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ABSTRACT While ultrasound imaging has seen vast technical advances over the last decades, trans-
thoracic echocardiography still suffers from image quality degradation caused by acoustic interaction with
inhomogeneous tissue layers between the transducer and the heart. The acoustic energy reflections from
echogenic structures such as skin, subcutaneous fat, bone, cartilage, intercostal muscle tissue, and lungs
can form a dense overlay of echoes occluding the structural information resulting in a degradation of the
diagnostic value.We propose a newmethod for reducing this reverberational clutter inspired by how the brain
addresses the problem; identifying the reverberation overlay by the way it constitutes a pattern of speckles
that moves in one cohesive motion different from that of the underlying structures. With this approach,
we effectively render the clutter suppression as a video separation problem. Compared to traditional clutter
rejection methods that tend to specialize in either temporal or spatial qualities, we find a neural network
to be more flexible in incorporating both temporal and spatial information. We generate a pseudo-paired
data set using in vivo data by excising patches off hypo-echoic regions of strongly reverberation-affected
clinical recordings and superimposing them onto clean clinical recordings. The pseudo-paired data set of
beamformed in-phase and quadrature component (IQ)-data is used to train a neural network to suppress
reverberations in cine-loops. We demonstrate that this post-beamformer method can enhance image quality
in in vivo and make valuable clinical structures clearer in a commercial system. We show that the method
does not display any tendency to generate false cardiac structures, and that rapid motions from e.g. valve
leaflets retain high structural integrity and low levels of blurring. Our results suggest that this method can be
an effective and robust tool for suppressing reverberations in transthoracic ultrasound imaging.

INDEX TERMS Reverberation, haze, clutter, ultrasound, echocardiography, neural network, deep learning.

I. INTRODUCTION
A. BACKGROUND
Echocardiography is a widely used diagnostic tool in
medicine due to its non-invasive and real-time imaging capa-
bilities. However, the quality of cardiac ultrasound images
can be degraded by various factors, which can limit the accu-
racy of diagnosis and treatment. Dahl et al. established the
two primary sources of reduction in ultrasound image quality:
wavefront aberration and reverberation [1]. Wavefront aber-
ration is caused by inhomogeneities in the sound speed, which

The associate editor coordinating the review of this manuscript and

approving it for publication was Qilian Liang .

prevent all parts of the wavefront from reaching the focal
point simultaneously. This de-focusing increases the side-
lobe levels and reduces the spatial resolution of the image.
On the other hand, reverberation artifacts occur when the
acoustic energy is reflected twice or more before returning to
the transducer. The beamformer does not model these multi-
paths, and all signals with equal time-of-flight are combined,
representing the same location during image formation.

The origin of reverberation noise has been subjected in
various studies. Fatemi et al. investigated five sources of
reverberation noise in apical four-chamber view echocardio-
grams [2]. The scenarios included acoustic energy reflections
from echogenic structures such as skin, subcutaneous fat,
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bone, cartilage, intercostal muscle, lung, and out-of-scan-
plane heart tissue. Patients with short intercostal distance or
adverse relative locations of the heart and ribs were con-
sidered particularly difficult-to-scan. Connective tissue and
fatty structure of the subcutaneous layer have similarly been
identified as primary sources of reverberation in abdominal
imaging [3], [4].

Reverberation noise can appear as replicas of proxi-
mal/nearby structures, as bright tails after stronger reflectors,
or as cloud-like diffuse haze. In many cases, this clutter can
be found to be close to stationary and exhibit a speckle-like
texture. Reverberation noise is especially visible in hypoe-
choic or anechoic regions and becomes problematic when it
occludes weak cardiac structures [5]. As an example, such
a haze overlay can make the endocardial border challenging
to localize close to the apex [6]. Together, wavefront aber-
ration and reverberation increase noise levels and limit the
image contrast and resolution. Degradation in image quality
through these mechanisms may significantly reduce the diag-
nostic value of echocardiography. Flynn et al. [7] performed
a retrospective study of cardiac surgical patients and found
17% and 37% of the cases to have inadequate left and right
ventricle imaging, respectively. Moreover, clutter noise poses
an additional challenge in the analysis of image segmentation,
motion analysis, strain measurements, and flow estimation.
In severe cases of image degradation, patients may need to be
referred to more invasive and expensive forms of examination
like transesophageal echocardiography, contrast injections,
or alternative modalities like MRI or CT.

B. RELATED WORK
Different techniques have been proposed to suppress rever-
beration clutter. The most successful approach is tissue
harmonic imaging (THI) [8], which is now used in clinical
systems and has proven to be of crucial clinical impor-
tance [9]. THI utilizes the build-up of second harmonic
energy within the body to effectively suppress reverbera-
tion clutter originating from near-field structures. Another
technique that uses the nonlinear property of tissue is
SURF imaging [10]. SURF uses a dual frequency band
pulse-complex to separate first and multi-order scatterers and
has shown promising in-vivo results [11].

Coherence-based approaches aim to obtain higher contrast
by weighting each image pixel by the ratio of the coherent
energy to the total incoherent energy. The coherence factor
(CF) was first introduced as a quantitative measure of local
image quality by Hollman et al. [12]. The concept of coher-
ence as a weighting factor to achieve adaptive imaging has
later been further elaborated on, for instance, expanding it
into the concept of a generalized coherence factor (GCF)
more broadly formulated as the ratio of the low-frequency
spectral component to the to total aperture energy [13].

Shin et al. proposed to use multi-phase apodization with
cross-correlation (MPAX) as an alternative to generating the
weighting matrix. By using multiple apodization functions,

their method showed robustness in vivo where a high level
of reverberation clutter is expected [14]. Short-lag spatial
coherence (SLSC) differs from the previously mentioned
coherence-based methods as it was developed to gener-
ate images based on the lateral spatial coherence directly
without considering the echo’s brightness [15], [16]. SLSC
has demonstrated superior contrast, contrast-to-noise ratio
(CNR), and signal-to-noise ratio (SNR) compared to delay-
and-sum B-mode images, but struggles with the detection of
point-like targets in speckle-based backgrounds.

A model-based approach for the suppression of acous-
tic clutter was proposed by Byram et al. [17]. The method
is called aperture domain model image reconstruction
(ADMIRE), and it decomposes aperture domain ultra-
sound channel data to the modeled acoustic scattering
sources. ADMIRE showed successful reduction of unwanted
acoustic clutter in fundamental and harmonic imaging.
Brickson et al. [18] utilized a 3D convolutional neural net-
work to suppress diffuse reverberation noise by training it on
both simulated hazy and haze-free channel data. The model
demonstrated efficient reverberation suppression and gener-
alization to in vivo data. Luchies et al. [19] used a deep neural
network to suppress the frequency characteristics of off-axis
scattering in delay-aligned channel data. One challenge with
this approach is that it relies on simulated training data,
which may not accurately capture general reverberation pro-
cesses beyond off-axis scattering. The authors also attribute
an observed reduction in speckle SNR to inaccuracies in the
modeling and propose the generation of training data through
experiments.

Alongside the techniques focusing on channel data and
beamforming, a significant body of literature proposes
post-processing filters in order to suppress acoustic clutter.
These filters can be temporal, spatial, or spatiotemporal, and
aim to separate the signals from cardiac structures and the
clutter by decomposing the acquired data into a set of basis
functions. The basis functions can either be predefined or
adaptively learnt from the data.

Reverberation clutter is partially caused by slow-moving
organs and parts such as ribs and lungs. Separating input
data into velocity components has been extensively stud-
ied in color flow imaging (CFI), where the separation of
low-velocity blood flow from non-stationary tissue has been
a challenging problem. Although the acquisition in CFI dif-
fers from the B-mode acquisition as multiple pulses are
transmitted in the same direction for high pulse repeti-
tion frequency, the reverberation clutter and tissue clutter
separation problems share similarities. Bjærum et al. [20]
examined the use of three static high-pass filters, finite
impulse response (FIR), infinite impulse response (IIR), and
polynomial regression filters, in order to suppress tissue clut-
ter in CFI. Yu et al. investigated critical design parameters
of principal component analysis (PCA) eigen-based clutter
filters [21]. The approaches considered were the estimation of
eigen-components using single-ensemble or multi-ensemble
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and filtering of the eigenvalues in terms of value-based or
frequency-based. The value-based approach assumes clutter
has higher signal power than blood signals and achieves
clutter filtering by setting the k’s largest eigenvalues to zero or
eigenvalues above a predefined threshold (or relative thresh-
old) to zero. In the frequency-based approach, the mean
Doppler frequency of the eigenvectors is calculated using
the lag-one autocorrelation estimation. The eigenvalues cor-
responding to the eigenvectors with amean frequency that lies
within the bandwidth of the estimated center clutter frequency
are rejected. Yu et al. was unable to achieve stable filtering
using the value-based algorithm. However, they found the
frequency-based approach more effective than static filters in
suppressing clutter in cases of substantial tissue motion.

Demené et al. investigated SVD-based clutter filtering in
functional and Doppler Imaging [22]. The alternative acqui-
sition mode of ultrafast plane-wave imaging facilitates using
a longer ensemble length and brings high lateral coherence
compared to conventional multi-pulse Doppler acquisition.
Demené et al. argues that tissue motion is less deformable
than red blood cells during motion. Therefore, signals com-
ing from tissue are more spatially consistent over time than
blood signals. The separation of tissue and blood becomes the
problem of selecting sub-spaces produced by the SVD. The
same group also presented a comprehensive list of adaptive
estimators for the hard thresholding of the singular values
in [23]. The fourteen estimators considered based their esti-
mation on the distribution of the singular values, the right
(temporal) singular vectors, and the left (spatial) singular
vectors. The recommended estimator was based on a spatial
similarity (correlation) matrix, and spatial context was con-
sidered equal to or more important than the information in
time for clutter filtering. This is in contrast to conventional
focused ultrasound imaging, where clutter filters rely on tem-
poral information only. It is worth mentioning that the SVD
was computed from the whole image and not patch-wise in
this work. It was also demonstrated that imaging artifacts and
the estimated CNR are highly sensitive to selected singular
values.

Mauldin et al. proposed a singular value filter (SVF) in
the context of reverberation clutter rejection [24]. The two
main findings were the importance of using complex data and
a non-binary weighting scheme for the singular values. The
soft thresholding of the singular values could suppress the
reverberation clutter signal while avoiding artifacts generated
from hard thresholding. Assuming that reverberation clutter
is the dominating signal component and has a stationary
characteristic, they developed a modified sigmoid function
for calculating the weighting coefficients of the singular val-
ues. The insight was that signals from reverberation clutter
are highly compressed, resulting in large singular values
explaining most of the data. On the contrary, tissue signal has
more richness and a flatter singular value spectrum. The SVF
method was evaluated on experimental mouse heart data,
and an average increase of 1.8dB in CNR was demonstrated.

Turek et al. usedMorphological Component Analysis (MCA)
to demonstrate competitive performance in reverberation sup-
pression to SVF [25]. The MCA approach uses an adaptive
basis, such as the SVF, but assumes that the tissue and clutter
signals can be sparsely encoded. The sparse encoding is a set
of non-orthonormal vectors forming a redundant basis. The
selection process of which vectors correspond to tissue and
clutter was governed by the assumption that reverberation
clutter signals are semi-stationary. The benefit of using MCA
was reported to be less removal of tissue compared to SVF.

While it is commonly assumed that reverberation clutter
is close to temporally stationary, this is not always the case.
Thus, methods that rely on tissue and reverberation clut-
ter having different motion characteristics may not always
succeed. Reverberation clutter originating from reflections
of cardiac tissue can be temporally connected to the tissue
motion, and tissue structures can also become almost station-
ary in certain conditions (e.g. akinetic myocardial regions and
during end-diastole). To address these issues, Sjoerdsma et
al. developed a method that operates on individual frames,
and no assumption regarding tissue and reverberation motion
is required. This method suppresses near field clutter using
complex-valued orientated fast wavelets [26]. The B-mode
images were decomposed into a multiscaled pyramid of four
scales and four orientations. It was shown that near field
clutter was predominantly present in the highest and lowest
bandpass sub-images using vertical-orientated wavelets. The
motion-invariant method preserves the US speckles making
it useful to apply prior to speckle tracking methods. The
method showed improved contrast of 4.3dB on average on
B-mode images from apical and parasternal views. Tay et al.
also proposed a method for reverberation suppression based
on the wavelet transform [27]. The reverberation signal is
estimated from RF data by soft threshold discrete wavelet
transform (DWT) coefficients. The estimated reverberation
signal is subtracted from the original data to capture the
obscured tissue signal.

The post-processing filters mentioned so far are based
on either SVD or wavelet decomposition. These methods
are limited to linear representations of data and do not
accurately model spatiotemporal modeling which is essen-
tial for separating cardiac structure from reverberations.
This spatiotemporal information is critical for our minds
to connect speckles that move cohesively into collectively
moving patterns. Learning-based methods, such as deep
neural networks, are more suited to include spatiotemporal
information and modeling highly non-linear systems. For
instance, Tabassian et al. trained a 3D U-Net to remove
synthetically superimposed artifacts in synthetic 2D echocar-
diographic sequences [28]. They showed that their network
outperformed the SVD-based clutter filter proposed in [24].
Although the method rejected the generated artifacts with
excellent performance, its generalization to in vivo data was
not demonstrated and the superimposed artifacts lacked real-
ism and relevance to typical reverberation patterns.
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Despite the promising reverberation suppression meth-
ods proposed, the challenge of solving reverberation clutter
remains an active research topic. In this study, we propose
two different 3D (2D spatial plus time) convolutional neural
networks namely U-Net and Causal-U-Net for filtering out
reverberation clutter from tissue in cine-loops. The difference
between the networks is that Causal-U-Net is temporally
causal suited for real-time inference, whereas U-Net without
the restriction is designed for better playback performance.
As no supervised learning dataset exists for this task, neural
networks are typically trained on synthetically generated data
from simulations. However, modeling reverberation clutter
accurately is challenging, especially because reverberations
can originate from out-of-plane multiple scattering.

To address this challenge, we suggest treating the rever-
beration suppression task as a video separation problem and
propose generating a pseudo-paired data set using in vivo
data by superimposing patches from hazy videos onto clean
videos.

Our contribution is three-fold:

1) We present an approach for creating a realistic
pseudo-paired data set for reverberation suppression
using in vivo data.

2) Using the pseudo-paired data set, we demonstrate that
convolutional neural networks can learn to separate
first-order scattering and multi-order scattering in a
video separation problem.

3) We show that the reverberation suppression can be
made causal and therefore suitable for real-time
operation.

The rest of this paper is organized as follows: Section II
describes the data collection, annotation process, structure
of the neural networks, training setup, and evaluation of our
method using in vivo data. Section III reports our results and
compares our networks to the SVF method [24]. Section IV
discusses the limitations of our method and future work, and
Section V summarizes the paper and draws conclusions.

II. METHODOLOGY
A. DATA COLLECTION
The data used in this study was obtained from two sources:
recordings made specifically for this study and recorded
data from previously collected data sets. The data was
fully anonymized and informed consent was obtained and
legal agreements with the data providers ensured compliance
with local requirements. The ultrasound system used was a
Vivid E95 (GE Vingmed Ultrasound AS, Horten, Norway)
with a GE 4Vc-D transducer. Second harmonic imaging
was used with a transmit frequency between 1.56 Mhz and
1.85Mhz. Statistics about the acquisition parameters used for
the recordings are provided in Table 1.

In addition to the clinical data, we also collected cine-loops
from a phantom to simulate cases of almost static reverbera-
tions. The phantom used was GAMMEX Sono403 with an
attenuation of 0.7dB/cm/MHz. The cine-loops captured from

TABLE 1. Acquisition setup.

TABLE 2. Data collection.

the phantom were obtained with little to no movement of the
probe, and consist of almost static scatters.

The data format used in this study is beamformed IQ data,
which refers to baseband-filtered demodulated RF data prior
to scan conversion. The data format will be noted as IQ data.
Retrospective Transmit Beamforming (RTB) was performed
on the data as part of the beamforming process.

B. ANNOTATION AND PREPROSSESSING
Subjects producing clean and subjects producing hazy images
were required to generate a data set with pseudo-paired cine-
loops. To efficiently annotate the cine-loops. we developed
a Python GUI. We carefully went through an extensive col-
lection of recorded data and marked each recording as clean,
hazy, or in between based on the level of clarity of the images.
The number of subjects and the number of recordings are
given in Table 2. The clean and the hazy recordings were
split into the training and validation data sets with a ratio of
80% and 20%, respectively. The split was done patient-wise
to avoid corrupting the validation data set.

In this study, we selected cluttered patches from anechoic
regions of the images, which were then annotated to exclude
cardiac structures. The selection of cluttered patches is illus-
trated in Figure 1. The patches included the same spatial
pixels throughout the cine-loops and were made as large
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FIGURE 1. An example of a patch of haze selected from a loop is shown
in the top left sub-figure. For each frame, a corresponding binary mask
was annotated. The regions within the magenta polygons are set to zero
and the area outside of the blue polygon is set to zero. The resulting
mask is shown in the top right sub-figure.

as possible to contain spatial characteristics of clutter with-
out including adjacent cardiac structures. However, in the
end-systole phase where the left ventricle (LV) is small,
we allowed some cardiac structures to enter the selected
patches to retain larger patch sizes. We annotated the cardiac
structures and created binary masks, where pixels corre-
sponding to the cardiac structures were set to zero. These
masks were used in the loss function during training to pre-
vent the cardiac structures from wrongly labeling the data
set. An example of a binary mask is shown in Figure 1. The
dimensions of a cluttered patch are (Ntp,Nsp,Nbp), where
Ntp is the number of frames, Nsp is the number of samples
(fast time), and Nbp is the number of beams.

The cine-loops selected for the validation-two and test data
sets were challenging due to excessive clutter or small cardiac
structures obscured by reverberations. These cine-loops were
not annotated as hazy subjects because not a large region was
free from cardiac structures throughout the cardiac cycles.
In addition, the cine-loops were also needed for selecting
and evaluating the neural networks. The recordings in the
validation-two data set were used as an extension to the
validation data set to select the final model. This was nec-
essary since the validation data set does not include accurate
modeling of true haze.

To generate cluttered cine-loop overlays, we augmented
and spatially stacked cluttered patches to form realistic clutter
overlays of the same spatial size as the clean cine-loops.
Most of the cluttered patches were selected to be rectangular,
making them easy to stack. Figure 2 shows an example of
a cluttered overlay superimposed onto a clean recording, and
the left and right subfigures constitute the pseudo-paired data.
The data used in this study is complex IQ data, where each
pixel has a real and an imaginary component. The images are
displayed using the complex envelope on a logarithmic scale.

The signal model can be described as

x = y + c (1)

where y is the clean reference data, c is the cluttered over-
lay, and x is the corresponding pseudo-cluttered data. Both
y and c contain electrical noise, which is assumed to be
weaker than the acoustic noise present in the cluttered signals.
However, the modeling of the pseudo-paired data has a few
challenges that need to be addressed: (1) There is a misalign-
ment between the frames corresponding to events such as
end-diastole and end-systole in the clean reference data and
the superimposed clutter overlays. Since ECG recordings are
not available, it is difficult to event align the data; (2) The
data is in beam space and, therefore, anatomically morphed
as a function of the acquisition parameters. The selected
cluttered patches often originate from depth samples between
200 and 450. Stacking these patches randomly to form the
cluttered overlaid breaks the geometrical correspondence to
the clean data, and (3) stacking the cluttered patches creates
discontinuities.

Most of the data suitable for the categories clean and hazy
were obtained from apical two and four-chamber recordings.
These images were generally cleaner, and the LV extended
over a large semi-stationary region, which was well-suited for
extracting hazy patches. In the training data set, 44 out of the
48 clean recordings are from an apical view.

The amplitude of the complex envelope was annotated for
cardiac structures and hypo-echoic regions in all selected
cine-loops. This was done to maintain control over the sig-
nal levels when superimposing cluttered data onto the clean
reference images. Histograms of the contrast between cardiac
structures and hypo-echoic regions are shown in Figure 3.
On average the contrast was found to be 23.5 dB higher in
the clean recordings compared to the hazy recordings. This
contrast can serve as an upper bound for what to aim for
during clutter suppression.

C. NEURAL NETWORK ARCHITECTURES
We used two 3D convolutional neural networks based on the
U-Net architecture presented in [29]: U-Net and Causal-U-
Net. The networks are identical except that Causal-U-Net
uses causal convolutions along the frame dimension, as illus-
trated in Figure 4. The benefit of causal convolutions is that
the model does not impose any frame delay during inference.
The drawback is that the causal model may perform inferior
to the model utilizing information in future frames.

During training, the dimension of a single input sequence
(x) is (nc=2, nf =30/45, ns=576, nb=100), where nc is the
number of channels, nf is the number of frames (30 for U-Net
and 45 for Causal-U-Net), ns is the number of samples (fast
time), and nb is the number of beams. The neural network
is real-valued, and the real and imaginary components of the
complex IQ data are stacked in the channel dimension (nc).
Figure 5 illustrates the network structure, which is the same
for both U-Net and Causal-U-Net. The neural networks can
be described as follows:
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FIGURE 2. The figure shows how a pseudo-paired recording is produced. The dashed red box illustrates the size of the hazy patch used to form
the hazy overlay.

FIGURE 3. Histograms showing the distribution of the contrast between
cardiac structures and cavity for the clean and hazy recordings in the
training and validation datasets.

• Each level of the encoder and decoder consists of a
residual block followed by a down-sampling layer or
an up-sampling, respectively. The number of channels
is doubled in each layer.

• The residual blocks are constructed from 3D convolu-
tions (conv3D), group normalization layers (GN) [30],
and the Leaky-ReLU (LReLU) activation function [31].
The layers are combined in the following order:
conv3D → GN → LReLU → conv3D → GN →

LReLU, and is noted as ReLU before addition in [32].
• All 3D convolutions use a kernel size of (3 × 3x3),
a stride of (1× 1x1), and no dilation. Padding is applied
along the spatial dimensions (samples, beams) to keep
the original input shape. U-Net also uses padding along
the frame dimension nf .

• The stride and kernel sizes of themax pooling operations
(given as nf , ns, nb) are: (1,2,1), (1,2,2), and (1,2,2), for
the encoder levels 1, 2, and 3. The transposed convolu-
tions mirror the max pooling operations.

D. LOSS FUNCTION
To train the neural networks, we use an element-wise loss
function (L) based on the Huber loss (H ) with δ = 1.

FIGURE 4. Illustration of causal convolutions with kernel size 3. The
frame indices are noted as T , T − 1, T − 2, . . . , T − 6.

FIGURE 5. The U-Net and Causal-U-Net have 4 levels and include residual
connections within each block, and skip connections (concatenation)
between the encoder and the decoder for each level. The noted number
of frames corresponds to Causal-U-Net.

For a single element (i) in the real-valued output data ŷ ∈

Rnc×nf ×ns×nb , the Huber loss function is defined as:

H (ŷi, yi) =


1
2
(ŷi − yi)2, if

∣∣(ŷi − yi)
∣∣ < 1

(ŷi − yi) −
1
2
, otherwise.

(2)
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While the primary goal is to suppress clutter, inadvertently
suppressing of cardiac structures has a more negative impact
from a clinical perspective. Therefore, we propose using
an asymmetrical loss function (A) to balance the clutter
suppression and the preservation of cardiac structures. The
asymmetrical loss function is defined as:

A(ŷi, yi, β) =

{
H (ŷi, yi) · β, if ||ŷi||2,nc < ||yi||2,nc
H (ŷi, yi), otherwise.

(3)

The value of β determines the level of asymmetry. A higher
value results in the model preserving more cardiac structures
at the expense of reduced clutter suppression. The condition-
ing in Eq. (3) is the L2 norm along the channel dimension and
compares the predicted and the reference complex envelopes.

To compute the loss function for a single recording, we take
the weighted average over all dimensions as:

L(ŷ, y,w, β) =
1∑ncnf nsnb

i=1 wi

ncnf nsnb∑
i=1

wi A(ŷi, yi, β). (4)

where the binary mask, w, is zero for pixels considered
cardiac structures within the hazy patches and one for all other
pixels. Refer to Figure 1 for an example of the mask.
Ultrasound data has a high dynamic range, and using the

proposed loss function directly could introduce a bias towards
high-amplitude pixels, potentially reducing the level of clutter
suppression. To mitigate this, we apply a nonlinear scaling
similar to the one presented in [18] to minimize the loss
function’s sensitivity to the amplitude.

g(y) = y ⊙
log10(||y||2,nc + 1)

||y||2,nc
(5)

The +1 is used to avoid the steep fall of the logarithm
for values below 1. The alternative loss function based on
logarithmic compression of the networks’ output is given as
L(g(ŷ), g(y),w, β).

E. TRAINING AND AUGMENTATION
To optimize the model parameters, we used Kaiming initial-
ization [33] and the AdamW [34] optimizer. The learning rate
was warmed up linearly from 5 · 10−6 to 5 · 10−4 during the
first 15 epochs.We employed a learning rate scheduler, which
divided the learning rate by five every 180 epochs, with a total
of 450 epochs. We did not apply any weight decay and used
a batch size of 12 through gradient accumulation.

The loss curves for the training and validation data sets
gradually reached a plateau over the 450 epochs. We did
not use early stopping and instead selected the model weight
configuration after the last epoch.

The hazy patches need to be stacked spatially to form
diverse and realistic overlays. The following list describes the
augmentation performed to create the pseudo-paired data set:

1) A single hazy patch is selected, and the amplitude is
randomly adjusted to lie between −50 dB to −20 dB
below the annotated tissue amplitude of the selected
clean recording.

TABLE 3. Hyperparameter search.

2) The hazy patch is spatially smaller than the clean
recording. We duplicated the hazy patch and stacked
it in the sample and beam direction. Each duplicated
patch was randomly flipped with a probability of 50%
along one or more of the axes (frame, sample, beam),
and assigned a different gain ratio between 0.5 and 1.5.

3) To increase the diversity of the haze amplitude, we ran-
domly scaled regions of the spatial extent of 100 sam-
ples and 40 beams with a value between 1/6 and 6. This
resulted in unrealistic edges, so we applied lowpass
filtering using a Gaussian kernel (sigma: 70 samples,
15 beams) to smooth the gain map.

4) We randomly flipped the clean data along the frame
and beam axis with a probability of 50%. We did not
flip along the sample (fast time) direction, as the near
field is different from the fear field and could result in
unrealistic data.

5) We resampled the clean and hazy data within the range
of ±20% with a probability of 0.5%.

F. HYPERPARAMETER SEARCH
We performed a grid search over the hyperparameters given
in Table 3. We fixed the seeds of the pseudo-random number
generators to make the comparison between hyperparame-
ters as fair as possible. Other hyperparameters related to the
optimization and the neural network structure were set to
reasonable values based on initial experiments during code
development. The final model selected yielded low validation
loss and visually pleasing filtered images on the validation-
two data set.

G. EVALUATION
To evaluate the performance of our method, we will use
recordings from the test dataset. As our pseudo-paired data
is a modeling of reverberations and does not include real
reverberations, using recordings from the test dataset will
allow us to assess the method’s effectiveness on real-world
data. However, using only the test dataset means we do not
have a clean reference for comparison.

The following metrics will be used to evaluate the
effectiveness of the neural networks: contrast, contrast-to-
noise ratio (CNR), and generalized contrast-to-noise ratio
(gCNR) [35]. Contrast and CNR are defined by

Contrast = 10 log10

(
µt

µb

)
(6)

CNR =
|µt − µb|√

σ 2
t + σ 2

b

, (7)
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where µt and µb denote the means, and σ 2
T and σ 2

b denote
variances of the signal power of tissue and background
(hypoechoic and anechoic regions), respectively.

As a neural network is a nonlinear filter that can alter the
data’s dynamic range, we will also use gCNR to measure
the overlapping probability density functions of the cardiac
structures (pt (x)) and the hypoechoic and anechoic regions
(pb(x)). gCNR is defined as

gCNR = 1 −

∫
min {pt (x), pb(x)} dx. (8)

In our experiment, the prior probabilities were set to 0.5.
Although gCNR is robust to nonlinear modifications of the
amplitudes, changes in texture, such as low-pass filtering,
may alter the shape of the probability density functions and
the value of gCNR.

Temporal consistency is crucial in medical image pro-
cessing. Therefore, videos in mp4 format are available in
the supplementary material to demonstrate the method’s
performance on challenging subjects with excessive clutter,
thin structures overlapping with reverberations, and other
complexities. Additionally, we will evaluate whether the
IQ signal phase is altered after filtering. We will assess
the method’s stability through an adversarial attack based
on [36]. An unstable model can be described as

||nn(x + r) − nn(x)||2 is large, while ||r||2 is small (9)

where nn denotes the model, and r denotes the perturbation
tensor. By fixing the upper bound on the L2 norm of r,
gradient ascent is used to search for the worst-case scenario.

H. COMPARISON METHOD
To compare the performance of the proposed models, we will
use the Singular Value Filter (SVF) [24] as a benchmark
method. The SVF was chosen due to its competitive perfor-
mance and straightforward implementation. The SVF uses
the singular value decomposition (SVD) to decompose the
image data into a spatiotemporal matrix, which is then filtered
using a modified sigmoid function. To find the optimal SVF
parameters, we performed an extensive parameter search.
However, we found that the configurations that yielded the
highest contrast ratio also resulted in severe flickering arti-
facts. After trial and error, we selected a shared configuration
for all recordings with the following parameters: τ = 0.15,
α = 20, and the SVD was computed using 15 frames and the
full spatial image. It should be noted that the filtered frame is
the center frame.

III. RESULTS
A. CONFIGURATION OF THE NETWORKS
After conducting a hyperparameter search, a common set of
hyperparameters yielded the best results for both U-Net and
Causal-U-Net. The configuration consists of a skip connec-
tion of type concatenation, a base number of channels equal
to 64, no logarithmic compression of the output, and an
asymmetrical loss weight of five. The results presented in this

TABLE 4. Summary - image quality metrics.

section are from the test data set, except for subject twelve,
which is part of the validation data set.

B. REVERBERATION SUPPRESSION ON TEST DATA
Figure 6 shows a comparison between the (unfiltered) refer-
ence image and the filtered images using SVF, Causal-U-Net,
and U-Net for subject one. Subject one exhibits an excessive
amount of haze throughout the imaging sector, which is
especially problematic in the right ventricle as it occludes
the underlying cardiac structure, as indicated by the yellow
arrow. All three filtering methods successfully bring forward
the cardiac structure and increase the contrast and the gCNR,
but yield no real improvement in CNR.

Results from subjects two to eleven are displayed in
Figure 7 and Figure 8. The first column shows the reference
images, the second column displays the SVF images used as
a benchmark, and the third and fourth columns show the two
presented models Causal-U-Net and U-Net. All images are
displayed with a dynamic range of 60 dB, and no s-curve
is applied (Figure 1 in [35] shows an s-curve example).
Each image sets the reference amplitude (dB=0) separately,
as SVF may alter the signal amplitude.

Table 4 summarizes the image quality metrics for subjects
one to eleven. The two presented models exceed the reference
and SVF images in contrast and gCNR, but there is little to no
improvement in CNR. Evaluating the filtered cine-loops for
each subject, the following observations are valid for both of
the two presented models:

• In subjects four, seven, eight, nine, and ten, the two pre-
sentedmodels offer mainly visual enhancement. In these
cases, the haze in the reference images is not of a severity
that obscures diagnostic information, but merely impairs
it. The two presented models still offer a reduction in
clutter levels and enhancement of structural information
that clearly outperforms that of the SVF method.

• Cardiac structures occluded by haze are more visible in
subjects one, two, three, and six. Details such as endo-
cardial borders and papillary muscles that are hardly
detectable in the reference image stand out clearly with
the two presented models. There is a perceived contrast
between the heart walls and chambers achieved with
these models that seem superior to that obtained with
the SVF method.

• Subject five can be seen as a worst-case example
where cardiac structures are strongly attenuated at
end-diastole. The models are erroneously filtering the
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FIGURE 6. Comparison between filtered and unfiltered images of subject one. The blue (hypo-echoic region) and red (cardiac structure) marked
regions are used for calculating the image quality metrics. The yellow arrow highlights a cardiac structure that is covered by haze. The four
images are displayed using a dynamic range of 60 dB.

cardiac structures as they are stationary for a prolonged
period of time (15 frames).

• Subjects eight and eleven show signs of cardiac structure
suppression at end-diastole.

• In none of these cases do the two presented models
exhibit the high temporal flickering that is commonly
present in the output of the SVF method.

All cine-loops for the eleven subjects described above are
available as supplementary material in the form of mp4 files.

C. STABILITY
To evaluate the stability of the models, we compared their
filtered output with reference signals and also conducted an
adversarial attack. While the results from Causal-U-Net will

be presented here for convenience, we want to note that
U-Net has also been evaluated using the same recordings and
produced nearly identical results.

Figure 9 shows a comparison between a trace from Causal-
U-Net and the reference data for a hazy subject (subject
six) and a clean subject (subject twelve). The yellow lines
in the top row display the location of the traces. In the
middle row right column, we observe that the real and
the imaginary components of the complex IQ data are
passed through Causal-U-Net with minimal modification.
As for the hazy data in the middle row left column, the
filtered trace follows the reference data well, except for
the low-value samples, which are predominantly considered
to contain clutter. The phase difference between the fil-
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FIGURE 7. Comparison between the reference images and the filtered images. The blue (hypo-echoic region) and red (cardiac structure) marked regions
are used for calculating the image quality metrics. The images are displayed using a dynamic range of 60 dB.

tered and reference signals is plotted in the bottom row.
The filtered and reference signal phases seem more aligned
for high-amplitude samples, but the phase differences are

difficult to interpret elsewhere due to the numerous crossings.
Overall, the filtered signals seem to lay one sample in front
of the reference signals.
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FIGURE 8. Comparison between the reference images and the filtered images. The blue (hypo-echoic region) and red (cardiac structure) marked regions
are used for calculating the image quality metrics. The images are displayed using a dynamic range of 60 dB.

We also conducted an adversarial attack on the hazy
recording from subject six and the clean recording from
subject twelve, as described in section II-G. Subjects six
and twelve were chosen as they represent the extremes of

image quality. Figure 10 shows that the perturbation tensor r
alters the input data for subject six such that the model does
not filter the haze and instead removes some of the cardiac
structures. This attack is considered effective as the input
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FIGURE 9. A comparison between the reference and filtered IQ data from
Causal-U-Net. The top row shows the location of the traces, the middle
row shows the real and the imaginary components, and the bottom row
shows the phase differences.

FIGURE 10. Results of an adverserial attack on hazy subject # six. The
perturbation tensor is denoted as r, the input data x, and the
Causal-U-Net as nn.

image shows little change. On the other hand, as shown in
Figure 11, the attack on the clean recording from subject
twelve was unsuccessful. The alteration of the input by the
perturbation tensor resulted in a comparable change in the
output.

IV. DISCUSSION
In this study, we have presented a novel approach to sup-
press unwanted reverberations in cardiac ultrasound imaging

FIGURE 11. Results of an adverserial attack on clean subject # twelve.
The perturbation tensor is denoted as r, the input data x, and the
Causal-U-Net as nn.

using deep learning. We have demonstrated that treating
reverberation artifact suppression as a video separation
problem can effectively leverage the network’s ability to
learn spatio-temporal features that are key to distinguish-
ing between the two raw data components. Our method is
based on a pseudo-paired dataset generated from in vivo data
acquired from a high-end commercial scanner, which ensures
that the clinical image quality is relevant and that the artifact
generation is realistic. Additionally, we have shown that our
method can be made causal with insignificant loss of impact,
which is an important finding that can facilitate the adoption
of the proposed method in real-time settings.

A. EVALUATION OF CAUSAL-U-NET AND U-NET
The performance of U-Net and Causal-U-Net in enhancing
the quality of hazy ultrasound image sequences has been eval-
uated. Evaluating image quality objectively is challenging,
and we selected the frequently used metrics of contrast, CNR,
and gCNR for our evaluation. The results presented in Table 4
are based on representative selections of patients, frames, and
regions where the metrics were computed.

Overall, the two neural networks perform heavier filter-
ing than the SVF method, as reflected by the increased
contrast and gCNR values, typically resulting in improved
detectability of structural details such as endocardial borders
and papillary muscles that would otherwise be occluded. The
neural networks are particularly effective in filtering non-
stationary haze, and their output has superior temporal and
spatial consistency compared to the SVFmethod, which often
has a flickering appearance. This may be due to the networks’
ability to track larger patches of the image over time, which
helps preserve spatio-temporal consistency.

However, we also observed limitations in the performance
of the neural networks. Haze close to the apex in the apical
view is less suppressed than in other regions. We believe it
occurs because this haze has a fluctuating component during
the heart cycle, most likely caused by interactions with nearby
structures. That type of haze is not modeled correctly in
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the pseudo-paired data set as a result of the random frame
alignment between the clean reference and the hazy overlay.
In addition, the number of hazy patches close to the apex is
underrepresented in the training data set. The reason is their
proximity to cardiac structures, which should not be included.

In the evaluation of image quality, we are limited to using
metrics based on contrast as the ground truth clean data is
unknown. The structural similarity index measure (SSIM)
would have been helpful to grade, e.g., the preservation of
speckles. The selected image quality metrics do not evaluate
all aspects of image quality, such as resolution, temporal
consistency, removal of cardiac structures, and generation
of false cardiac structures. Therefore, visual assessment is
considered the best solution for evaluating image quality.

The filtered output of subjects one to four is a good repre-
sentation of the typical visual enhancement achieved using
Causal-U-Net and U-Net on hazy cine-loops. On average,
we find U-Net to perform a better haze suppression compared
to Causal-U-Net, especially in cases of non-stationary haze.
Both models exhibit failure in preserving cardiac structures
that become stationary over a prolonged period of time.
Subjects five, eight, and eleven are examples of this yet-to-
be-solved challenge. Note that subjects five, eight, and eleven
are specifically selected from the test set to illustrate this
particular challenge and constitute worst-case examples. The
suppression of cardiac structures is most prominent at end-
diastole. In pathological cases like cardiomyopathy, portions
of the myocardium can appear almost static, whichmay cause
the models to suppress the myocardium. The training data set
(clean) mainly includes data from the apical view (44/48),
and the cardiac structures in the apical view are typically
in motion. The phantom data used as hazy patches can also
increase the effect of suppression of stationary objects and
should be considered dropped. We believe this is the rea-
son why the models have a tendency to suppress stationary
objects.

Despite these limitations, none of the models show any
tendency to generate false cardiac structures, which is cru-
cial for a filter designed for clinical practice. This is seen
in connection with the used loss function, as discussed in
section IV-D. The models are not trained to make the cavities
black, and blood flow can be seen in subjects four and ten.
The rapid motion of the leaflets gives them low temporal con-
sistency and should thus make them vulnerable to blurring.
However, the models preserve the structure of the leaflets
well, which is vital as the anatomy of the leaflets is of high
clinical significance.

The recordings used in this study are from a high-end com-
mercial system, already utilizing various methods for image
enhancement. The proposed approach is a post-beam-former
method complementary to other reverberation suppression
methods, which typically do not include information across
frames.

Finally, we tested the stability of the neural networks using
an adversarial attack, which provides a semi-quantitatively
evaluation of the worst-case scenario. We found that

Causal-U-Net is stable in cases of clean images. However,
in cases of cluttered data, the perturbation tensor was able
to alter the clutter and revert the filtration. This is expected
behavior and does not significantly affect the performance of
Causal-U-Net.

Overall, our results demonstrate the potential of the
Causal-U-Net and U-Net models as effective post-beam-
former methods for enhancing the quality of hazy ultrasound
images, and we believe that future work can further improve
their performance.

B. MODELLING OF REVERBERATIONS
In this study, we created a pseudo-paired data set using in vivo
data from subjects producing hazy and subjects producing
clean images. This approach has the strength of providing
realistic clutter, potentially covering all types and aspects
of clutter generation, which is not possible with simulated
data. Simulated reverberations are limited to those originating
from within the simulation domain, and it is questionable
whether a simulation can ever be made sufficiently real-
istic to be used for training purposes, given the complex
and diverse mechanisms for reverberation clutter in cardiac
imaging.

However, there are some limitations to our approach.
Firstly, the cluttered patches’ origin is limited to hypoe-
choic regions, and it was challenging to extract cluttered
patches close to the apexwithout including cardiac structures.
Secondly, reverberations created from interaction by nearby
moving tissue are not modeled correctly. To alleviate this
concern, we could sync the reference data and the superim-
posed data at specific cardiac events (e.g. end-diastole and
end-systole) or use the information from a simultaneously
recorded ECG trace.

Creating a pseudo-paired data set is not easily accessi-
ble, and we had to go through an extensive collection of
recordings to acquire a reasonable amount of useful clean
and cluttered recordings. Using the Site 1 database given in
Table 2 as a reference, we found that only 21% of patients
produce recordings useful for cluttered patch extraction, and
24% of patients produce recordings useful as clean reference
images. Therefore, it is a practical challenge to capture data
covering all aspects found in clinical settings, such as beam
depth, heart rates, transmit frequency, beam separation, view,
and variations within patents.

C. NETWORK STRUCTURE
The U-Net architecture was chosen due to its wide success
in various image processing tasks such as segmentation [29],
image-to-image translation [37], and super-resolution [38].
We used 3D convolutions instead of convolutional recurrent
neural networks like ConvLSTM [39] as it allows for better
parallelization during training.

Of the two models presented, Causal-U-Net is more prac-
tical for clinical use as it does not introduce a frame delay
and has lower memory consumption by processing frames
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one at a time. U-Net was primarily used to evaluate the
maximum haze suppression achievable with this class of
methods. The structure of Causal-U-Net can also be used in
a non-causal way, allowing the model to output a filtered
frame at different frame delays. While introducing frame
delays may be acceptable if it substantially improves haze
suppression, the largest reasonable frame delay is half of the
theoretical receptive field, making Causal-U-Net equivalent
to U-Net.

Neural networks using causal convolutions often employ
dilation to increase the receptive field, as seen in [40]. How-
ever, in our use case, we did not use dilation along the
frame axis as the theoretical receptive field of 27 frames
was assumed to be sufficient. Alternatively, a kernel of size
two in injunction with dilation can be used to improve
inference speed and memory consumption. The U-Net archi-
tecture’s fully convolutional structure makes it flexible and
can handle various spatial input sizes, which is useful
as the number of beams and samples can vary between
acquisitions.

D. LOSS FUNCTION
The Huber loss was selected first and foremost for its sta-
bility. During training, the L1 norm reduces the gradients
compared to the squared L2 norm for inaccurate estimates.
The pixel-wise regression loss is also less prone to generating
false structures compared to other loss functions such as
perceptual losses [41] and adversarial losses [42]. When the
network is unsure of what to output, it outputs a blurred
version of the structures. We used this as feedback when
tuning the training setup. Critical hyperparameters were the
value of the asymmetrical loss weight β and the use of
logarithmic compression on the model’s output. We found
the filtered cine-loops made by a network trained using β =

10 and logarithmic compression to perform similarly to the
presented configuration of β = 5 and no logarithmic com-
pression. Although the filtered cine-loops looked similar, the
values of the loss functions were different, making automated
hyperparameter searches difficult.

E. FUTURE WORK
There are several areas where future work can be done to
improve the performance of the neural network. One poten-
tial area of improvement is the data set. Including more
diverse set of views could potentially mitigate the suppres-
sion of cardiac structures observed in the current data set.
Another area of exploration is modifications to the neu-
ral network architecture. Dropping normalization layers and
using pixel shuffling, which have shown success in the lit-
erature on super-resolution [43], [44], can be considered.
Another promising alternative is converting the network to
use complex-valued convolutions.

While the pixel-wise regression loss was chosen for its
stability, including perceptual or adversarial type losses in
the loss function can improve the visual aspects of the

filtered cine-loops. Additionally, an alternative to applying
logarithmic scaling on the output of the network prior to
calculating the loss function, as been evaluated, is to apply
logarithmic scaling on the input to the network. Reducing
the large dynamic range within the neural network may be
beneficial.

Furthermore, it is interesting to investigate the role of
spatial and temporal information in separating clutter from
tissue. Our visual system is capable of distinguishing rever-
berations from cardiac structures in cases of mild to medium
levels of reverberations, but this process is more difficult in a
static frame. One of our arguments for using neural networks
is that combining spatial and time information is trivial com-
pared to approaches based on SVD or wavelets. The methods
using SVD often rely on change through time, whereas meth-
ods based on wavelet decomposition often rely on spatial
information. Based on the present work, it is unclear whether
spatial or time information is the predominant feature for
separating clutter from tissue. Training networks only based
on spatial or time information can provide insight into this
question.

V. CONCLUSION
In this paper, we have presented an approach for generating
a realistic pseudo-paired data set for the specific task of
reverberation suppression. Our approach involves extracting
patches from hypoechoic regions, obtained from subjects
producing hazy videos, and overlaying them onto record-
ings from subjects producing haze-free videos. Furthermore,
we demonstrate that both causal and non-causal convolu-
tional neural networks can be trained on this pseudo-paired
data set to perform reverberation suppression in cine-
loops successfully. Our experimental results show that the
post-beamformer method can enhance contrast, gCNR, and
improve the visibility of important clinical structures on a
high-end commercial system.
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