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ABSTRACT With the aim of improving the rapidity and accuracy of quadrotor UAV positional trajectory
tracking, this paper proposes a fuzzy automatic disturbance rejection control of quadrotor UAV based on
improved whale optimization algorithm (IWOA-Fuzzy-ADRC). (1) To address the problems of low accuracy
and slow convergence of the traditional whale algorithm, a combination of logistic chaos mapping and skew
tent mapping is applied to improve the diversity of the initial population. (2) The global search capability
is strengthened to avoid falling into local optimum through introducing the cross operator and Gaussian
variational operators. (3) The IWOA is employed to iteratively optimize the adjustment coefficients of the
fuzzy active disturbance rejection controller, the calculus gain of the nonlinear state error feedback control
(NLSEF), and the error correction coefficients of the expansive state observer (ESO). The simulation results
demonstrate that compared with the traditional ADRC controller and PID controller, the proposed IWOA-
Fuzzy-ADRC controller can effectively improve the control performance of the system, accurately track the
desired flight trajectory, accelerate the dynamic response of the control system, reduce the steady-state error,
and enhance the anti-interference capability.

INDEX TERMS UAV trajectory tracking, fuzzy ADRC, whale optimization algorithm, chaotic mapping,
cross-operator, Gaussian variant operators.

I. INTRODUCTION
The quadrotor UAV has a simple structure, good maneuver-
ability, easy operation, does not require a complex steering
mechanism to control the cyclic torque of the rotor, and
only needs to change the rotational speed of rotor fixed on
the motor to complete all flight motions. This has enabled
its wide application in agricultural low-altitude spraying,
military, logistics delivery, searching and rescue (SAR),
and hazardous environment operations, as well as became
a research hotspot in recent years [1], [2]. Nevertheless,
quadrotor UAV are characterized by nonlinearity, result-
ing in the system being strongly coupled, underdriven, and
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susceptible to external disturbances. To address the problems
above, Han proposed a nonlinear controller called automatic
disturbance rejection control (ADRC) [3], which utilizes
a relevant observer to estimate the model uncertainty and
external environmental disturbances of system unmodeled
in real time. Additionally, the desired control performance
is obtained through setting the corresponding control laws.
With these strategies, not only the weaknesses existing in
the traditional PID control [4] are improved, but also the
performance of the control system is greatly enhanced.
Wameedh et al. [5] applied a model-free active input-output
feedback linearization technique of the modified automatic
disturbance rejection control paradigm for a single-link flex-
ible joint manipulator to remove the generalized disturbance
of system uncertainty in real time and convert the system to a
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chain of integrators. However, the system parameters are too
complicated to make them satisfy the system requirements
as quickly as possible. Amjad and Hussein [6] utilized linear
automatic disturbance rejection control (LADRC) and non-
linear automatic disturbance rejection control (NADRC) to
control the position trajectory of a single-link flexible joint
robot and used the PSO to adjust the parameters of two
controllers for improving the system performance. Neverthe-
less, the process of encoding weights and selecting genetic
operators for the algorithm is too complex. In order to further
improve the control performance of controller and realize the
online adjustment of controller parameters, numerous schol-
ars introduced the fuzzy rules to control the system (i.e., fuzzy
PID control strategy [7] and fuzzy ADRC control strategy
[8], [9].). For instance, Tao Liang employed the fuzzy logic
rule to adjust the coefficients of extended state observer
(ESO) as a way to enhance the robustness of the system
against external disturbances and parameter changes [10].
Unfortunately, this method fails to solve the issue of inap-
propriate parameter selection of the fuzzy controller itself,
which results in the control system cannot track external
disturbances well and affects the control performance of
system.

It is worth noting that the parameters of ESO and non-
linear state error feedback control rate (NLSEF) in ADRC
are very important. Nonetheless, the setting process of
these parameters is too complex and therefore some opti-
mization algorithms need to be introduced to adjust them
(e.g., grey wolf algorithm [11], [12], radial basis neural
network algorithm [13], traditional genetic algorithm [14],
[15], [16], adaptive genetic algorithm [17], particle swarm
algorithm [18]). Recently, Wang Xiaojing exploited the grey
wolf algorithm to optimize the controller parameters to
improve the controller accuracy, but this algorithm is sub-
ject to the convergence factor and tends to fall into a local
optimum [19]. Furthermore, Shen and Xu [20] established
a state observer via modern control theory, and estimated
the unknown total disturbance with an adaptive radial basis
function (RBF) neural network, while the gradient descent
method employed in RBF is not optimized and therefore
suffers from problems such as slow convergence.

Compared to the above algorithms, whale optimization
algorithm (WOA) has characteristics of simple operation
and few control parameters [21], making it possible to have
better optimization capability under high complexity sys-
tem. For example, CUI Zhizhong exploited WOA to perform
online tuning of PI controller and ADRC control parame-
ters [22]. While the weak global search capability and low
initial population diversity of conventional WOA algorithm
lead to the algorithm easily falling into local optimality and
failing to obtain the optimal solution of the problem to be
solved.

In this paper, an improved whale optimization algorithm
(IWOA) is proposed to adjust the parameters of a fuzzy
automatic disturbance rejection control system, and an

IWOA-Fuzzy-ADRC controller is designed to accurately
track the positional trajectory of a quadrotor UAV. The work
in this paper can be summarized as follows:

a) In order to solve the problem of low convergence accu-
racy and slow convergence speed of the traditional
WOA, a combination of logistic chaos mapping and
skew tent mapping is developed to improve the initial
population diversity.

b) With the aim of preventing the model from falling into
local optima in the search process, the crossover opera-
tor and Gaussian variational operator are introduced to
enhance the global search capability of the model.

c) The IWOA optimization algorithm is obtained by
combining (1) and (2), as well as its superiority is
demonstrated by comparing it with other optimization
algorithms.

d) A novel IWOA-Fuzzy-ADRC controller is designed
for position trajectory tracking of a quadrotor UAV.
The IWOA is used to iteratively optimize the optimal
adjustment coefficients, the calculus gain of the non-
linear state error feedback control rate (NLSEF) in the
fuzzy self-rejecting controller and the error correction
coefficients of the expansive state observer (ESO).

e) The IWOA-Fuzzy-ADRC controller is compared with
the ADRC controller and the PID controller in terms
of effectiveness, dynamic performance and stability for
tracking the positional trajectory of a quadrotor UAV.

II. DYNAMICS MODEL OF THE QUADROTOR UAV
The quadrotor UAV is a flight system consisting of a frame
arranged in a cross or X-shape and four motor-connected
fixed rotors, which can carry various sensors for detecting
attitude information [23], [24].

The quadrotor UAV system is modelled under the assump-
tions that: (1) the quadrotor UAV is a rigid body with constant
mass and inertia moment; (2) the gravity center is constant
and coincides with the geometric center of the body; and
(3) the UAV is subject to only gravity and the pull of the pro-
peller. The Newton-Euler principle is implemented to model
the quadrotor UAV system, neglecting the air resistance. The
nonlinear model of the quadrotor UAV is:

φ̈ =
Iy − Iz
Ix

θ̇ ψ̇ +
L
Ix
U2 − Lkφ φ̇ +1φ

θ̈ =
Iz − Ix
Iy

φ̇ψ̇ +
L
Iy
U3 − Lkθ θ̇ +1θ

ψ̈ =
Ix − Iy
Iz

φ̇θ̇ +
1
Iz
U4 − kψ ψ̇ +1ψ

ẍ =
U1

m
(sin θ cosφ cosψ + sinφ sinψ) − kx ẋ +1x

ÿ =
U1

m
(sin θ cosφ sinψ − sinφ cosψ) − kyẏ+1y

z̈ =
U1

m
cos θ cosφ − g− kzż+1z

(1)
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where φ, θ and ψ are the cross-roll, pitch and yaw angles
of the quadrotor UAV respectively; L is the distance from
the rotor center to the origin of the body coordinate; x, y
and z are the positions of the UAV in the three directions
respectively; m is the mass of the UAV; Ix , Iy and Iz are the
rotational inertia of the UAV; g is the acceleration of gravity;
kx , ky, kz, kθ , kψ and kφ are the drag coefficients of each chan-
nel;1x ,1y,1z1θ ,1ψ and1φ are the bounded interference
or unmodelled parts respectively; and U1,U2,U3 and U4 are
four control inputs of the system.

U1 = k1(ω2
1 + ω2

2 + ω2
3 + ω2

4)
U2 = k1(−ω2

2 + ω2
4)

U3 = k1(−ω2
1 + ω2

3)
U4 = k2(ω2

1 − ω2
2 + ω2

3 − ω2
4)

(2)

where k1 and k2 represent the lift and drag coefficients of a
rotor; as well as ω1, ω2, ω3 and ω4 are the rotational speeds
of four motors respectively.

Since the model of a quadrotor UAV has a strong non-
linear character, it is not conducive to the controller design.
Therefore, in order to reduce the complexity of controller
design, the model of a quadrotor UAV is linearized according
to the minimum angle assumption:

φ̈ =
1
Ix
U2

θ̈ =
1
Iy
U3

ψ̈ =
1
Iz
U4

ẍ = −gθ

ÿ = gφ

z̈ = −
U1

m
+ g

(3)

It can be seen that the linearized model not only reduces
the non-linear characteristic of the system, but also simpli-
fies the coupling relationship between position and attitude,
reducing the complexity of the control system design. The
framework of a quadrotor UAV control system obtained from
the linearized model is shown in FIG. 1.

In the control process of a quadrotor UAV, the position
controller in the x and y directions calculates the desired pitch
and roll angles respectively based on the input reference sig-
nals xref and yref ; the roll angle controller and the pitch angle
controller calculate the inputs U2 and U3 respectively based
on the desired attitude obtained from the position controller;
while for the position controller and the yaw angle controller
in the z direction, both can calculate the inputs U1 and U4
respectively directly based on the input reference position
zref and desired yaw angle ψref .Then, the actual position and
attitude of theUAV can be obtained from the calculated inputs
and feed them back into the system, creating a double closed-
loop structure.

FIGURE 1. Controller structure of quadrotor UAV.

FIGURE 2. The structure of ADRC control system.

III. FUZZY ADRC CONTROLLER
Conventional ADRC ismainly composed of an extended state
observer (ESO), a tracking differentiator (TD) and a nonlin-
ear state error feedback control (NLSEF). Firstly, the error
between the input and output of system is obtained. Then, the
over-processing process is arranged for the given signal with
non-linear TD to obtain the values of required differential
components. Finally, the weighted sum is converted to a non-
linear form by NLSEF, the expansion state observer ESO
detects the total disturbance, the disturbance is estimated and
the actual control signal of system is gained. In order to
enable the quadrotor UAV control system to estimate and
compensate for uncertain disturbances accurately in real time,
this paper improves the ADRC controller by introducing a
fuzzy controller and an IWOA for achieving parameter self-
tuning. The structure of the ADRC control system is shown
in FIG. 2.
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A. TRACKING DIFFERENTIATOR
TD consists of two inertial segments connected in parallel to
complete the transition process in the control process. The
effect of transitioning the input is achieved by continuously
tracking the input via a first-order delay segment and deriving
its approximate differentiation. Furthermore, the problem of
overshooting during regulation is avoided by arranging the
transition process of system. The discrete form of TD is as
follows:

x1(k + 1) = x1(k) + hx2(k)
x2(k + 1) = x2(k) + hfhan

fhan = −rsign(x1(k) − v(k) +
(x2(k)|x2(k)|)

2r
)

(4)

where fhan is a second-order discrete function designed to
solve the problem that the system cannot reach the desired
value in finite time and stops at the desired value, the specific
expression of which is:

u = fhan(x1, x2, r, h)

d = rh
d0 = hd
y = x1 + hx2

a0 =

√
d2 + 8r|y|

a =

{
x1+0.5(a0 − d)sign(y) |y| > d0x2 + y/h|y| ≤ d0

fhan = −

{
rsign(a) |a| > d
r ad |a| ≤ d

(5)

where x1 is the system’s expected value v (k) of tracking
signal; x2 is the differential of the system’s tracking signal;
h is the integration step of the function that determines the
effect of the system’s noise filtering; and r determines how
fast the system tracks the input signal.

B. NONLINEAR STATE ERROR FEEDBACK CONTROL
NLSEF utilizes the deviation of each state quantity of system
in a form of non-linear combination (i.e., the actual control
value of system obtained by a non-linear combination of
the difference between the actual value and estimated value
observed by ESO) to constitute the output, thus improving
the control performance of system, and can flexibly match
the relationship between the proportion and differentiation of
error to achieve the good control effect. The mathematical
expression is illustrated as:

e1 = v1 − z1
e2 = v2 − z2
u0 = β1fal(e1, α1, δ) + β2fal(e2, α2, δ)

fal(e, α, δ) =

{
e

δα−1 |e| ≤ δ

|e|αsign(e) |e| > δ

(6)

where v1 and v2 are the tracking input of nonlinear error
feedback rate and its differentiation, respectively; z1 and z2
represent the deviation output of each ESO state; u0 is the
control quantity formed by a certain nonlinear combination
of NLSEF; β1 and β2 are the gains of integration and differ-
entiation in NLSEF, respectively; fal(e, α, δ) is the nonlinear
function, where δ denotes the range of linear segment lengths.

C. EXTENDED STATE OBSERVER
As the disturbance affects the system output, we consider
the external disturbance as a new state of controlled system
and construct the ESO estimating new variables via feedback,
which is not dependent on the specific mathematical model
generating disturbance and requires no direct measurement
of action. For common second-order systems, the discrete
expression for ESO is:
e(k) = z1(k) − y(k)
z1(k + 1) = z1(k) + h [z2(k) − β01fal(e1, α1, δ)]
z2(k + 1) = z2(k) + h [z3(k) − β02fal(e1, α2, δ) + bu]
z3(k + 1) = z3(k) + hβ03fal(e, α3, δ)

(7)

where β0i(i = 1, 2, 3) is the output error gain; δ is the length
of linear interval; fal(e, αi, δ) (i = 1, 2, 3) is a non-linear
function used to suppress signal jitter with the expression:

fal(e1, αi, δ) =

{ e
δ1−αi

|e1| ≤ δ

|e1|αisign(e1) |e1| > δ
(8)

where δ is the length of linear interval for function fal; b is
the compensation factor that determines the compensation
strength, generally taken as 1; and β0i(i = 1, 2, 3) is the
output error gain.

D. IWOA-BASED FUZZY ADRC CONTROLLER
Taking the quadrotor UAV channel x as an example,
we present the fuzzy ADRC controller for channel x and
construct other channels in the same way.

We utilize the IWOA algorithm to obtain the optimal
adjustment coefficients kbetai_x (i = 1, 2) and kbeta0i_x (i =
1, 2, 3) for the fuzzy ADRC controller and to optimize β1, β2
and β0i(i = 1, 2, 3) simultaneously. The difference between
the desired and actual values is taken as the input of fuzzy
control, after the selection of affiliation function and the
determination of fuzzy rules, and after the defuzzification,
two signals dbeta_x and dbeta0_x are output, which are
finally used as the adjustment amount of β1, β2 and β0i(i =

1, 2, 3), so that the parameters can be self-tuned and the
control effect of system can be improved.{

beta1_x ′
= beta1_x + kbeta1_x∗dbeta_x

beta2_x ′
= beta2_x + kbeta2_x∗dbeta_x

(9)

where betai_x ′ (i = 1, 2) is the parameter β1 and β2 in the
NLSEF optimized by the fuzzy control and IWOA algorithm;
betai_x (i = 1, 2) is the βi (i = 1, 2) optimized by the IWOA
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algorithm; and kbetai_x ∗dbeta_x (i = 1, 2) is the adjustment
amount of fuzzy control output.

The parameter β0i(i = 1, 2, 3) in the ESO after
fuzzy control and optimization via IWOA algorithm can be
expressed as:

beta01_x ′
= beta01_x + kbeta01_x∗dbeta0_x

beta02_x ′
= beta02_x + kbeta02_x∗dbeta0_x

beta03_x ′
= beta03_x + kbeta03_x∗dbeta0_x

(10)

where beta0i_x ′ (i = 1, 2, 3) indicates the parameter β0i(i =

1, 2, 3) in the ESO after optimization by fuzzy control and
IWOA; beta0i_x
(i = 1, 2, 3) is β0i(i = 1, 2, 3) after optimization by IWOA;
kbeta0i_x ∗ dbeta0_x (i = 1, 2, 3) is the adjustment amount
of fuzzy control output. The structure of proposed IWOA-
Fuzzy-ADRC is illustrated in FIG.3.

FIGURE 3. Controller structure of IWOA-Fuzzy-ADRC.

In fuzzy control, ‘‘trimf’’ is selected as the affiliation func-
tion in this paper. dbeta_x and dbeta0_x fuzzy rules are listed
in Tables 1-2.

TABLE 1. dbeta_x Fuzzy control rule table.

E. ANALYSIS OF CONTROLLER STABILITY
In this paper, the controller stability is investigated with the
roll angle φ as an example. From the dynamics model of sys-
tem, it is clear that the quadrotor UAV is a typical underdriven

TABLE 2. dbeta0_x Fuzzy control rule table.

system with the following equations of attitude subsystem:
φ̈ =

Iy − Iz
Ix

θ̇ ψ̇ +
L
Ix
U2 − Lkφ φ̇ +1φ

θ̈ =
Iz − Ix
Iy

φ̇ψ̇ +
L
Iy
U3 − Lkθ θ̇ +1θ

ψ̈ =
Ix − Iy
Iz

φ̇θ̇ +
1
Iz
U4 − kψ ψ̇ +1ψ

(11)

which can be obtained by organizing: φ̈

θ̈

ψ̈

 =

 f1 (φ, θ, ψ, ω)
f2 (φ, θ, ψ, ω)
f3 (φ, θ, ψ, ω)

 + B

U2
U3
U4

 (12)

where B =

 L/Ix 0 0
0 L/Iy 0
0 0 L/Iz

;


f1 =

Iy−Iz
Ix
θ̇ ψ̇ − Lkφ φ̇ +1φ

f2 =
Iz−Ix
Iy
φ̇ψ̇ − Lkθ θ̇ +1θ

f3 =
Ix−Iy
Iz
φ̇θ̇ − kψ ψ̇ +1ψ

(13)

Let ξ1 = φ, ξ2 = φ̇ and ξ3 = f1, and assuming ḟ1 = h and
bounded, ξ =

[
ξ1 ξ2 ξ3

]T . The equation for the roll angle is
expressed in the form of a state quantity equation as follows:{

ξ̇ = Aξ + BU2 + Eh
φ = Cξ

(14)

where A =

 0 1 0
0 0 1
0 0 0

 ,B =

 0
L/Ix
0

 ,C =

 1
0
0

T

and E =[
0 0 1

]T .
For analysis simplicity, the poles of the configuration

observer are all located at −ω0, then the characteristic poly-
nomial λ(s) can be expressed as:

λ(s) = s3 + 3ω0s2 + 3ω2
0s+ ω3

0 = (s+ ω0)3 (15)

in which ω0 is the bandwidth of the observer. The larger the
bandwidth of the observer, the more accurate the estimate
will be, but an excessive bandwidth will increase the sen-
sitivity to noise. The gain of the observer can be expressed

Q =

[
3ω0 3ω2

0 ω0
3
]
.

Let ξ̃i = ξi − ξ̂i(i = 1, 2, 3), the state equation for
estimation error of the state observer is established according
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to Eq. (14): 
˙̃
ξ1 = ξ̃2 − q1ξ̃1
˙̃
ξ2 = ξ̃3 − q2ξ̃1
˙̃
ξ3 = h− q3ξ̃1

(16)

Let εi = (ξ̃i)/(ω
i−1
0 )(i = 1, 2, 3), then Eq. (16) can be

changed to

ε̇ = ω0Aεε +
Bε
ω2
0

h (17)

where Aε =

 −3 1 0
−3 0 1
−1 0 0

 and Bε =

 0
0
1

.

Theorem 1: Since h is bounded, there exists a constant
σi > 0 as well as time Ti > 0. If t ≥ Ti exists and ω0 > 0,
then |ξ̃i| ≤ σi(i = 1, 2, 3) and thus the estimation error is
bounded for bounded inputs to the system, i.e., the closed-
loop system is asymptotically stable.

Proof: The solution to Eq. (17) is:

ε(t) = eω0Aε tε(0) +

∫ t

0
eω0Aε(t−τ )

Bε
ω2
0

hdτ (18)

Let H (t) =
∫ t
0 e

ω0Aε(t−τ ) Bε
ω2
0
hdτ, h is bounded, i.e., there

exists a positive number µ,making |h| ≤ µ, then:

|Hi(t)| ≤
µ

ω3
0

[
|(A−1

ε Bε)i| + |(A−1
ε Bεeω0Aε t )i|

]
(19)

where |(A−1
ε Bε)i| =

{
1|i=1
3|i=2,3

.

Since the triple pole configuration of ESO is at −ω0, then
Aε is Hurwitz stable, and for t ≥ Ti > 0 with |(eω0Aε tBε)i| ≤
1
ω3
0
(i = 1, 2, 3) i.e.,

|(A−1
ε eω0Aε tBε)i| ≤


1

ω3
0

|i=1

4

ω3
0

|i=2,3

(20)

thereby obtaining |Hi(t)| ≤
3µ
ω3
0

+
4µ
ω6
0
(i = 1, 2, 3).

Assuming εs(0) = |ε1(0)| + |ε2(0)| + |ε3(0)|, the same is
obtained:

|[eω0Aε tε(0)]i| ≤
εs(0)

ω3
0

(21)

From Eq. (18), it can be obtained that:

|εi(t)| ≤ |[eω0Aε tε(0)]i| + |Hi(t)| (22)

Suppose that ξ̃s(0) = |ξ̃1(0)| + |ξ̃2(0)| + |ξ̃3(0)|, due to
εi = (ξ̃i)/(ω

i−1
0 )(i = 1, 2, 3), combined with (18), (19) and

(21), for all t ≥ Ti > 0, which can be obtained as follows:

ξ̃i(t) ≤ |
ξ̃s(0)

ω3
0

| +
3µ

ω4−i
0

+
4µ

ω7−i
0

= σi (23)

where, i = 1, 2, 3. Proof of completion.
In order to ensure that the designed fuzzy controller is

stable, the input/output (I/O) stability theory is used for the
analysis. According to the I/O stability theorem, sufficient
conditions for system stability are obtained by proving that
the system transfer function and the fuzzy feedback controller
are obtuse and strictly obtuse, respectively [25].

The roll angle equation transfer function is obtained from
Eq. (14) as:

G(s) =
1

Ix
L s

2 + Ixkϕs
(24)

From the obtuseness theorem, it can be seen that the con-
trolled object G(s) is not originally obtuse. For the controlled
object and the controller multiplied by (s+ n) and (s+ n)−1,
respectively, the transfer functions of the transformed equiv-
alent control object and feedback controller are:

G′(s) =
s+ n

Ix
L s

2 + Ixkϕs
(25)

G′
c(s) =

1
s+ n

(β1 + β2s) (26)

If Re(G′(jω)) ≥ 0 is satisfied, then G′(s) is obtuse, so
there is:

Re(G′(jω)) = Re

[
(jω + n)( IxL (jω)

2
− Ixkϕ jω)

( IxL )
2(jω)4 − (Ixkϕ)2(jω)2

]

= Re

[
−
Ixn
L ω

2
+ Ixkϕω2

−
Ix
L (jω)

3
− Ixkϕn(jω)

( IxL )
2ω4 + (Ixkϕ)2ω2

]

=
−
Ixn
L + Ixkϕ

( IxL )
2ω2 + (Ixkϕ)2

(27)

When kϕL ≥ n, then Re(G′(jω)) ≥ 0 and G′(s) are obtuse.
If Re(G′

c(jω)) ≥ µ (where µ > 0) is satisfied, then G′(s) is
strictly obtuse, so there is:

Re(G′
c(jω)) = Re

[
(β1 + β2s)(n− s)
(s+ n)(n− s)

]
= Re

[
β1n+ β2ω

2
− β1s+ β2ns

n2 + ω2

]
=
β1n+ β2ω

2

n2 + ω2 (28)

If β1n > 0, β2 ≥ 0, then Re(G′
c(jω)) ≥ µ and G′(s) are

strictly obtuse.
Thus, it can be shown that the roll angle controller satisfies

the sufficient conditions for I/O stability as follows:

kϕL ≥ n, β1n > 0, β2 ≥ 0 (29)

Similarly, it can be deduced that other directions satisfy the
I/O stability sufficiency condition.
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IV. WHALE OPTIMIZATION ALGORITHM
A. CONVENTIONAL WOA
With the advantages of simple operation and few control
parameters [26], the WOA simulates the hunting behavior of
humpback whales consisting of three main stages: encircling
prey, bubble net hunting and searching for prey.

1) ENCIRCLING PREY
Since the location of the optimal individual (prey) is unknown
in the search space, the WOA assumes that the current best
candidate solution (i.e., the solution with the lowest fitness
value) is the location of target prey or the closest prey. Other
individuals update their positions towards the optimal solu-
tion with the following expressions:

D = |C · X∗(t) − X (t)| (30)

X (t + 1) = X∗(t) − A · D (31)

in which t is the current number of iterations; X∗ denotes
the position vector of the current best solution; X represents
the position vector of the individual whale; D indicates the
distance between the individual whale and its prey; || is the
absolute value; · means the element-by-element multiplica-
tion; as well as A and C are coefficient vectors for the way
whales swim, with the following expressions:

A = 2a · r − a (32)

C = 2 · r (33)

a = 2 −
2t
Tmax

(34)

where r is a random vector in interval [0, 1]; a denotes a
control parameter that decreases linearly from 2 to 0 with
the number of iterations; and Tmax indicates the maximum
number of iterations.

2) BUBBLE NET HUNTING
The bubble net attack consists of two main mechanisms:
shrinkage bracketing and spiral update position. The shrink
bracketing mechanism is described as decreasing the value
of a in Eq. (32) from 2 to 0 during the iterative process,
with A fluctuating in the interval [−a, a] at this point. When
A is a random value within the interval [−1, 1], the whale
can approach from the original position to target position
and perform a shrinking bracket. The spiral update position
mechanismfirst calculates the distance from individual whale
(X ,Y ) to prey (X∗,Y ∗), and then models the spiral motion of
humpback whales with a spiral equation, which is expressed
as follows:

X (t + 1) = D · ebl · cos(2π l) + X∗(t) (35)

where D is the distance from the individual whale to its prey,
i.e., D = |X∗(t) − X (t)|; b denotes a constant defining the
logarithmic spiral shape; and l is a random number within
the interval [−1, 1].
Suppose that humpback whales perform shrinkage brack-

eting and spiral update position with a one-half probability,

the mathematical model is described as follows:

X (t + 1) =

{
X∗(t) − A · Dp < 0.5
D · ebl · cos(2π l) + X∗(t) p ≥ 0.5

(36)

where p is the random number in interval [0, 1].

3) SEARCHING FOR PREY
When |A| ≥ 1, the whale population performs the global
search and no longer updates its position based on the current
optimal solution, but updates its position based on a randomly
selected whale to find the optimal solution for population
diversity, with the following expressions:

Drand = |C · Xrand (t) − X (t)| (37)

X (t + 1) = Xrand (t) − Drand (38)

where Xrand denotes the position vector of the randomly
selected whale individual from the whale population; and
Drand indicates the distance between the randomly selected
whale individual and its prey.

B. CHAOTIC SEQUENCES-BASED WOA
WOA searches for optimal solutions based mainly on prob-
ability and spiral update position mechanism. Nevertheless,
as the initial populations are basically randomly initialized
in the search space, resulting in the overall probability dis-
tribution is not uniform and mainly limited to few small
intervals for local search, which cannot effectively extract all
information in the space. For this reason, the initial population
should be distributed over the whole search space as much as
possible to shorten the redundancy time of the algorithm in
global search stage, and thus search for the location of optimal
solutions rapidly.

Chaos is the non-linear behavior with characteristics such
as regularity and randomness, where the Logistic mapping
chaotic sequence is able to undergo all states without repeti-
tion in a certain range, the mathematical expression is:

xk+1 = µxn(1 − xn) (39)

The Logistic is in the chaotic state when x ∈ (0, 1) and
µ = 4. FIG. 4. shows the probability distribution of
range (0, 1) obtained by iterating the Logistic mapping for
100000 times.

As can be seen from FIG. 4, the high probability dis-
tribution at the two ends of Logistic chaos sequence has
limitations reducing the algorithm efficiency. Skew Tent
chaotic sequence has the advantages of equal probability den-
sity and less searching time, but there are disadvantages such
as unstable periodic points and so on. Therefore, combining
it with the Logistic chaos sequence effectively solves this
problem, and the mathematical expression obtained is:{

xk+1 = xk/ϕk 0 < xk < ϕk

xk+1 = (1 − xk )/(1 − ϕk ) ϕk < xk < 1
(40)
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FIGURE 4. Logistic mapping probability distribution.

FIGURE 5. Probability distribution of Skew Tent combining with Logistic
mapping.

where ϕk is subject to the Logistic mapping. With the com-
bination used in this paper, the probability distribution for
100000 iterations is presented in FIG. 5.

It can be seen from FIG. 5 that the combination of chaotic
sequences has a uniform distribution of probability density
functions, which effectively solves the problem of failing
to extract information accurately due to local search, and
reduces the impact of selection for initial values on global
search ability.

InWOA, the phenomenon of unchanged leader X∗(t) posi-
tion after multiple iterations causes early convergence, i.e.,
the rapid convergence to the local optimum when solving the
optimization problem, which ultimately degrades the quality
of algorithm solutions.

C. WOA BASED ON CROSS OPERATORS WITH GAUSSIAN
VARIATIONAL OPERATORS
Aiming at addressing the above problems, this paper com-
bines the prey position with the crossover operators and
Gaussian variational operators of the genetic algorithm,

making the algorithm jump out of local optimum rapidly.{
Ak = α∗Ak+1

+ (1 − α)∗Ak

Ak+1
= α∗Ak + (1 − α)∗Ak+1 (41)

where Ak denotes the position of optimal prey in k generation
population; Ak+1 indicates the position of other random preys
in k generation population; and α is the random crossover
operator.

The prey individuals of new generations are mainly deter-
mined by α and individuals of previous generations. When
α converges to 0.5, the offspring moves away from father,
which can expand the searching space and ensure the popu-
lation diversity; when α moves away from 0.5, the offspring
moves closer to father, which narrows the searching range and
improves the searching accuracy. The expression of improved
crossover operator is:

α = min(α) + (max(α) − min(α)) ∗ e
T
l (42)

where min(α) and max(α) represent the minimum and maxi-
mumvalues of α, respectively; and T is themaximumnumber
of iterations.

To ensure that the gene proportion of Ak and Ak+1 in the
offspring is more balanced at the beginning of iteration, the
initial value of α is set as 0.5, which rapidly approaches 1
as the iteration number grows, making the search accuracy
increase.

The variation operator prevents the algorithm from falling
into a local optimum, while also maintaining the population
diversity. In addition, with the aim of reducing the probability
for prematureness and falling into the local optimum in con-
ventional WOA, this paper performs the Gaussian variational
operation on the current optimal solution with following
expression:

Xbest (t + 1) = Xα(t)(1 + Gaussion(σ )) (43)

where Xbest (t + 1) refers to the position of individual after
variation; Gaussion(σ ) is a random variable subjecting to the
Gaussian distribution. The global optimal position is updated
as follows:

Xα(t + 1) =


Xbest (t + 1), others
Xα(t), f (Xbest (t + 1) ) > f (Xα(t) )
and rand4 < p

(44)

where rand4 indicates the random variable in interval [0, 1];
p represents the selection probability; and f (·) is the fitness
value of individual. From Eq. (23), it can be seen that falling
into the local optimum can be avoided through perform-
ing the mutation operation on the current global optimum
solution Xα(t) .

In conclusion, the flow chart of IWOA proposed in this
paper is shown in FIG. 6.
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FIGURE 6. Flow chart of IWOA.

D. COMPLEXITY ANALYSIS OF THE IWOA ALGORITHM
The time complexity can be used as one of the criteria to judge
the performance of an algorithm, which reflects the opera-
tional efficiency of the algorithm. In the WOA algorithm,
the population size is assumed to be N and the individual
dimension is n. Since the search ability and solution accuracy
of algorithm do not only depend on the evolutionary algebra
and population size, the basic variable that determines the
time complexity of an algorithm when solving a problem
is the dimension of the individual space representing the
problem magnitude.

In the initialization phase of the algorithm, suppose that:
t1 is the time to set the value and position of the optimal
individual objective function, and t2 is the time to set each
dimensional vector of individual, then the time complexity of
this process is:

T1 = O(t1 + N · (n · t2)) = O(n) (45)

The total number of cycles to enter the loop is Tmax. Let: the
time to perform the out-of-bounds wording for each dimen-
sion of the individual be t3, the time to solve the objective
function be f (n), the time to update the best individual be t4,

and the time to update the coefficient A and C vectors by
Eqs. (32) and (33) be t5 and t6, respectively. The time com-
plexity of this process is:

T2 = O(N · (n · t3 + f (n) + t4 + t5 + t6)) = O(n+ f (n))
(46)

Suppose that there are m1 individuals in the population
which are searching for food at random, m2 individuals are
narrowing down to surround food, and m3 individuals are
feeding in a spiral bubble net (N = m1 + m2 + m3, 0 ≤

m1,m2,m3 ≤ N ), and that the time to update each dimen-
sional vector by Eqs. (31) and (36) when each individual is
executing one of these three different strategies are t7, t8 and
t9, respectively. The time complexity of this process is:

T = T1 + Tmax · (T2 + T3) = O(n+ f (n)) (47)

In IWOA, the population size is N , the dimension of each
individual is n, the population position is initialized using two
chaotic mappings, and the complexity of this time is: O(N ).
During the iteration, the total number of iterations is set
to Tmax, the number of crossover operator iterations is Tc,
the time complexity of calculating the variation judgment
factor and updating the population position after variation is
O(Tmax · (N2 + 1)), and the time complexity of calculating the
random crossover operator complexity is O(Tc).
From the above analysis, it can be seen that the time

complexity of IWOA is the sum of theWOA time complexity
and the above three-time complexities, and the result does not
change the order of magnitude of the time complexity, so the
IWOA proposed in this paper does not reduce the operational
efficiency of the algorithm.

E. IWOA PERFORMANCE TESTING
In this section, we use typical test functions F1, F2, F3,
and F4 to evaluate the convergence speed, local and global
search capability, and convergence accuracy of the IWOA,
which are shown in Table 3. In order to provide a more
intuitive representation of the IWOA search performance, the
experimental results are compared with those of the conven-
tional WOA, PSO, GA and MFO algorithms. In order to
ensure the fairness of the experiments, the four algorithms
are independently tested 50 times and all the experimental
results are de-averaged (Ave), minimized (Min) and standard
deviated (Std) with a population size of 100 and iterations of
100. The specific experimental results are shown in Table 4,
where the optimal solutions are shown in bolded font. The
corresponding plots of the test functions in three-dimensional
space and the positions of convergence to the optimal values
are shown in FIGs. 7-10.

As can be seen from Table 4, for the single-peaked test
functions F1 and F2, Ave and Min of IWOA proposed in this
paper are the smallest, which indicates that the global con-
vergence accuracy and optimization finding ability of IWOA
are better than other three algorithms. For the multi-peak test
functions F3 and F4, Ave and Min of IWOA proposed in this
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TABLE 3. List of test functions.

TABLE 4. Test result.

FIGURE 7. Test function F1.

paper are also smaller than those of the other algorithms, indi-
cating that the IWOA has better local optimization capability
than the other algorithms. For all the test functions, Std of

FIGURE 8. Test function F2.

FIGURE 9. Test function F3.

FIGURE 10. Test function F4.

the solutions of IWOA is the smallest compared with other
algorithms, which indicates that the stability of it is stronger
than other algorithms. As the number of solution dimensions
increases, Std of IWOA does not change significantly, which
indicates that it has better accuracy and stability in solving
complex non-linear mathematical models.
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V. SIMULATION TESTS AND ANALYSIS
Based on the principles described above, the corresponding
simulation model is constructed in Matlab/Simulink in this
paper to obtain the tracking and error effects of the ADRC
controller, the PID controller and the proposed IWOA-Fuzzy-
ADRC controller on the position attitude of the quadrotor
UAV. In addition, to demonstrate the superiority of IWOA-
Fuzzy-ADRC controller, it is compared with PID and ADRC
algorithms in terms of dynamic response and steady-state
accuracy in this paper.

A. OPTIMIZATION AND ASSIGNMENT OF
SIMULATION PARAMETERS
In this paper, the IWOA algorithm is employed to optimize
kbetai_x (i = 1, 2), kbeta0i_x (i = 1, 2, 3), β1, β2, and
β0i(i = 1, 2, 3) of the fuzzy ADRC controller for faster and
more accurate quadrotor UAV position trajectory tracking
with less tracking error. With the number of iterations at
200, taking the position control as y direction, the parameter
iteration curves for the optimal adjustment factor and the
quantization factor to adjust the input range of fuzzy con-
troller are shown in FIG. 11. In the case of attitude controller
pitch, the parameter curves for the calculus gains β1 and β2 of
Fuzzy-NLSEF, as well as the output error gain β0i(i = 1, 2, 3)
of Fuzzy-ESO are shown in FIG. 12.

FIGURE 11. Iteration curves for optimal adjustment coefficient and
quantization factor of position y direction fuzzy controller.

As can be seen from FIGs. 11-12, the IWOA, optimized
by the two chaotic mappings, the crossover operators and the
Gaussian variant, enables controller parameters to converge
faster and without easily falling into local optima.

The values of required parameters for the fuzzy ADRC
position controller and the attitude controller are listed in
Tables 5-6, respectively.

B. ANALYSIS OF SIMULATION RESULTS
FIG. 13 illustrates the convergence curve of IWOA fitness
function for iteration number 200 and population size 100.
It can be seen that the trend of curve decreases and then con-
verges to a stable state. When the iteration number is 30, the

FIGURE 12. Parameters setting curves of attitude controller pitch channel.

TABLE 5. Position controller parameters of the ADRC algorithm.

TABLE 6. Attitude controller parameters of the ADRC algorithm.

fitness value of IWOA converge to be stable and the fitness
value of IWOA is low, indicating that the solution searched
by IWOA is of high quality, i.e., the search performance,
convergence speed and accuracy of the algorithm achieve
satisfactory results.

FIGs. 14-16 presents the tracking comparison curves of the
position trajectory for the IWOA-Fuzzy-ADRC controller,
theADRC controller and the PID controller in quadrotor UAV
under the position x, y and z directions, where xd , yd and zd
are the position expectation values.

From FIG. 14, it can be seen that in direction, the IWOA-
Fuzzy-ADRC controller can track the desired trajectory in
real time within 3.15s, while the ADRC and PID take 4.97s
and 5.05s respectively to fully track the desired trajectory.
Additionally, the ADRC controller and PID controller have
the problems of steady-state error and large overshoot, result-
ing the control performances of them are far inferior to that
of the IWOA-ADRC controller. In the same way, as shown
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FIGURE 13. Convergence curve of fitness function.

FIGURE 14. Curve of position trajectory tracking in x direction.

FIGURE 15. Curve of position trajectory tracking in y direction.

FIGURE 16. Curve of position trajectory tracking in z direction.

in FIGs. 15-16, the IWOA-Fuzzy-ADRC controller in y and
z direction outperforms both ADRC and PID in terms of
steady-state accuracy as well as dynamic performance.

The comparative real-time position tracking error curves
of the IWOA-Fuzzy-ADRC controller, the ADRC controller
and the PID controller for the quadrotor UAV in x, y and z

FIGURE 17. Curve of position error tracking in x direction.

FIGURE 18. Curve of position trajectory tracking in y direction.

FIGURE 19. Curve of position trajectory tracking in z direction.

directions are shown in FIGs. 17-19. We can observe that the
IWOA-Fuzzy-ADRC controller converges at relatively rapid
rate in three directions, while the errors of the ADRC and
PID converge at relatively slow rate. As a result, it can be
concluded that the controller designed in this paper is able
to accurately and quickly track the desired position trajectory
in real time, effectively improve the dynamic performance of
system as well as the steady-state accuracy.

The results of calculating various performance metrics for
IWOA-Fuzzy-ADRC controller, ADRC controller and PID
controller real-time tracking position trajectories in x and
y directions are shown in Tables 7-8. It can be seen that
the IWOA-Fuzzy-ADRC controller outperforms the ADRC
and PID in terms of dynamic performance and steady-state
accuracy.

The comparative real-time trajectory tracking curves and
real-time trajectory tracking error curves for IWOA-Fuzzy-
ADRC controller, ADRC controller and PID controller of
quadrotor UAV with Roll channel attitude angle roll are
shown in FIGs. 20-21, and pitch channel attitude angle pitch
are shown in FIGs. 22-23. It can be seen that the IWOA-
Fuzzy-ADRC controller tracks the attitude angle in the fastest
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TABLE 7. Performance metrics of position tracking in x direction.

TABLE 8. Performance metrics of position tracking in y direction.

FIGURE 20. Tracking curve of rolling angle trajectory.

FIGURE 21. Trajectory error curve of roll angle tracking.

FIGURE 22. Tracking curve of pitching angle trajectory.

and best way, and its tracking error converges the most
rapidly, indicating that the IWOA-Fuzzy-ADRC controller
can effectively restrain interference, ensure the system sta-
bility, and track the attitude in real time accurately. Whereas
the ADRC and PID have a slower error convergence rate,

FIGURE 23. Trajectory error curve of pitch angle tracking.

which indicates that both cannot get good results for tracking
complex trajectories.

The above experimental results demonstrate that the
IWOA-Fuzzy-ADRC controller designed in this paper can
ensure excellent results in tracking complex trajectories of
quadrotor UAV, making it converge rapidly and steadily to
the desired trajectory, and rendering the control system have
better dynamic response and steady-state accuracy.

VI. CONCLUSION
In order to provide fast and accurate tracking for the position
and attitude trajectory of a quadrotor UAV, an IWOA-Fuzzy-
ADRC controller has been designed in this paper. The
specific works are as follows: (1) The initial population
diversity of WOA has been improved by combining logistic
chaos mapping and skew tent mapping, which has solved
the problem of low convergence accuracy and slow speed of
traditional WOA. (2) The global search capability of WOA
has been enhanced by introducing the crossover operator and
Gaussian variational operator, which prevent it from falling
into local optimum. (3) IWOA has been obtained by combin-
ing (1) and (2) as well as optimizing the optimal adjustment
coefficients of the fuzzy self-adjoint controller, the calcu-
lus gain of NLSEF and the error correction coefficients of
ESO. The simulation results show that the proposed method
can improve the tracking effect of the position and attitude
for quadrotor UAV more effectively than some traditional
methods, with faster response time, higher steady-state accu-
racy and stronger robustness to external disturbances. Taking
x-direction position trajectory tracking as an example, the
controller can reduce overshoot to 47.7% and adjustment time
to 45.8% compared to conventional ADRC, and overshoot to
45.1% and adjustment time to 67.5% compared to conven-
tional PID. The controller can reduce the overshoot to 32%
and the adjustment time to 66.8% in y-direction position tra-
jectory tracking compared to conventional ADRC, and reduce
the overshoot to 46.7% and the adjustment time to 75.2%
compared to conventional PID. This effectively reduces the
adjustment time andmagnitude of the UAV attitude trajectory
tracking.

To address the shortcomings of this paper, in future
research, we will use other fuzzy control techniques in the
design of this controller, such as IT2FLC [27], to investigate
the effectiveness of the controller for UAV attitude trajec-
tory tracking. In addition, to demonstrate the practicality of
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the controller and the comprehensiveness of the application
scenarios, we will analyze the attitude trajectory tracking of
fixed-rotor UAV and multi-rotor UAV [28], [29].
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