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ABSTRACT Modern Smart Grids incorporate physical power grids and cyber systems, creating a cyber-
physical system. phasor measurement units (PMUs) transmit time synchronized measurement data from
physical grid to the cyber system. The System Operator (SO) in the cyber layer analyzes the data in
both online and offline format and ensures the reliability and security of the grid by sending necessary
command back to the PMUs. However, various physical events such as line to ground faults, frequency
events, transformer events as well as cyberattacks can cause deviation in measurements received by the SO,
which can be termed as ‘‘bad data’’. These bad data in turn can cause the SO to take a wrong restorative/
mitigating strategy. Therefore accurate detection of bad data and identification of correct bad data type is
necessary to ensure grid’s safety and optimal performance. In this work we proposed a realtime sequential
bad data detection and bad data classification strategy. At first, we have exploited the low rank property of
Hankel-matrix to detect the occurrence of bad data in realtime. Secondly, we classify the bad data into two
categories: physical events and cyberattacks. The algorithm utilizes the difference in low rank approximation
error of multi-channel Hankel-matrix before and after random column permutations during physical events.
If the cause of bad data is identified as cyberattack, our proposed algorithm proceeds to identify the cause
of cyberattack. We have considered two possible cyberattack types: false data injection attack (FDIA) and
GPS-spoofing attack (GSA). The proposed algorithm observes rank-1 approximation error of single-channel
Hankel matrix containing unwrapped phase angle data to distinguish FDIA from GSA. Finally, the proposed
algorithm is implemented in a realtime cyber-physical testbed containing PMU simulator and openECA.
Results from the testbed using IEEE 13 node test feeder show that by choosing optimum parameters of
Hankel-matrix, the bad data can be detected as well as the type of bad data can be correctly identified within
less than 1 sec. of the occurrence of physical event or cyberattack. The bad data detection shows 100%
accuracy for Hankel-matrix data-window greater than 140. Bad data can be classified as either cyberattack
or physical event with perfect accuracy for data-window length greater than 73 for the threshold 0.1. A data-
window length between 80 to 120 can distinguish GSA from FDIA, while GSA is implemented with varying
phase angle shift of 0.1o to 0.5o. The realtime sequential model is also verified with IEEE 118 bus system
simulated with SIEMENS PSS/E. Due to more complicated grid structure, IEEE 118 system requires more
computational time to identify the bad data type, however that is still less than 2 sec, and can perform
detection and classification with data-window length as small as 40.

INDEX TERMS PMU, GPS-spoofing, ad data, FDIA, Hankel.

The associate editor coordinating the review of this manuscript and

approving it for publication was Giambattista Gruosso .

I. INTRODUCTION
Microgrid refers to a cluster of interconnected electrical
machines, local loads and distributed energy resources (DER)
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with the ability to function as a standalone system in
island-mode as well as to work as grid-connected mode [1].
Penetration of single-phase and unbalanced loads can lead
to the increase in power quality issues, that can affect the
performance of microgrids (MGs) by causing abrupt changes
in the power flow or by violating the operational limit [2].
Data centers in USA, which are considered as microgrid
due to its ability to operate in islanding mode during power
outage at the main grid, can suffer from voltage sags and
harmonics [3]. Charging stations for electric vehicles (EV)
can suffer from low order harmonics, causing total harmonic
distortion (THD) greater than 1% [4], [5]. Three-phase unbal-
anced voltage, voltage fluctuation, harmonics etc. can hinder
the operation of railway microgrid systems [6]. In addition,
conductors breaking down and falling onto grounds/ physical
objects can cause line to ground (LG) and phase to phase
(PP) faults and subsequently increase the rate of rise of cur-
rent and/or cause over-currents, over-voltage, under-voltage
etc. These consequences can damage the grid performances
and pose threats to human and wildlife safety [7]. Among
the physical factors causing power quality issues in MG,
LG faults are considered to be the most common type [8],
[9], [10], [11].

Integration of microgrids with smart infrastructure includ-
ing communication, monitoring and metering devices has
pioneered the idea of smart grid (SG) that provides more
reliable, resilient and robust operation [12]. Components of
MGs are interconnected in a physical layer, and the smart
communication systems andmetering devices aswell asmon-
itoring equipments are interconnected within the cyber layer.
The cyber layer is built on top of the physical layer, thereby
making the whole SG a cyber-physical system (CPS) [13].
An important component of SG is phasor measurement units
(PMU), which provides more reliable and relatively secured
system-monitoring along with a faster reporting rate than
that of conventional supervisory control and data acquisi-
tion (SCADA) system [14]. However, penetration of smart
devices such as PMUs into theMGs increases the dependence
on communication links between the different layers of CPS
and requires secured data storage and analysis methods. Such
dependencies on communication channel and data storage
system raise the risk of cyberattack, particularly for critical
infrastructures such as hospitals, military bases, data centers
etc [15], [16].

Several researchers have assessed the vulnerabilities of
PMU integrated MGs against cyber-attacks and proposed
possible defense mechanism against such attacks. The most
common vulnerabilities of PMUs in MGs is the third-party
intrusion at the communication channel either between two
portions of the cyber layer or between the physical and cyber
layers. The third-party, also termed as the attacker canmodify
or take control over the data packets sent over the commu-
nication channel, thereby making it a man in the middle
attack (MITM) [17], [18]. Of all types of MITM attacks,
false data injection attack (FDIA) has been of particular

interest among the researchers in recent year. FDIA can
be best described as malicious data injection, or modifying
the data packets by the intruders having the knowledge of
system configuration [19], [20], [21]. The modified data can
lead the system server taking unwanted actions and cause
a misoperation in the grid. Recently, researchers proposed
different generic attack models for PMU integrated smart
grids, referred as GPS-spoofing Attack, that doesn’t require
the attacker to manipulate the highly secured communication
channel or to have internal knowledge of the network param-
eters. PMUs use GPS 1 Pulse-per-Second (1 PPS) signal for
time synchronization, and GPS-spoofing attack (GSA) target
the GPS 1 PPS signal received by PMU [22], [23]. Attack-
ers can spoof the actual GPS 1 PPS signal with a stronger
electro-magnetic (EM) signal [24], consequently shifting the
time-reference for the GPS-synchronized data in the PMU by
manipulating theGPS 1 PPS signal [25]. Instead ofmodifying
the measurements directly, GSA changes the timestamps of
measurements and affects mainly Phase angle measurements
due to the horizontal shift in timestamps. As a result, the
measurements received by the system operator (SO) are taken
with respect to a shifted time reference, making the SO
perform faulty load-flow and stability analysis. These faulty
analyses may force the SO to take unwanted action such
as tripping a line serving critical loads and/or send wrong
command back to the IEDs [26].

The proposed sequential scheme consists of two parts:
detection and classification, which are executed sequentially
in real time. In order to choose the most suitable algorithms
for each part, the SO needs to address several challenges, such
as accuracy, numerical complexity, realtime implementation,
scalability etc.

For the detection part, there are several bad data detection
schemes such as weighted least squares (WLS) [21], Kalman
Filtering (KF) [27], software-defined networking model [28],
active synchronous model [29], etc. Carefully designed FDIA
can bypass a WLS based detection model [35]. KF is a
more robust detection method and can be implemented in
real time. However, since it relies on the measurements
from the immediate previous state, a monotonous variation
of time-series measurements during faults or cyberattacks
may provide wrong detection flag to the SO. Whereas the
models proposed in [29] and [30] demonstrate satisfactory
performance in terms of anomaly detection, these models fail
to distinguish cyberattack from physical events. The machine
learning and big data approaches in [31], [32], [33], and [34]
train the model with sensor measurements to compare the
expected measurement with actual measurements. Nonethe-
less, thesemodels suffer similar problem of failing to separate
cyberattack from physical events. On top of that, it is difficult
to implement these models in realtime as well.

The next challenge of bad data detection is realtime imple-
mentation. The Hankel-matrix based model utilized in this
article uses time-series measurements over a moving data-
window, therefore it is easily implementable in realtime.

71236 VOLUME 11, 2023



I. Khan, V. Centeno: Realtime Detection of PMU Bad Data and Sequential Bad Data Classifications

Another challenge of algorithms is numerical efficiency.
Implementing one algorithm for bad data detection in the
first part and a different one for bad data classification in
the second part is numerically inefficient. This is the case for
the online detection model described in [35] and [36], both of
them can be implemented in realtime. However, these models
are numerically exhaustive and are not scalable to a different
grid topology and operating set points. The models need to
be re-trained for each change in topology/operating points.

The low rank approximation of Hankel-matrix is able to
recover a large volume of missing data, and correct the bad
data that exists in PMU measurements [37], [38], [39]. Even
though the Hankel-matrix structure based models mentioned
in [37], [38], and [39] can correct bad data accurately to
provide reliable power system information, it is imperative to
identify the cause of such bad data to increase the resilience
of the system against future attack/ physical events. Identi-
fication of bad data types and locating the bad data source
is critical for SO during HILF (high impact low frequency)
incidents such as LG faults/ cyberattacks.

Therefore, with a goal of ensuring more resilient CPS,
we have extended the bad data detection and correction mod-
els described in [37], [38], and [39] to a realtime sequential
bad data classification algorithm. Hao et al. [37] utilizes low
rank approximation of Hankel-matrix to distinguish measure-
ment noises from physical events. We have exploited the
similar concept to differentiate between physical events and
cyberattacks.

The Hankel-matrix basedmodel developed in [37] and [39]
can be implemented in the detection (single channel Hankel-
matrix) and classification (multiple channel Hankel-matrix)
parts of the sequential implementation, ensuring numerical
efficiency in realtime. Also, the Hankel-matrix based model
analyzes each PMU channel individually to detect bad data,
therefore it does not depend on grid topology. PMU channel
from any additional node in the topology can be analyzed as a
new Hankel-matrix with time-series measurements and pro-
vides similar satisfactory results as existing PMU channels.

The first step of classification, is differentiating cyberat-
tacks from physical events. Only a very few works in existing
literature focused on differentiating between physical events
and cyberattacks. A no Table example of differentiating
cyberattacks and physical events is the online machine learn-
ing (ML) based model [30]. Another ML based model
that exclusively detects cyberattack and differentiates it
from faults for differential relays is proposed in [40]. Both
models have limitations of scalability and numerical com-
plexity. ML based model requires training of large volume
of measurements for a specific grid topology and operating
conditions. The dataset is required to be trained for any
change in grid topology and operating conditions, which is
numerically exhaustive.

The proposed realtime classification model computes the
low rank approximation error among the temporal measure-
ments from neighboring PMUs. For each PMU node in

the grid, the model uses multiple channel Hankel-matrix by
taking measurements from the PMU nodes that are physi-
cally connected to it. As the model computes the low rank
approximation error using measurements from only a few
physically connected nodes, it is numerically less exhaustive.
Additionally, the model does not depend on the grid topology
or system operating condition since it analyzes the time-series
measurements from only a cluster of physically connected
nodes. For cyberattack, the temporal relation among physi-
cally connected nodes is different from the case with physical
events, regardless of the grid topology. These attributes make
the proposed model scalable to more complex topology and
different operating conditions.

The second step of the proposed classification model is
to identify the cyberattack type. For initial real-time detec-
tion model implemented in this paper, we consider only two
cyberattack types: FDIA and GSA. Detection model of GSA
can be formulated similarly as FDIA detection approach,
with phase angle data used as measurement matrix [22],
[41], [42]. Even though GSA can be detected in a similar
way of FDIA using phase angle measurements only, these
approaches fail to differentiate GSA from FDIA. Intruders
attack different levels of the cyber layer for FDIA and GSA,
such as the communication network for FDIA and the GPS
signal for GSA. Therefore, differentiating FDIA fromGSA is
also important for the system operator to successfully restore
the system after the attack. Distinguishing GSA from FDIA
has been, however, an unexplored area until recently [43].
Performing low rank approximation of Hankel-matrix using
unwrapped phase angle measurements can classify the cyber-
attack between FDIA or GSA.

The cyberattack classification model in [43] has the limi-
tations of testing the algorithm with noiseless measurements,
which don’t reflect a real-world scenario. Another limitation
of the model in [43] is that it requires multiple channel
Hankel-matrix to compute the relative change in low rank
approximation error of unwrapped phase angle measure-
ments of affected PMUs. Nonetheless, the multiple channel
Hankel-matrix fails to identify the affected PMU channel
and the SO needs additional computational step to figure
out which PMU is under GPS-spoofing attack. With an
aim to improve the cyberattack classification performance
in [43], we have proposed single channel Hankel-matrix
based model using noisy PMU measurements. The proposed
single-channel Hankel-channel of this article calculates low
rank approximation error of each PMU channel individually,
therefore the SO identifies affected PMU channel without
further computational steps.

The Hankel-matrix based model used in this work exploits
time-series voltage/ current phasormeasurements in real-time
and calculates the low rank approximation error for each
PMU channel individually. For bad data classification, [30]
and [40] uses measurements from sensors and relays to
train the dataset, whereas the proposed realtime detection
and classification model analyzes the spatial relation among
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neighboring PMU channels with time-series phasor measure-
ments of moving data-window. The PDC applies the multiple
channel Hankel-matrix algorithm separately for voltage and
current phasors, enabling SOs to identify and localize the
measurements of the affected PMU channel in a compli-
cated grid network. For classification of cyberattack, the
Hankel-matrix uses unwrapped phase angle measurements,
instead of voltage/current magnitudes or raw phase-angles,
since only the unwrapped phase angle can demonstrate dif-
ferent behavior for GSA and FDIA, described in details in
section IV.

The goal of this article is to propose a real time detec-
tion and subsequent classification of anomalies in the PMU
measurements based on the bad data types such as: physical
events, false data injection attack and GPS-spoofing attack.
We have considered a sequential structure of the algorithm
where the Bad Data is detected in the first step. The bad data
is classified between physical event and cyberattack at the
second step. If the cyberattack is identified, the algorithm
uses low rank property of Hankel matrix on the unwrapped
phase angle measurements to classify the attack between
FDIA and GSA. The proposed sequential anomaly detection
model is tested in a realtime testbed using a PMU-simulator
and openECA. The major contributions of this paper are as
follows:

• This article aims at accurately detecting and classifying
bad data in realtime using measurements from existing
PMU based infrastructure which provides fast (30 to
120 frame/second) data transmission;

• We have proposed a sequential realtime bad data detec-
tion and classification technique. The proposed model
identifies the occurrence of bad data, as well as classifies
the bad data among physical event, FDIA and GSA, in a
realtime sequential manner;

• The proposed sequential classification model exploits
the previous low rank approximation of Hankel-matrix
based bad data detection and correction models by
extending its application in differentiating bad data
types, thereby providing the knowledge of bad data
type to the SO to ensure proper system restoration and
resiliency;

• The proposed technique utilizes Hankel-matrix based
algorithm that is scalable to larger and more complex
power grid, with combined detection and classification
time being less than 1 sec., providing fast response
opportunity for SO;

• With perfectly tuned data-window length, the proposed
algorithm can achieve 100% accuracy in bad data detec-
tion;

• The proposed realtime model is tested and verified in a
PMU-cybersecurity testbed;

The rest of the paper is organized as follows: section II
discusses the bad data detection model using Hankel matrix.
Section III describes the bad data classification with random
column permutation of low rank properties of multi-channel
Hankel-matrix. Section IV describes the classification of

the cyberattack between FDIA and GSA, exploiting the
unwrapped phase angle data. Section V briefly describes the
testbed used to validate the proposed real-time approach.
Section VI documents the results and analyzes the perfor-
mance of proposedmodel in this paper. SectionVII concludes
the article.

II. BAD DATA DETECTION
As mentioned before, most common method to detect Bad
Data injected by attacker is the state estimation model.
The system operator estimates the state variable using
AC and DC power flow equations, and flags bad data
if the deviation between measurements and estimations
exceeds threshold. The measurements are estimated with
Weighted Least Squares (WLS) [21], [35] method. Bad
Data is detection when the ℓ2-norm of the residual between
actual measurement and estimated measurement, also known
as estimation residual, is larger than a predetermined
threshold τ h.
A well-designed FDIA can be stealthy enough to bypass

WLS based BDD method [44]. However, more robust tech-
niques such as Kalman Filtering (KF) [45] can be an
effective tool to detect bad data caused by electrical events
and FDIA. The KF estimator generates better estimations
of state variables than conventional weighted least square
based method [45]. At each time instance, KF estimates
the state variable and measurements using measurements
from previous timestamps. Furthermore, deviation based KF
approach provides better result compared to the conventional
KF estimator, particularly during FDIA since the estima-
tion accuracy is impacted by malicious data injected to the
measurement stream [46].

One advantage of the deviation based KF method (DKF)
is that it incorporates the time-series variation of measure-
ments. A similar advantage is available in the Hankel-matrix
based detection method [37], which utilizes both temporal
and spatial relation among the measurements from single or
multiple PMU channels. The proposed bad data identification
method in this work relies on both spatial and temporal
relation of time-series PMU measurements from single and
multiple channels. This approach has an edge over DKF
method, as even a small deviation in measurements can be
identified by comparing the spatial and temporal relations
of measurements with neighboring PMU channels. Further-
more, applying Hankel-matrix based method in the first step
of bad data detection reduces the time required to execute the
proposed sequential algorithm of bad data classification in the
second and third steps, providing SO with a faster restoration
and mitigation opportunity.

A Hankel-matrix is created with the measurements for
a specific time period T , starting from first timestamp to
the timestamp ts. Assuming there exists total W number
of data points, the first row is creating by taking a small
portion of W , such as W − k + 1, k is a positive integer.
The second row is constructed by shifting the first row to
one timestamp toward right. Consider a PMU measurement
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matrix Y =
[
y1 y2 . . . yW

]
for a particular channel, and

the measurements over time period T are y1, y2, . . . , yW . The
Hankel matrix hank for this dataset can be constructed as:

hank(Y ) =


y1 y2 . . . yW−k+1
y2 y3 . . . yW−k+2
. . . . . . . . . . . .

. . . . . . . . . . . .

yk yk+1 . . . yW

 (1)

The matrix hank(Y ) is a a k × W − k + 1 matrix. W is
referred as data-window length for the rest of the paper. The
single channel Hankel matrix can be extended to a multi-
channel analysis, with the modification in the measurement
matrix Y . The new measurement matrix is a M ×W matrix,
consideringM PMU channels, and can be expressed as:

Ymul =


y1,1 y1,2 . . . y1,W
y2,1 y2,2 . . . y2,W
. . . . . . . . . . . .

. . . . . . . . . . . .

yM ,1 yM ,2 . . . yM ,W

 (2)

Themulti-channel Hankel-matrix hank(Ymul) is as follows:

hank(Ymul) =



y1,1 y1,2 . . . y1,W−k+1
y2,1 y2,2 . . . y2,W−k+1
. . . . . . . . . . . .

. . . . . . . . . . . .

yM ,1 yM ,2 . . . yM ,W−k+1
y1,2 y1,3 . . . y1,W−k+2
y2,2 y2,3 . . . y2,W−k+2
. . . . . . . . . . . .

. . . . . . . . . . . .

yM ,2 yM ,3 . . . yM ,W−k+2
. . . . . . . . . . . .

. . . . . . . . . . . .

y1,k y1,k+1 . . . y1,W
y2,k y2,k+1 . . . y2,W
. . . . . . . . . . . .

. . . . . . . . . . . .

yM ,k yM ,k+1 . . . yM ,W



(3)

The first step of theHankel-matrix based bad data detection
method is to exploit the low rank approximation (LRA) of the
multi-channel Hankel-matrix hank(Ymul), with M being total
number of PMU channels. The key idea of obtaining LRA
is taking the Singular Value Decomposition (SVD) of the
hank(Y ) as U6V ∗. The hank(Ymul) can be approximated as
rank-r (r < rank-hank(Ymul)) by taking the largest r singular
value such that the low rank approximation error, which is
defined as eqn 4, remains less than a predefined threshold τ r .

er (Y ) =
||U6rV ∗

− Ymul ||F
||Y ||2

× 100%, (4)

The low rank approximated equivalent of hank(Ymul) can
be defined as hank( ˆYmul) = U6rV ∗. Low rank approximated
Hankel-matrix is also have same k × W − k + 1 dimension
as original Hankel-matrix hank(Ymul)

Each element ˆyi,j, where i = 1, 2, ..M , j = 1, 2, . . . .,W
comes from the low rank approximated hank( ˆYmul). At the
second step, using the WLS method, the state variable d is
estimated using the following relation [47]:

d̂ = (Û r T ∗ Û r )−1Û r ∗ hank( ˆYmul) (5)

where Û r is the first r dominant left singular matrix from U .
For each channel i, where i = 1, 2, . . . ,M , the data at
timestamp ts+1 is considered to be accep Table (not bad data)
if the estimation residual || ˆyi,ts+1 − 0i||2 ≤ τ h. The 0 is
defined asM ×1 matrix calculated from Û r d̂ . Here τ h refers
to a predetermined threshold for bad data detection.

On the contrary, when the estimation residual exceeds
the τ h, it indicates the existence of estimation error at the
timestamp ts+1. However, a single occurrence such estimation
error doesn’t indicate physical event or cyberattack, since
measurement noise or data transmission error might pro-
vide a discrete outlier in the measurement stream. To ensure
the occurrence of bad data without any false positive case,
we consider it as bad data only if there exists more than three
consecutive estimation error over three consecutive moving
time window with length T.

The main contribution of this section is the detection of
bad data using low rank approximation of Hankel-matrix. The
proposed method is scalable, since it only calculates estima-
tion residuals separately for each individual PMU channel,
therefore the size of the power grid does not impact the accu-
racy of detection. Moreover, the proposed model utilizes both
spatial and temporal relationship among the PMU channels,
thereby providing the SO with the ability to detect relatively
smaller changes in measurements during a physical event or a
cyberattack. This attribute gives the proposed model an edge
over DKF.

III. CYBERATTACK VS PHYSICAL EVENT CLASSIFICATION
As the fault mitigation and system restoration techniques are
different for cyberattack and physical events, differentiating
these two types of faulty conditions is paramount for the
system operator. The proposed Hankel matrix based model
for BDD proposed in [37] can be extended to distinguish
cyberattack and physical events. During physical event, there
must exist a time-series correlation among the neighboring
PMUs that are physically connected or topologically nearby.
On the other hand, since the cyberattack is targeted to partic-
ular PMUs, there is no or little time-series correlation among
the topologically neighbor PMUs. These differences can be
exploited to identify the bad data type.

Generally under normal condition (without any physi-
cal event or cyberattack), random column permutation of
Hankel-matrix would cause an increase in the low rank
approximation error since the temporal relation among the
elements of Hankel matrix is destroyed after column per-
mutation. Since during physical event there exist temporal
correlation among the data from neighboring PMU channels,
a random column permutation will result in increased low
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TABLE 1. Algorithm - identifying bad data type.

rank approximation error. However, as for cyberattack, there
is no or little temporal correlation among the data from neigh-
boring PMU channels, therefore the low rank approximation
error is already higher for cyberattack. A random column
permutation will not change the low rank approximation error
significantly. In short, observing the low rank approximation
error before and after random column permutation will help
the system server determine the cause of bad data in the
measurements. Mathematically, the proposed cyberattack vs
event identification model can be formulated as algorithm
described in Table 1.

The proposed algorithm of differentiating physical event
from cyberattack has a limitation against PMU calibration
error, since despite being a physical event in nature, it lacks
the proposed models’ assumptions of the existence tempo-
ral relation among neighboring PMUs. However, there are
realtime correction method of such events, that can provide
PMU measurements with no or very little calibration error to
the PDCs [48]. As a result of this pre-processing, the sudden
change in measurements during cyberattack/ LG fault data
will not be affected by such calibration error.

IV. CLASSIFICATION OF CYBERATTACKS
After the cause of bad data is identified as cyberattack , the
SO tries to restore the breached communication network

or use alternate communication medium. However, a GPS-
spoofing attack doesn’t require the attackers to breach the
network communication between measurement devices to
PDCs and/or to control center [25], [26]. This type of attack
can be done by spoofing the GPS signal with a stronger
electro-magnetic (EM) signal than that available from GPS
satellites. The GPS receiver uses the spoofed GPS signal
instead of the actual signal. As a result, GPS-spoofing attack
needs to be mitigated in a different way than FDIA.

Previous works focused on the detection of GPS-spoofing
attacks (GSA) treated this type of attack similar to FDIA,
with a difference in measurement matrix z as in eqn 4.
For FDIA, the measurement matrix can be either voltage or
current magnitude or phase angles, however for GSA the
measurement matrix is generally constructed with voltage/
current phase angle only as in [22], [41], and [42] since the
impact of shift in time due to spoofing of GPS 1 PPS signal
is reflected most at the phase angle measurements. Using
phase angle measurements in algorithm in Table 1 will flag
the bad data type as cyberattack for GSA. Similarly, if the
FDIA targets phase anglemeasurements, executing algorithm
in Table 1 with voltage/current phase angle measurements
will also classify the bad data as cyberattack. It is difficult
for the SO to determine whether the bad data is caused by
spoofing GPS 1 PPS signal (GSA) or by corrupting the phase
angle measurements directly (FDIA).

Generally, algorithm in Table 1 with the raw phase angle
measurements cannot indicate whether it is GSA or FDIA,
due to the similar behavior in raw phase angle data during
GSA and FDIA. However, unwrapped angle measurements
demonstrate a difference in behavior between GSA and
FDIA. Angle unwrapping is particularly useful for miss-
ing data recovery due to the existence of wrapping-up of
phase angler by 2π during its transition from +/ − π to
−/+π . Venkatasubramanian [49] proposed an efficient angle
unwrapping technique in real time, by adding the angle during
each transition from +π to −π and subtracting the angle
during each transition from −π to +π , as in eqn 6.

min
N

|θi+1 − θi + 360N | (6)

ROC(i+ 1) = ROC(i) + N (7)

The proposed model in [40] introduced the term
RollOverCounter(ROC), that is updated after each transition
to store the number of such transition occurrence. ROC is
added by +1 during +π to −π transition and is added by
−1 during −π to +π transition, as described in eqn 7.

During false data injection attack (FDIA), the attacker is
able to inject malicious data into the communication system
and can modify the measurements received by SO from
PMUs/ IEDs. When attackers target phase angle measure-
ments, they corrupt the angular measurements with falsified
values. For instance, at the timestamp t, a FDIA is initiated by
targeting the phase angle measurements, and the phase angle
measurements in eqn 6 changes from θ (t) to θ ′(t). This can be
represented as adding an attack value a(t) to the actual phase
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angle θ (t). If the attacker initiates relentless attack as in [50],
the next measurement θ (t) will also change to θ (t+1). At the
transition of the amount of 2π , the actual angle value θ (t) is
close to +π and θ (t+1) is close to −π . The new phase angle
values will be as follows:

θ ′(t) = θ (t) + a(t)

θ ′(t + 1) = θ (t + 1) + a(t + 1) (8)

Adding an attack vector to the phase angle data,
as described in eqn 8, causes an increase or a decrease in
the phase angle measurement. However, the time when there
is a transition between +/ − π to −/ + π (Fig. 6) doesn’t
changewith respect to neighboring PMUs. Tomake the attack
stealthy, the attacker tries to make the a(t) value as small as
possible (preferably less than 1o [32]). As a result, a small
attack value a(t), and will not change the transition point
between +/ − π to −/ + π . From eqn 6, it is clear that the N
value remains same as the transition status between positive
and negative remains same. Therefore FDIA doesn’t change
the ROC value in eqn 7, making the unwrapped angle graph
under attack similar to the unwrapped angle graph during
normal condition.

During GSA, the phase angle value shifts the time axis due
to the spoofed 1 PPS. The transition point between +/−π to
−/+π no longer occurs at the same timestamp as it would be
under no-attack scenario, creating a times-shift in phase angle
measurements. Assuming a time-shifted phase angle value of
θ ′′ and an original phase angle value as θ ,the relation between
θ ′′ and θ can be expressed as:

θ ′′(t) = θ (t + 1T ) (9)

1T is the timestamp shift caused by GSA. The data the
SO receives at the t th timestamp is actually the data that
the power grid generated 1T timestamp ago. PMU adjust
the time reference at each GPS 1 PPS signal, therefore the
timestamp shift in eqn 9 will continue for next one second.
Each transition point between +/ − π to −/ + π over the
next 1 sec. period will also shifted, consequently changing
the N value from eqn 6 at the time instance t. A change
in N results in different ROC value from eqn 7 and causes
distortion in unwrapped phase angle curve.

These two opposite behaviors of unwrapped phase angle
curve during FDIA and GSA as discussed in this section can
be exploited to distinguish these two types of attacks.

V. PROPOSED REAL-TIME TESTBED
The realtime testbed relies on the successful implementa-
tions of the algorithms described in section II to IV. At first
the algorithm runs Hankel-matrix based model mentioned
in section II to detect the bad data. If the occurrence of
bad data is detected, the bad data type is identified using
Hankel-matrix with multi-channels described in section III.
Once the cause of bad data is identified as cyberattack,
we apply the single channel Hankel-matrix algorithm in
section IV on both the raw and unwrapped phase angle data.

TABLE 2. Algorithm - differentiating GSA from FDIA.

For FDIA, only the raw phase angle data will flag anomaly,
whereas for GSA both the raw and unwrapped phase angle
data will flag divergences in the data. The detailed process is
described in algorithm in Table 2.

The testbed used in this work, depicted in Fig. 1, contain
three parts: the PMU channels, PDC, and the communication
link. The synchrophaosor data transmission is performedwith
the PMU simulator model developed in [51]. The Phasor
Data Concentrator (PDC) is modeled with openECA plat-
form [52]. Both the PMU simulator and openECA are open
source tools. The PMU simulator in the test system provides
UTC timestamps starting at midnight (00:00:00) of Oct 10,
2022 with a sampling interval of 1/60 sec. The simulator
transmit timestamped voltage and current phasors and fre-
quency measurements received from physical power system
to openECA through TCP or UDP communication protocols.
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FIGURE 1. Proposed PMU-PDC testbed.

FIGURE 2. IEEE 13 node test feeder.

openECA aligns data from all the PMU channels with the
timestamps and is able to communicate with the next layer
of cyber system/ system server. The data format during all
communication between PMU-PDC-PMU and PDC to SO
is in IEEE C37.118.2 protocol [53]. The physical power
system is modeled with IEEE 13 node test feeder system [54],
simulated inMATLABSIMULINK , with PMUs added at buses
611, 632, 633, 634, 646, 671, 675, 680 and 692 (Fig. 2). The
physical event is modeled with three separate line to ground
faults at each of the lines connecting bus-671 to bus-692, bus-
632 to bus-633 and bus-671 to bus-680. For each line, three
types of line-to-ground faults are applied, i.e. single line to
ground (SLG), double line to ground (DLG), and triple line
to ground (TLG) faults. Furthermore, fault impedance during
each type of fault is varied from 0.01 p.u. to 0.1 p.u., with
a step size of 0.01 p.u.. This variations in fault impedance,
location, and fault types generate a total 10 × 3 × 3 =

90 number of physical events.
Two types of FDIA are modelled in this work to verify

two different part of proposed sequential algorithm. The first
type is done by adding an attack value a to the voltage
magnitude measurements. The goal of the attacker is to avoid
getting detected by SO, therefore a should follow a trade-off

between small enough to avoid detection and large enough
to cause significant impact to the system. To demonstrate the
feasibility of our proposed realtime bad data detection and
classification schemes, a variable attack value between 1% to
5% of the peak voltage magnitude measurements are added
to the actual measurements. Second type of FDIA will be
discussed later at this section.

The simulated PMU data from PMU simulator is trans-
mitted at a rate of 60 frame per second to openECA. The
openECA is enabled with TestHarness system that runs
the user-defined algorithm to perform designated tasks.
Algorithm in Table 2 can be implemented in the TestHarness
system in real time. At each timestamp ts, the algorithm
receives Ns number of measurements from previous Ns times
stamps, spanning from the measurement with timestamp
ts − Ns + 1 to the measurement with timestamp ts. A major
advantage of the proposed model is it is computationally
efficient. The algorithms are executed in python, with an Intel
Core i5, 1.8 GHz CPU and 8.00 GB RAM. The PMU-PDC
testbed runs the TestHarness in realtime, and the TestHarness
calls the python script at every 1 millisecond to 0.1 seconds,
depending on the data-window length.

Considering the beginning of simulation as timestamp
00:00:00.000, the IEEE 13 bus system as in Fig. 2 runs over
50 second for each test case, generating 60×50 = 3000 mea-
surements. The final timestamp of themeasurements received
by openECA from PMU simulator is 00:00:49.833. Initially,
testbed is simulated for normal condition, i.e. no physical
event or cyberattack. This normal condition provides bad
data detection threshold τ h. For each of 90 physical events
represented by different line to ground faults described above,
the testbed is simulated over 50 seconds, with the fault applied
to the grid at the timestamp 00:00:14.117 and is removed at
the timestamp 00:00:28.050. For the first type of FDIA, each
of three different attack values are applied to the voltage mea-
surement at the same timestamp 00:00:14.117 for respective
simulation of the testbed, the three attack values being 1%,
3%, and 5% of rated peak voltage measurement. The FDIA
targeting the voltage measurement is used for the second part
of the proposed algorithm, that is identifying bad data type.

After the cause of bad data is identified as cyberattack, the
proposed model uses phase angle data to distinguish GSA
from FDIA as discussed in previous section. GPS-spoofing
attack is modeled by shifting the timestamp at the PMU
simulator by 1θ

2π×60 . The term 1θ represents the deviation in
phase angle due to the GSA, as shown in eqn 9. As the most
significant impact of GPS 1 PPS shift during GSA is reflected
by a change in phase angle data, we have added a phase angle
deviation 1θ to the actual measurements to demonstrate the
effect of GSA. Phase angle deviation larger than 0.57 degrees
results in a Total Vector Error (TVE) 1% [44], therefore the
attacker must ensure the GPS 1 PPS shift to be small enough
to produce an angle shift (1θ ) less than 0.57o. For a particular
amount of GPS 1 PPS signal shift that is equivalent to1θ , the
phase angle will be shifted by 1θ the next 1 second. In order
to reflect two consecutive GPS 1 PPS shift, first phase angle
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shift is applied at the timestamp 00:00:14.117, and the next
120 sample data is also shifted by the same degree, until the
timestamp, 00:00:16.100.

Our goal is to differentiate GSA from FDIA, therefore a
second type of FDIA should come into consideration with
attack values applied to the phase angle data only. This
second type of FDIA can be used for the third part of pro-
posed algorithm, that is identifying cyberattack type. For
the second type of FDIA, three different test cases are cre-
ated with three different phase angle shifts with the values:
0.1o, 0.3o and 0.5o. Each test cases are applied at the same
00:00:14.117 timestamp as previous faults and cyberattacks.

The combined sequential bad data detection and classifica-
tion model is further tested with IEEE 118 bus system [55],
simulated in Python-Siemens PSS/E to implement dynamics.
We have created 20 separately physical events by applied
line-ground faults with four different impedance (0.0005 p.u,
0.005 p.u., 0.05 p.u., and 0.5 p.u.) at five different branches.
The five branches are: branch connecting bus 49 and bus 66,
branch connecting bus 56 and bus 57, branch connecting
bus 77 and bus 80, branch connecting bus 89 and bus 90, and
branch connecting bus 100 and 103. The FDIA is simulated
by applying an attack values of 1%, 3% and 5% of the peak
voltage measurements. The physical events and cyberattacks
for IEEE 118 bus systems are analyzed under same compu-
tational environment as it is for IEEE 13 node test feeder,
and the LG faults and FDIA are applied at the timestamp
00:00:14.117 and are removed at the timestamp 00:00:28.05.

VI. SIMULATION RESULT
Each of the three parts of algorithm in Table 2 is imple-
mented in the test harness sequentially, the first part, which
is the BDD is being executed over times-series moving data-
window in real time. If BDD indicates the existence of bad
data, the second part, which is differentiating physical event
and cyberattack, is executed for the next time-series moving
data-window.When the type of bad data is identified as cyber-
attack, the third part is executed over the same data-window
to determine the cyberattack type: FDIA or GSA.

A. PART I: BAD DATA DETECTION RESULTS
For each test case of physical events and cyberattacks,
PMU simulator transmit data to openECA at GPS synchro-
nized timestamp ts, and openECA feeds the data into the
test harness. The test harness runs the bad data detection
algorithm using the measurement from timestamp ts along
with T − 1 number of previous voltage and current measure-
ments, constituting a time-window with size T. For a test
case scenario under normal condition, i.e. no bad data, set
Vm denotes the set of voltage magnitude measurements over
50 sec, period, and σ denotes the standard deviation. The
bad data threshold τ h can be determined using the relation
as follows:

τ h = max(Vm) + 3σ (Vm) (10)

FIGURE 3. Noisy voltage magnitude measurement near bus 80.

At timestamp 00 : 00 : 14.117, a sample physical fault
testcase with a TLG fault has been applied near bus 680 of
IEEE 13 bus node test feeder. The TLG fault is removed at
the timestamp 00 : 00 : 28.0167. The voltage magnitude
measurements at bus 80 with random Gaussian noise of
mean 0 and standard deviation 1 reflects the change over the
fault duration (Fig. 3).

For the data-window length of 100, the estimation residual
using Hankel-matrix as described in algorithm in Table 1
remains less than the threshold τ h before the fault occur-
rence. However, just after the occurrence of the TLG fault,
estimation residual exceeds the τ h for more than 3 con-
secutive measurements, as in Fig. 4. Therefore, the system
operator can detect the occurrence of bad data around
timestamp 00 : 00 : 14.117.
The accuracy of Hankel-matrix based bad data detection

method is expected to depend on the data-window length W.
Smaller data-window length provides smaller dataset to esti-
mate the next measurement, therefore it can be assumed that
BDD accuracy increases with larger data-window length W.
To check the dependence of accuracy on the data-window
length W, total number of 99 testcases, including 90 phys-
ical events and 9 FDIAs are executed in the testbed. The
proposed method provides 100% accuracy for data window
length larger than 130. Smaller window length reduces the
BDD accuracy, which confirms the expected relation between
data-window length and accuracy.

B. PART II: BAD DATA CLASSIFICATION RESULTS
After the existence of bad data is detected at timestamp
00:00:14.117, the second part of algorithm in Table 2, which
is identification of bad data type, is executed in the test har-
ness. Theoretically, the low rank approximation error (eqn 4)
for physical event is expected to change after random column
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FIGURE 4. Bad data detection using hankel matrix.

FIGURE 5. BDD accuracy variation with data-window length.

permutation, whereas for cyberattack the change is expected
to be zero. Due to the existence of measurement noise and
randomness of column permutation, the change in low rank
approximation error before and after random column permu-
tation may not be exactly zero. Therefore a threshold η as
described in algorithm in Table 1 must be selected to indicate
any significant change in the low rank approximation error.
A heuristic value of η = 0.1 is selected as threshold to
distinguish cyberattack and physical event.

We have executed two testcases in the testbed to ver-
ity the proposed algorithm: the first being a TLG fault at
near bus 692 with fault impedance 0.01 p.u. and the sec-
ond one being a FDIA with 1% deviation added to voltage

magnitude measurements from bus 692, both initiated at
the timestamp 00:00:14.117 separately. With a data-window
length of 120, the bad data is detected at first for the times-
tamp 00:00:14.117, with similar results as shown in Fig. 4.
When bad data is detected, the second part of algorithm in
Table 2 is executed immediately, with the measurement from
timestamp 00:00:14.117 and the previous 119 measurements,
constituting total data-window length of 120. For each test
case, algorithm uses multi-channel measurement matrix as
depicted in eqn 2. Since bus 692 is physically connected with
bus 671 and bus 675, the measurement matrix contains three
rows, and the number O from algorithm in Table 1 is 3.
Measurements from the timestamp 00:00:14.117, which

is the 847th measurement, contain the first instance of bad
data, the random column permutation based method some-
times fail to indicate the correct fault type. The bad data
identification algorithm needs to applied for the next data
set, that contains measurements from the timestamp next
to 00:00:14.117, which is 00:00:14.133 or the 848th mea-
surements, and the previous 119 measurements. The process
has to be repeated for moving data-window over time until
the data-window contains enough measurement points to
demonstrate significant change in low rank approximation
error after random column permutation. For 120 data-window
length, low rank approximation error after random column
permutation shows a change larger than η = 0.1 for the
first time for a data-window starting from 760th measurement
and ending at 880th measurement. Fig. 6 indicates that the
rank-1 approximation error is larger than 0.1 for TLG fault.
The change in low rank approximation error before and after
random column permutation over the same data-window for
the testcase containing FDIA data remains approximately 0,
implying a different behavior for cyberattack and physical
event.

If the low rank approximation error indicates a change
larger than threshold η after random column permutation for
the data-window starting from measurements of timestamp
ts − 2W/3 to measurements of timestamp ts +W/3, cause of
bad data is identified as physical event, and the corresponding
restorative actions need to be taken by the system operation.
However, if the bad data type is identified as cyberattack,
the third part of the proposed algorithm is executed using the
same data-window that demonstrated the change in low rank
approximation error as greater than η.

As mentioned before, data-window needs to contain a
minimum number of measurements to indicate any change
in low rank approximation error after random column per-
mutation. algorithm in Table 1 has reported correct bad data
type for W ≥ 73 . For instance, Fig. 7 depicts the failure of
proposed model in identifying bad data type correctly when
W = 70, since both of physical event and cyberattack display
insignificant changes (≪ η) in rank-1 approximation errors.

C. PART III: DIFFERENTIATING FDIA FROM GSA RESULTS
In the next step, the algorithm computes low rank approxima-
tion error of unwrapped voltage phase angle measurements.
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FIGURE 6. Bad data type identification: differentiating cyberattack from
physical event W = 120.

FIGURE 7. Bad data type identification: differentiating cyberattack from
physical event with W = 70.

If the gradient of rank-1 approximation error is larger than
0 for three consecutive points, the type of cyberattack can be
determined as GPS-spoofing attack, otherwise, it is FDIA.
A testcase is executed with 0.3o deviation added to voltage
angle measurements of bus 692 over two second starting at
the timestamp 00:00:14.117 to reflect shift in two consecutive
GPS 1 PPS signal, thereby imitating GPS-spoofing attack.
We have observed positive gradients of low rank approxi-
mation error for single channel measurements for more than
3 consecutive measurements. Another testcase of FDIA is

FIGURE 8. Data-window lengths’ variations with different GSA for
differentiating GSA from FDIA.

executed with 0.3o deviation added to voltage angle measure-
ment of bus 692 over data-window length of 120. The result
shows no positive gradient of low rank approximation error
for the single channel phase angle measurements over same
data-window length, confirming the FDIA as the cyberattack
type in this testcase.

Smaller length of data-windowWmay provide insufficient
dataset for the Hankel matrix to demonstrate any significant
change in low rank approximation error. For GPS-spoofing
attack, after GPS 1 PPS signal is shifted, phase angle mea-
surements for the next 1 sec. are modified, along with the
transition points from +/ − π to −/ + π . As a result, the
unwrapped phase angle data exhibit deviation for the next
1 sec., that is until the arrival of another GPS 1 PPS signal.
Proposed Hankel-matrix based model relies on the sudden
variation or break-point of unwrapped phase angle data at
the moment of attack. For the case of a very large number
of dataset is fed into Hankel-matrix, just one break-point in
the unwrapped phase angle measurements is not sufficient
to display any significant change in low rank approximation
error. Therefore a there exists a trade-off between smaller and
larger data-window length. Analyzing test-cases with differ-
ent phase angle shift due to GSA over different data-window
length confirms this assumption (Fig. 8). Larger phase angle
shift (0.5 degree) demonstrates positive gradient in low rank
approximation error over larger data-window length. From
Fig. 8, it can be concluded that data-window length from 80 to
120 works best for distinguishing GSA from FDIA over wide
range of phase angle variation.

Even though the proposed model is applied in realtime,
there are computational and network constraints. Each part
of algorithm in Table 2 require a fraction of second to be exe-
cuted. Data-window length affects the computational time,
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FIGURE 9. Time-series visualization of sequential realtime implementation of algorithm in Table 2 in testbed from Fig. 1 (IEEE 13 node test feeder).

TABLE 3. Computational time vs data-window length.

the larger the data-window, longer it takes to execute the
algorithm. Variations of average computational time of each
portion of proposed realtime algorithm against data-window
length W are tabulated in Table 3. Total computational time
for data-window length 90 is ≈ 0.91 sec., including the
time required to move the time-series data-window to include
enough measurements for bad data type identification in
subsection VI-B.

From the above analysis of the impact of data-window
length on the effectiveness of each part of algorithm, data
window length of 90-100 can be considered as optimum data-
window length, since it can indicate the bad data occurrence,
its type and the type of cyberattack in less than 1 sec. The
effectiveness of the testbed used to implement the proposed
realtime bad data detection model is visually depicted in
Fig. 9. Bad data detection model is executed in realtime for
moving time series data-window with length 90, using a test-
case of GSAwith 0.3o deviation in phase angle measurement.
Bad data is initialized at the timestamp 00:00:14.117 sec., and
the proposed detection model indicates the occurrence of bad
data after ≈ 0.006 sec. of computational time. The next two
parts are executed sequentially. Bad data type identification
requires 0.55 sec. to include enough measurements to the
moving data-window so that it can demonstrate low rank
approximation error change after random column permuta-
tion. It requires approximately 0.096 sec. to execute the low
rank approximation error after random column permutation
for data-window length of 90. Immediately after the detec-
tion of cyberattack, the third part requires approximately

0.25 sec. to identify GPS-spoofing attack. Considering the
network delay of 0.033 sec. in WIRESHARK [56], we can
correctly identify and locate the GPS-spoofing attack in the
cyber-physical system in less than 1 sec.

D. RESULTS WITH IEEE 118 BUS SYSTEM
The dynamic simulation by SIEMENS PSS/E with LG faults
applying at 5 different locations separately, eachwith 4 differ-
ent fault impedances show similar result as of IEEE 13 node
test feeder. For the LG fault of 0.005 p.u. impedance applied
at the branch connecting bus 49 and bus 66, the data anomaly
is detected within 0.02 second of timestamp 14.117 sec
(Fig. 10). The low rank approximation error from Fig. 10
is calculated using the estimation of voltage measurement at
bus 49, with data-window length of 100.

After detecting the existence of bad data, the voltage
measurements are passed to the bad data classification step
described in section III. The bad data is correctly classified
as physical event (Fig. 11). The similar steps are applied
for cyberattack, formulated by applying FDIA with attack
value 0.1% of voltage measurements. Fig. 11 shows that the
change in low rank approximation error is much larger for
physical event than it is for cyberattack. This scenario is
expected, since a larger system like IEEE 118 bus system,
there are more interconnected buses to a particular node.
As a result, a random column permutation will destroy the
temporal relation among interconnected nodes more severely
than it does for smaller systemwith small number of intercon-
nected nodes. Also, a very short data-window, for example the
window length of 40, is enough to detect this change in low
rank approximation error.

The computational time for sequential detection and clas-
sification with varying data-window length is illustrated in
Table 4. The additional computational time in IEEE 118 bus
system comes from the multiple channel Hankel-matrix from
eqn 3, the larger system with more interconnected nodes
leads to a larger multiple channel Hankel-matrix. Including
the communication delay between PMUs and PDCs, the total
bad data detection and classification time with data-window
length of 90 is approximately 2.9519 sec. However, with
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FIGURE 10. BDD using Hankel-matrix for IEEE 118 bus system.

FIGURE 11. Bad data type identification: differentiating cyberattack from
physical event with W = 40.

TABLE 4. Computational time vs data-window length for IEEE 118 bus
system.

smaller data window of length 40, total bad data detection
and classification time is approximately 1.8323 sec, less than
2 sec.

VII. CONCLUSION
In this work we proposed a realtime bad data detection
and bad data type identification strategy. At first, we have
exploited the low rank property of Hankel-matrix to detect the
occurrence of bad data in realtime. Secondly, we classify the
bad data and differentiate in two categories: physical events

and cyberattacks. The algorithm utilizes the difference in low
rank approximation error of multi-channel Hankel-matrix
before and after random column performance during physical
events. If the type of bad data is determined to be cyberattack,
our proposed algorithm proceeds to identify the cause of
cyberattack. We have considered two possible cyberattack
types: false data injection attack (FDIA) and GPS-spoofing
Attack (GSA). The proposed algorithm observes rank-1
approximation error of single-channel Hankel-matrix con-
taining unwrapped phase angle measurements to distinguish
FDIA from GSA. Finally, the proposed algorithm is imple-
mented in a realtime cyber-physical testbed containing PMU
simulator and openECA.

Bad data can be detected with 100% accuracy if the
Hankel-matrix data-window length is larger than 130. The
second part of the algorithm can correctly identify bad data
type for data-window length of more than 73. Results from
the testbed show that the optimum size of Hankel-matrix data-
window lies within the range of 90-120. In this range, the
bad data can be detected as well as the type of bad data is
correctly identified within less than 1 sec. of the occurrence
of physical event or cyberattacks, considering the network
latency. For larger system such as IEEE 118 bus, the pro-
posed sequential model can correctly detect and classify bad
data with smaller data-window length due to temporal rela-
tions among higher number of interconnected nodes. Smaller
data-window leads to smaller computational time for bad
data detection, however, the increase in the size of multiple
channel Hankel-matrix for larger grid system causes longer
computational time for bad data classification step. There-
fore, there exists a trade-off between data-window length and
computational time for larger and mroe complex grid system.

The proposed realtime Hankel-matrix based sequential bad
data detection and classification provides accurate results
within a very short period. Nevertheless, application of pro-
posed model for highly sophisticated coordinated attacks,
where the attackers have much detailed knowledge of the
grid architecture and can mimic a temporal relation among
neighboring PMUs like line faults, is yet to be explored.
Future works can focus on improving the Hankel-matrix
based algorithm for coordinated cyberattacks.
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