for GANs
throughout the experiments. The model is trained with a batch
size of 24. As aresult, synthetic paired data for scene text seg-
mentation is generated by the trained Text Image-conditional
GANSs. The scene backgrounds of original images from the
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TABLE 3. Ablation study of the proposed model on TextSeg.

Model F-score | IoU

1.Baseline 0.905 0.843
2.Basline+Polygon-level Segmentation 0.912 0.856
3.Basline+Polygon-level Segmentation+Text Skeleton Prediction 0.916 0.863
4.Basline+Polygon-level Segmentation+Text Skeleton Prediction+Synthetic data | 0.932 0.877
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FIGURE 8. Text segmentation results on ICDAR13 FST. We provide
F1-score(Black) and loU(Blue) for individual results.

Ground truth

TABLE 4. Improvement by the predicted mask for text spotting.

Method ICDAR13 ICDAR15 Total Text

DeepSolo [52] 90.1 76.9 86.2

DeepSolo(predicted Mask) | 91.4 (+1.3) | 78.1 (+1.2) | 87.8 (+1.6)

training sets of datasets (ICDAR13 FST, Total-Text, TextSeg,
ICDAR MLT 2017, ICDAR MLT 2019, and ICDAR Art
2019) are employed as in Figure 7. Because we use the testing
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FIGURE 9. Text segmentation results on Total-Text. We provide
F1-score(Black) and loU(Blue) for individual results.

set of three datasets (ICDAR13 FST, Total-Text, and TextSeg)
for evaluation in scene text segmentation, we generate five
different pairs of images, as in Figure 1, that include the scene
backgrounds of the training set of ICDAR13 FST, Total-Text,
and TextSeg to reduce imbalanced data and domain gaps
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between different datasets. Therefore, our generated data has
a total of 43453 images.

In the next phase, the Multi-task Cascade Transformer ini-
tializes weight on ImageNet-1K [53]. Then, Multi-task Cas-
cade Transformer trains on the synthetic paired data before
fine-tuning alternatively on the training set of ICDAR13 FST,
Total-Text and TextSeg that have human-annotated ground
truth for pixel-level text segmentation. We use AdamW opti-
mizer with an initial learning rate of 5.0 x 107 for training on
synthetic data (100K iterations) and 5.0 x 10~ for fine-tuning
alternatively on ICDAR13 FST, Total-Text and TextSeg (20K
iterations). The polynomial learning rate scheduler is applied.
B1 = 0.5, B = 0.5, and B3 = 1 are chosen throughout
the experiments. We utilize different data augmentation for
training. The images are subjected to several transformations

VOLUME 11, 2023

prior to being input into the neural network. These transfor-
mations include random resizing within a ratio range of 0.5 to
2.0, random horizontal flipping, and random cropping to a
resolution of 512 x 512 pixels.

Our network is implemented based on the public frame-
work PyTorch 1.7.1 and runs on a computer equipped with an
Intel(R) Core(TM) i9-10900 CPU @ 2.80GHz. We utilize 2 x
GPU RTX 3090 (with 24GB memory) for our experiments.
We employ F-score and IOU measurement on foreground
pixels in the same fashion to [3] for our evaluation metrics.

C. RESULTS AND DISCUSSION

Table 2 compares the results between our approach and state-
of-the-art methods. Figures 8, 9, & 10 show some qualitative
results on ICDAR13 FST, Total-Text and TextSeg, respec-
tively. When we apply synthetic data to the previous method
and our multi-task cascade transformer, the results improve.
We apply our synthetic data to TextRNet. It increases by
0.6 % for ICDAR13 FST, 0.7 % for Total Text and 0.5 %
for Texseg. This increase is moderate and reasonable. There-
fore, the impact of our synthetic data is effective but not
limited to TextRNet based on CNNs. However, our synthetic
data is fully exploited when applying it to transformer-based
models because transformers work effectively when training
with large-scale data [38] that is available with our syn-
thetic data. More precisely, when our synthetic data is used
with the multi-task cascade transformer, there is a notable
improvement in performance, with an increase of 2.4% for
ICDARI13 FST, 1.1% for Total Text, and 1.6% for TextSeg,
compared to the model that does not use synthetic data. So,
this proves the effectiveness of our synthetic data. As a result,
our proposed method gets the new state-of-the-art method.
It is because of the realistic synthetic data and the effectively
designed Multi-task Cascade Transformer that benefits from
training on large data of our synthetic data and has the ability
to explicitly learn distinctive text attributes for supporting text
segmentation tasks.

Our result shows a significant increase of 1.9% for the
F-score compared to the ARMNet [13] for the testing data of
the ICDARI13 FST dataset. This indicates that the synthetic
data supports the scene text segmentation network to learn
the small dataset effectively (229 original training images)
because the training set of the ICDAR13 FST dataset partici-
pated in generating synthetic data whose distribution is close
to the testing set of the ICDAR13 FST dataset, compared
to other datasets. The generated images are based on the
ICDAR13 FST dataset, but the approaches in [4] and [11] use
other datasets to generate weak ground truth. In [3], the result
is relatively high because the model uses extra bounding
boxes and recognition of characters for training. If we only
utilize the combination of datasets (ICDAR13 FST, Total-
Text and TextSeg) without synthetic data for training the
proposed Multi-task Cascade Transformer before fine-tuning
the selected dataset, it shows highly competitive results to
the other methods. However, its capability can be thoroughly
exploited when it is trained on synthetic data and then
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FIGURE 12. Overview of our text spotting network.

fine-tuned alternatively on the training set of ICDAR13 FST,
Total-Text and TextSeg. By combining them, the result from
our approach outperforms existing methods. While the results
of the existing text segmentation methods are reported in the
corresponding papers, we train and test the DeeplabV3+- [48]
using public source code to get the result. Furthermore,
We also use the official public source code of TextRNet
to produce the result. TexRNet (with our synthetic data) is
trained on our synthetic data and fine-tuned alternatively on
the training set of ICDAR13 FST, Total-Text and TextSeg.
Then, the trained TexRNet is tested on the testing set of the
real dataset to get the final results.

To ensure fair comparisons, we have provided the model
parameter numbers in the last column of Table 2. Our model
design focuses on efficiency by utilizing a backbone [15] that
delivers simple, efficient, and effective output features for
semantic segmentation. Additionally, our decoders are specif-
ically tailored to handle the distinct characteristics of text
while maintaining a lightweight and efficient architecture.
The parameter numbers of previous models were calculated
using the published source code, ensuring consistent and
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accurate comparisons. By incorporating these considerations,
we aim to comprehensively assess our method’s efficiency
and demonstrate a transparent evaluation process.

D. ABLATION STUDY

This section performs ablation studies on polygon-level
segmentation, text skeleton prediction, and synthetic data.
Table 3 and Figure 11 show the effectiveness of our
method. Specifically, the baseline model consists of a
transformer-based encoder [15], and a simple MLP-based
decoder. The result is improved on F-score and IoU met-
rics when, as shown in Table 3, we incrementally added
polygon-level segmentation and text skeleton prediction task
to the model. The final model achieves the best performance,
with around 2.7 and 3.4 % increase in F-score and IoU,
compared to the baseline when we use our synthetic data for
training the model, before finetuning on the real dataset.

E. ENHANCING TEXT SPOTTING THROUGH SCENE TEXT
SEGMENTATION
Scene text segmentation has various applications in optical
character recognition (OCR), including text recognition [8],
text spotting [54], text removal and text style transfer [3].
In this study, we focused on utilizing scene text segmenta-
tion to enhance the performance of an existing text-spotting
model. We observed that scene text segmentation can effec-
tively serve as an attention map for guiding the text-spotting
process. To investigate this phenomenon, we selected Deep-
Solo [52] as the state-of-the-art network for text spotting.
Our approach involved modifying the input layer of the
text spotting system. Instead of the original 3-channel format,
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FIGURE 13. The qualitative results of our proposed Text Spotting approach are presented in (a), (b), (c), and (d), showcasing the original images, our
predicted mask as an assistant, the output of the original DeepSolo, and our text spotting result, respectively. The first, second, and third rows

represent samples from ICDAR13, ICDAR15, and Total-Text, respectively.

we introduced a 4-channel input comprising RGB images and
an additional text segmentation mask channel. To implement
this modification, we duplicated the original network and
transferred the weights from a pre-trained model, excluding
the replaced input layer. The modified network was then
fine-tuned until convergence, as depicted in Figure 12.

Through our experiments, we discovered that incorporat-
ing the mask channel resulted in a significant improvement
in text-spotting accuracy. In Table 4, we compare the perfor-
mance of our modified network with the original text-spotting
network that used 3-channel images as input. The results
demonstrated a clear advantage in favour of our approach.
We attribute this improvement to the mask channel acting
as an attention map, effectively guiding the text-spotting net-
work to focus on relevant areas of the scene. To validate our
findings, we conducted thorough evaluations using state-of-
the-art networks such as DeepSolo [52]. Performance metrics
and illustrations are in Table 4 and Figure 13.
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Following DeepSolo [52], we trained our model on the
Synth150k synthetic text dataset and evaluated its perfor-
mance on the ICDAR13, ICDAR1S5, and Total Text datasets.
Initialization of DeepSolo involved using an officially pre-
trained model, with the exception of the replaced input
layer, which underwent fine-tuning. The results, presented
in Table 4, demonstrate the superiority of our text spot-
ting model compared to the original DeepSolo (ResNet-50),
achieving higher accuracy in the ICDAR13, ICDARI1S, and
Total Text datasets by 1.3%, 1.2%, and 1.6% respectively.

Figure 13 provides visual examples to support our find-
ings. It showcases three representative samples where our
predicted masks effectively corrected mis-spotted words. For
instance, in the ICDAR15 sample, the original DeepSolo net-
work failed to identify all words. However, with the assistance
of our predicted mask, these words were accurately spotted.
Similar improvements were observed in other examples as
well.
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V. CONCLUSION

Pixel-level scene text segmentation has recently become an
emerging topic and has proven quite challenging. We rethink
its problem by introducing Text Image-conditional GANSs that
increase new paired data to the available limited datasets.
Furthermore, we also propose the Multi-task Cascade Trans-
former to effectively learn the collected data, including the
real-world and generated synthetic data. The framework
opens a new approach to scene text segmentation and other
fields in cases lacking data. Experiments show that our
method is superior to state-of-the-art models. However, it is
not an end-to-end framework.
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