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ABSTRACT The increase in the complexity of modern electronic products has brought significant challenges
to the fault diagnosis of electronic circuits, and current fault diagnosis methods have problems such as
long fault identification time, inaccurate positioning, and low diagnostic efficiency. In response to these
situations. This paper proposes a fault diagnosis method for electronic circuits combining synchronous syn-
chrosqueezing wavelet transform (SWT), deep convolutional neural network (DCNN), and extreme learning
machine (ELM). First, the original fault signal is noise-reduced and converted into a higher resolution two-
dimensional time-frequency image using SWT. Then, the improved and optimized DCNN model is used to
extract the advanced features of the time-frequency image, and the extracted advanced features are further
input into the ELM classifier for fault classification. Finally, the fault diagnosis and validation are performed
by experiments. The experimental results show that, compared with other methods, the electronic circuit
fault diagnosis method based on SWT and DCNN-ELM ensures the diagnosis accuracy while shortening
the diagnosis time, significantly improving the efficiency of electronic circuit fault diagnosis.

INDEX TERMS Electronic circuits, fault diagnosis, synchrosqueezing wavelet transform, deep convolu-

tional neural network, extreme learning machine.

I. INTRODUCTION

In recent years, with the development of power electronic
technology, power electronic system plays a vital role in mil-
itary, aerospace, guidance, and other fields [1]. As the basic
structure of a power electronic system, the electronic circuit
is in the working state of high strength load for a long time,
and once failure occurs, it will lead to system failure and even
directly cause heavy losses in severe cases [2]. As the com-
plexity of modern electronic products increases, the structure
of electronic circuits becomes increasingly complex, which
significantly increases the difficulty of circuit fault diagnosis.
Therefore, fault diagnosis research on electronic circuits is
of great significance to timely identify and locate faults and
avoid catastrophic consequences [3].
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Power electronic circuits belong to nonlinear circuits, and
their fault signals usually show non-stationary and nonlinear
characteristics [4]. A hot issue of current research is how to
denoise electronic circuits’ complex and changeable signs
with noise interference to extract fault feature information
that can reflect their operating status [5]. The Wavelet Trans-
form (WT) proposed by Morlet [6] is a time-frequency local-
ization analysis method that has a fixed time and frequency
window size (i.e., window area), but its shape can be changed.
It can simultaneously decompose signals in both the time
and frequency domains, thereby expanding the spectrum on
the time axis and forming a two-dimensional time-frequency
map. It has achieved significant results in denoising of unsta-
ble and nonlinear signals. There are two main types of
wavelet transform, continuous wavelet transform (CWT) and
discrete wavelet transform (DWT), which differ in the way
they discretize the scale parameter and the shift parameter.
The methods related to WT are also widely used in signal
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denoising. For example, Bayer et al. [7] introduced an adap-
tive filtering process based on reducing wavelet coefficients
from corresponding signal wavelet representations, called
SpcShrink. This method can distinguish wavelet coefficients
that significantly represent signals of interest, demonstrating
excellent denoising performance. Shang et al. [8] devel-
oped a denoised fault-aware wavelet network (DFAWNet),
which consists of wavelet convolution (FWConv), dynamic
hard thresholding (DHT), index-based soft filtering (ISF),
and a classifier. He et al. [9] proposed a new method
for noise reduction and feature extraction of analog circuit
fault signals based on cross wavelet transform and variable
dB Bayesian matrix factorization (VBMF) and proved the
effectiveness of the method through simulation experiments.
Patcharoen et al. [10] proposed an algorithm based on discrete
wavelet transform (DWT) to detect and classify these tran-
sient current signals, aiming at the problem that the traditional
unbalanced current protection relay could not organize the
short fault present and the switching surge current. The exper-
imental results showed that the proposed algorithm performs
well and accurately identifies fault and surge current.

The research on fault diagnosis of electronic circuits has
continued. For example, Zhang et al. [11] proposed a new
method for soft fault diagnosis of analog circuits using matrix
disturbance analysis to diagnose faults by comparing the
differences between fault-free output matrices and faults,
and confirmed the feasibility and correctness of the method
through experiments. Zhang et al. [12] proposed a rapid
diagnosis method for multiple faults of battery packs based
on curve Manhattan distance and voltage difference analy-
sis technology. The diagnostic experiment results show that
the process can detect and isolate various faults sensitively
and reliably and has the advantages of low computing cost
and high accuracy. In recent years, deep learning theory has
developed unprecedentedly [13]. Since deep learning can
automatically learn features from raw data without expert
experience, the accuracy and efficiency of fault diagnosis in
deep understanding have significantly been improved [14].
Convolutional neural networks (CNN) as an essential archi-
tecture of deep learning. It has also been widely applied in
circuit fault diagnosis [15]. Du et al. [16] proposed a fault
diagnosis method for analog circuits based on convolutional
neural networks (CNN). By optimizing the CNN model and
its parameters, the accuracy of fault diagnosis is improved,
and the diagnosis process is simplified. Zhang et al. [17] pro-
posed a new hybrid method that combines Variational Mode
Decomposition (VMD) with Convolutional Neural Networks
(CNN) to address the complex topology and difficulty in
fault localization of distribution networks. Experiments have
shown that this method can effectively identify fault loca-
tions and types in power system models. Li et al. [18]
proposed a fault diagnosis model including adaptive synthetic
oversampling (ADASYN), data reconstruction method, and
improved depth coupled dense convolutional neural network
(CDCN), which extracted features from the oil and gas data
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of the electronic transformer to obtain the accurate fault
state of the electronic transformer. Han et al. [19] proposed
a multi-scale convolutional neural network with selective
kernels (MSCNN-SK), which calculates multi-scale average
difference sequences by developing a multi-scale average
difference layer, enabling it to mine potential fault features
of analog circuits and accurately diagnose faults. The above
research also indicates that convolutional neural networks
have excellent potential in electronic circuit fault diagnosis.

Although these methods can solve the problem of fault
diagnosis in electronic circuits to a certain extent, there are
still the following problems:

(1) Window functions limit WT, and its description of
time-frequency changes needs to be more precise, which can
lead to energy leakage and poor time-frequency aggregation.
At the same time, the commonly used two-dimensional
wavelets are tensor products of one-dimensional wavelets,
which only have limited directions. The lack of directionality
makes WT unable to fully utilize the geometric regularity
of the image itself, which makes WT exhibit significant
limitations when processing two-dimensional time-frequency
images.

(2) CNN models are often over-fitted due to the simplicity
of the network structure, which means that they perform well
in training data, but poorly in test data, indicating that CNN
models have a poor effect in image feature extraction, and
have problems such as low accuracy, weak generalization,
and poor robustness.

(3) The output layer’s Softmax classifier generally com-
pletes the final classification task of CNN models. Softmax
classifier performs well in classifying multiple samples. Still,
problems include not requiring intra-class compactness and
inter-class separation, long classification time, and complex
tuning process. Therefore, there are better classifications than
Softmax.

In 2011, Daubechies [20] proposed that a synchrosqueez-
ing transformation algorithm based on wavelet transform can
effectively solve the problem of poor WT image processing
performance. Based on wavelet transform, this algorithm
reorders and compresses coefficients after wavelet trans-
forms in the time-frequency domain, which can effectively
avoid the phenomenon of time-frequency image blurring
caused by energy leakage during wavelet transform, and
improve the time-frequency aggregation ability of signals
during time-frequency analysis [21]. As a post-processing
method for time-frequency analysis, SWT has broad appli-
cation prospects in the field of fault diagnosis due to its
excellent time-frequency clustering and reconstruction per-
formance, especially in the fields of non-stationary signal
feature extraction, multi-component signal separation, and
signal denoising [22]. Yi et al. [23] proposed using high-
order synchrosqueezing superlets transform (HSSLT) for
fault feature extraction of vibration signals of mechanical
transmission components. The excellent application potential
of HSSLT in mechanical fault diagnosis under variable speed
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conditions was verified through test benches and rolling
bearing fault diagnosis of 850kW offshore wind turbines;
Han et al. [24] proposed a new multi-compression method
based on wavelet transform to solve the problem of feature
extraction of vibration signals generated in bearing fault
diagnosis under variable speeds. Experiments confirmed that
this method is more effective in feature extraction and fault
detection of non-stationary vibration signals.

Huang et al. [25] proposed an extreme learning machine
(ELM) in 2004 and made many improvements on this
basis [26]. Compared with other classifiers such as Softmax,
the parameters of the extreme learning machine do not need
to be trained iteratively, but are directly calculated by the
least squares method, and the learning speed is increased
by minimizing the number of weights and training errors
to improve the generalization ability of the network [27],
so it has theoretically minimal error and very fast training
speed, and does not require artificial selection of training
parameters such as learning rate, avoiding the complex tuning
process [28], which can reduce the recognition time and
increase the recognition correct rate when classifying the
image features extracted for convolutional neural networks,
and has a broad application prospect in the field of fault
diagnosis. Hu et al. [29] proposed a signal reconstruction
fault detection method based on an automatic signal recon-
struction extreme learning machine (AAELM) for early fault
detection in engineering systems. Experiments have shown
that AEELM achieves more minor reconstruction errors,
shorter detection delays, lower overflow, and higher resolu-
tion; Guo et al. [30] combined the circular model with the
Extreme Learning Machine (ELM) to form a fault diagnosis
method for linear analog circuits. Simulation results show
that this method reduces the complexity of fault feature gener-
ation, improves the probability of fault isolation, accelerates
fault classification, and simplifies fault testing. To further
improve ELM’s learning ability and generalization perfor-
mance in analog circuit fault diagnosis, Zhang et al. [31]
used a particle swarm optimization algorithm to optimize
its parameters. They obtained a multicore extreme learning
machine and verified that MKELM was superior to other clas-
sifiers through fault diagnosis experiments of three circuits.

To address the above issues, this paper proposes an
electronic circuit fault diagnosis method that combines syn-
chrosqueezing wavelet transform (SWT), deep convolutional
neural network (DCNN), and extreme learning machine
(ELM). Firstly, the SWT method is used to denoise the orig-
inal fault signal and convert it into a two-dimensional time-
frequency image with higher resolution. Then, an improved
DCNN model is obtained by adjusting the network hierarchy
and parameters, and advanced features of two-dimensional
time-frequency images are extracted; Finally, replace the
Softmax classifier with ELM and input the advanced features
extracted from the DCNN model into the ELM classifier
for fault classification. Experiments have shown that this
method can quickly identify fault types and has higher
accuracy.
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The main contributions of this paper are as follows:

(1) the SWT method’s advantages of strong time-frequency
aggregation and high resolution in image processing can
effectively avoid the feature ambiguity problem caused by
energy leakage in two-dimensional time-frequency images
converted by CWT. As sample data for fault diagnosis, it can
improve the accuracy of fault diagnosis.

(2) Establish an improved deep-level DCNN model after
adjusting network levels and parameters, overcome the over-
fitting of the CNN model, improve the accuracy of the model,
make the effect of image feature extraction more prominent,
higher identification rate, and more accurate and intelligent
diagnosis of electronic circuit faults.

(3) Replacing the last Softmax classifier used for classifi-
cation in the DCNN model with ELM can effectively solve
the problems of poor model performance, slow classification
speed, and low accuracy so that the fault identification rate is
faster and accuracy is higher.

The other chapters of this paper are as follows: Section II
describes the basic theory of time-frequency image con-
version generation based on SWT. Section III introduces
the basic theory of DCNN-ELM. Section IV describes the
fault diagnosis methods of SWT and DCNN-ELM in detail.
In section V, experiments and a comparison of the proposed
fault diagnosis methods are carried out. Section VI is the
conclusion.

Il. METHOD THEORY OF SYNCHROSQUEEZING

WAVELET TRANSFORM

A. CONTINUOUS WAVELET TRANSFORM

The meaning of continuous wavelet analysis is that after the
basic wavelet function ¥ (¢) is shifted g, the inner product is
made with the original signal x(¢) at different scales o [32],
and the wavelet coefficient is as follows:

1 +00 —(t-p
Weter ) = = / KO (T) a1

v_vhere o is the scale factor, B8 is the translation factor,
Y represents the conjugate function of Y and its inverse
transformation 1is:

NG (—B
=g /0 / Wil Y (T) dadf ()

where, Cy is the permissible condition, and Cy < oo.

The discrete wavelet transform is obtained by discretizing
the scale and displacement of the continuous wavelet trans-
form. The discretization of the wavelet basis function () is
as follows:

Y k() = ag'W(ag’t — kb) 3)

Among them,ag > 1,j € Z,bg > 0,k € Z
Then the discrete wavelet transform is:
o0
DW,(j. k) = / (O (6 4
—00

The critical applications of CWT are time-frequency anal-
ysis and time-domain frequency-component filtering. At the
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same time, DWT is more used for denoising and compressing
signals and images, and the two transformations differ in
how they discretize scales and shift parameters. In addition,
as there is no fixed law in the selection of the wavelet basis
function, the quality of the selection of the wavelet basis
function will also affect the time-frequency resolution of
the wavelet. Therefore, this paper refers to the method in
literature [31] and selects the optimal wavelet basis function
by calculating the Euclidean distance between the features
extracted by the wavelet transform and the evaluated wavelet
basis function.

B. SYNCHROSQUEEZING WAVELET TRANSFORM

AND IMAGE GENERATION

Synchrosqueezing compression short-time wavelet transform
is the application of synchrosqueezing compression process-
ing after wavelet transform so that the energy is concentrated
on the actual instantaneous frequency, improving the time-
frequency aggregation. Where, after the original signal x(z)
is compressed, the instantaneous frequency at the time 7 is:

_abWX(a’ ﬂ)

Wi(a, B)
00, Wy (e, B) = 0]

[ Wla, ) > 0

wx(a, ) = ®)

At this time, the mapping relationship (o, 8) —
[wx(a, B), B] is established, and the interval [w; — %w, o +
%a)] near any center frequency of the wavelet coefficient
Wy (e, B) synchronously extrudes Wy(«, ), and the syn-
chronous extrusion coefficient is as follows:

T(wx, B) = é >

a:log(ar, f—wk| <%

_3
Wilag, By () (6)

where, «; is the discrete value of o, and wy; is the cen-
ter frequency of the £ harmonic component of the original
signal x(t).

It can be seen from the formula that SWT limits the wavelet
coefficient near the center frequency wy, and the distance
between SWT and the center frequency wy is no more than
half of the adjacent frequency. By concentrating the fre-
quency components of a certain width on the instantaneous
frequency, the frequency resolution is improved and a clearer
time-frequency curve is obtained.

Taking continuous wavelet transform as an example, the
graphs are CWT-converted time-frequency graph and SWT-
converted time-frequency graph, respectively. The graphs
show that the time-frequency ridge is sharped after syn-
chronous compression, and the image resolution is improved.

lIl. THE BASIC THEORY OF DEEP CONVOLUTIONAL
NEURAL NETWORK AND EXTREME LEARNING MACHINE
A. DEEP CONVOLUTIONAL NEURAL NETWORK
Convolutional neural network (CNN) has sparse connec-
tions and shared parameters. It has achieved remarkable
performance in many computer vision tasks, including image
classification, image segmentation, face recognition, image
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FIGURE 1. (a) Continuous wavelet transform; (b) Synchrosqueezing
wavelet transform.

style conversion, etc. However, due to the simple network
structure, complicated network training, and complex param-
eter setting, the traditional CNN model has some problems
in image recognition, such as low accuracy, weak general-
ization, and poor robustness. A deep convolutional neural
network (DCNN) is a feedforward neural network pro-
posed by LeCun based on deep learning [33]. By realizing
weight sharing through specific structures, DCNN can retain
local differentiation features, reduce the number of required
optimization parameters, simplify network training, reduce
computational complexity, and improve model generalization
and accuracy.

The DCNN network model is mainly composed of the
convolutional layer, the pooling layer, the whole connection
layer, the Batch Normalization layer, the activation function,
and the Dropout layer.

(1) Convolutional layer

The primary function of the convolutional layer is to extract
the features of input data, which is the core of the neural
network. The calculation process is shown in the formula:

y} =f(fo71 *wfj—i-bf) @)

ieM;

where (*) is the convolution operator, M; is the set of input
! -1
feature vectors, yj represents output layer data, x; rep-

resents input layer data, w:. is the weight matrix of the

l
L
convolution kernel, bg is the ajldditive deviation of the current
feature map, and f;-) is the activation function.

(2) Pooling layer

The pooled layer is also known as the subsampled layer.
It can compress the feature dimensions, thus reducing the
redundancy of the network model and effectively preventing
overfitting. The calculation process is shown in the formula:

yjl. =f(ﬁ;dowm(x;_l +b)) ®)

where ,3; is the multiplicative deviation, bﬁ is the additive
deviation, and down,-) is the pooling function, y]l- represents
output layer data, x} - represents input layer data, and f(-) is
the activation function.

(3) Fully connected layer

W =FCO ] xlwi + b)) ©)

lEMj
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FIGURE 2. The specific structure of the DCNN model.

X (wibr) Y B
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Input Hidden Output
Tayer layer layer

FIGURE 3. The network structure of extreme learning machine.

where wfj is the weight coefficient, and bg is the bias parame-

ter, y]l.‘H represents output layer data, xil represents input layer

data, and f(-) is the activation function.

In addition to the convolutional layer, pooling layer,
and full connection layer, the DCNN model includes sev-
eral Batch Normalization layers, activation functions, and
Dropout layers. The BN layer is generally behind the convo-
lutional layer, and the output data of the convolutional layer
is normalized, which can improve the training speed of the
deep neural network and alleviate the problem of ““gradient
dispersion” in the network. The activation function is gener-
ally the ReL.U function, which makes the neuron output zero
within a specific range, increases the sparsity of the network,
improves the convergence speed, and reduces the amount of
network computation. The Dropout layer is usually placed in
front of the full-connection layer, which effectively prevents
overfitting of the network model by randomly dropping net-
work neuron units during training. The specific structure of
the DCNN model is shown in the figure 2:

B. EXTREME LEARNING MACHINE
An extreme learning machine (ELM) is a typical feedforward
neural network structure with a single hidden layer composed
of the input layer, hidden layer, and output layer. The net-
work structure of the extreme learning machine is shown in
Figure 3. The number of neurons in the input layer is N, and
the number of nodes of neurons in the hidden layer is L. The
weight of the input layer and the hidden layer are randomly
selected to bias, and the weight of the output layer minimizes
the loss function composed of the training error term and the
regular term of the weight norm of the output layer. It can
be obtained analytically based on the Moore-Penrose (MP)
generalized inverse matrix theory.

Be sure that the symbols in your equation have
been Suppose N input samples (x;,0;), where x; =
[xj1, x2, .. -, xj,,]T € R", the expected output is
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yi = [j1,Yp2,...,¥nl, the actual output is o; =
[oj1, 0j2, ..., 0jz], and the output of the hidden layer is f(x),
then:
L
0j =fu(x) =D Biglei, bi, x;),j =1,2,...,N  (10)
i=1
w; = [wit, wia, ..., win]" is the weight of the node from

the input layer to ithidden layer; b; is the bias of i hidden
node; B; = [Bi1, B2, ...,ﬁ,-n]T is the weight between the
i output neuron and the hidden layer; g(-) is the activation
function; then the objective function of the extreme learning
machine is:

N
> loj—y =0 (11)
j=1

The matrix is expressed as:

HB=T (12)

where H is the output matrix of hidden layer nodes, S is
the output weight, and 7T is the expected output. The output
matrix is:

gwixy +by) ... glwrx) +br)

H= (13)

gwixy +b1) -+ gwrxn +01) /o
T=[n.1....5]" (14)

The basic idea of an extreme learning machine is to
randomly generate w and b, and then calculate H and B
accordingly. It can be obtained through the generalized
inverse matrix of output matrix H:

B=H'T (15)

where, H™ is the generalized inverse of H by Moore-Penrose.

IV. FAULT DIAGNOSIS OF ELECTRONIC CIRCUITS

BASED ON SWT AND DCNN-ELM

The flow of the electronic circuit fault diagnosis method
proposed in this paper is shown in Figure 4. The critical flow
is divided into the following four steps:

Step 1 Two-dimensional time-frequency image conver-
sion. Taking the signal data collected by different fault modes
of the three-phase VIENNA rectifier as the original signal,
SWT was used to convert the one-dimensional fault signal
into a two-dimensional time-frequency image, and the image
data set was divided to generate the training set, verification
set, and test set respectively.

Step 2 The generation of the DCNN model is improved.
Taking the AlexNet network model [34] as the reference
object, an improved DCNN model with stronger general-
ization ability and faster training speed was obtained by
adjusting the structure of the network model and randomly
initializing the weight of the model.
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Step 3 The classifier is replaced with ELM. The original
classifier Softmax in the DCNN model was removed, and
ELM was used as the classifier to build a complete DCNN-
ELM model. Then, the data of the training set and verification
set were input into the model for training, and the final
DCNN-ELM fault diagnosis model was obtained by fine-
tuning parameters.

Step 4 DCNN-ELM model test application. The test sets of
4 different states were imported into the trained DCNN-ELM
model to generate the final fault diagnosis results.

e
esting set
o Step 2
Improved DENN
madel generation
onv

Step 3

Replace classifier
with ELM

Step 4

DONN-ELM model
testing application

FIGURE 4. Fault diagnosis method flow.

V. EXPERIMENTAL VERIFICATION

To verify whether the proposed fault diagnosis method of
electronic circuit based on SWT and DCNN-ELM is feasible,
the primary circuit model of the three-phase VIENNA recti-
fier is established by using the Simulink toolbox of MATLAB
software, and presetting faults carry out the simulation veri-
fication experiment.

A. INTRODUCTION TO THE EXPERIMENTAL MODEL

As a power electronic converter, the three-phase VIENNA
rectifier is a three-level rectifier with advantages such as low
harmonic content, few power switching devices, and no out-
put voltage straight-through, which can effectively improve
the power quality decline. As a power electronic converter,
it has been widely used in many fields [35].

Figure 5 shows the VIENNA rectifier model established by
using the Simulink toolbox in MATLAB software, where D1,
D2, D3, D4, D5, D6 are standard rectifier diodes, and S1, S2,
S3, 54, S5, S6 are MOSFET switch tubes. The Simulink tool
has a dedicated PWM waveform generation module that can
be used directly during modeling.

In the work of the three-phase VIENNA rectifier, the MOS-
FET switch tube has a significant switching loss and on-off
loss, which is the weak link of the circuit because it is often
controlled on and off according to the requirements. At the
same time, the structure of other components, such as diodes,
is relatively stable, and the failure rate is low [36]. This
paper mainly analyzes the results of the MOSFET switch tube
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FIGURE 5. Circuit model of three-phase VIENNA rectifier.

disconnection failure mode. It is temporarily ignored because
there is a relatively tiny probability of three or more MOSFET
switch tubes simultaneously occurring disconnection faults.
According to the number and position of MOSFET switch
tubes, there are 21 types of disconnection faults. Respectively,
M1, M2, M3, M4, M5, M6, MIM2, M1M3, M1M4, MIMS5,
MIM6, M2M3, M2M4, M2M5, M2M6, M3M4, M3MS5,
M3M6, M4AMS5, M4M6, M5M6 open circuit fault, to simplify
the analysis, Three types of open fault are selected, and four
different working states are formed together with the normal
state of the circuit. The specific situation of fault presetting is
shown in Table 1:

TABLE 1. Fault preset mode.

Serial number Working state Status tag
1 Normal state S1
2 M1 open circuit S2
3 MI1M3 open circuit S3
4 M4MB6 open circuit S4

B. ORIGINAL SIGNAL ACQUISITION AND
PREPROCESSING

The primarycircuit of the three-phase VIENNA rectifier is
simulated by MATLAB-Simulink toolbox in the normal state
and different fault state output electrical signal as the original
fault signal, set the initial voltage of the circuit as 330V, every
1V voltage reduction, four kinds of working state collect
1 group of electrical signal data, until the voltage drops to
30V. Equivalent to each working state of the primarycircuit,
300 groups of original fault signal data samples were col-
lected, and each fault signal sample contained 2000 data
points. The specific information of collection is shown in
Table 2:

Taking 330V voltage as an example, the time-domain
waveforms of four kinds of electrical signals are shown in
Figure 6:

The original signal data samples were verified by exper-
iment. Firstly, synchrosqueezing wavelet transform (SWT)
is used to transform it into two - a dimensional time-
frequency graph. The resolution size of the time-frequency
image is set to 227 x 227, and 2000 data points
of each group of data samples in each working state
can generate a two-dimensional time-frequency graph so
thateach working state can generate 300 two-dimensional
time-frequency graphs. Again taking the voltage of 330V as
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TABLE 2. Signal acquisition scheme.

TABLE 3. Sample set classification.

Status Initial End Sampling Sample Status Sample Training Verification Test
tag voltage  voltage interval size tag number sample sample sample
S1 330V 30V v 300 S1 300 180 60 60
S2 330V 30V v 300 S2 300 180 60 60
S3 330V 30V 1v 300 S3 300 180 60 60
S4 330V 30V 1V 300 S4 300 180 60 60
Total 1200 720 240 240

Electric Current (A)

Time (s) Time (s)

(c) (d)

FIGURE 6. (a) Result of S1; (b) Result of S2; (c) Result of S3; (d) Result
of S4.

FIGURE 7. (a) Result of S1; (b) Result of S2; (c) Result of S3; (d) Result
of S4.

an example, the two-dimensional time-frequency diagram of
signal data samples of four different states converted by SWT
is shown in Figure 7:

Finally, the image sample set is divided into the training
set, verification set, and test set according to the ratio of 6:2:2,
as shown in Table 3:

C. DETERMINATION AND TRAINING OF STRUCTURAL
PARAMETERS OF THE DCNN-ELM MODEL

The structure design of the DCNN-ELM model is based on
the structure of the AlexNet network model. The AlexNet
network model was published by Krizhevsky in 2012 and won
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the ImageNet contest that year by a significant margin [34].
AlexNet first applied ReLU as the activation function in the
convolutional neural network, using the Dropout and batch
normalization layers and other methods. Since then, CNN has
developed into a deeper network, an essential innovation in
deep learning.

The DCNN-ELM model proposed in this paper has five
convolutional and five pooling layers. A batch normalization
layer and an activation function ReLU follow each con-
volutional layer. This can effectively prevent the problem
of increased differentiation of data distribution as the net-
work depth deepens and improve the model’s convergence
speed and generalization ability. Regarding selecting the fully
connected layer, since both the fully connected layer and
the classification layer belong to the classification module
in the traditional DCNN model, they can be replaced by
ELM. However, considering that the fully connected layer
has the function of one-dimensional features, the classifi-
cation accuracy may be affected by directly discarding all
the fully connected layers. According to the literature [37]
on the impact of full-connection layer selection on model
performance, adding a full-connection layer in front of ELM
will make the model classification effect the best, so keep
one full-connection layer and add a Dropout layer after the
full-connection layer to prevent model overfitting. Finally, the
ELM classification layer is added to classify and recognize
the extracted features.

The improved DCNN-ELM model consists of five convo-
lution layers, five pooling layers, five batch normalization
layers, one fully connected layer, one Dropout layer, and the
ELM classification layer. The specific parameters are shown
in Table 4:

In addition to the above parameters, the DCNN-ELM
model has two crucial six parameters that must be deter-
mined. One is the deactivation probability of random deac-
tivation of the Dropout layer, and the other is the number of
neurons in the ELM hidden layer.

As a new super parameter is introduced, the random deac-
tivation of the Dropout layer specifies the probability that the
layer’s output unit will be dropped. The default interpretation
of the random deactivation super parameter is the probability
of training a given node in the layer, where 1.0 means no node
is dropped, 0.0 means the layer has no output, and good values
for random deactivation in the hidden layer are between
0.5 and 0.8. According to the study in the literature [38],
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TABLE 4. Model parameter.

Convolutional or Number of

Layer name pooling kernel size step size output channels Input Size Output Size
Input - - - 227%227x3 -
Convl 3X3X3 4 12 227%227x3 227x227%12
Batchnorm1 - - 12 227x227%12 227x227%12
ReLUl - - 12 227x227%12 227x227%12
Maxpoolingl 1X1 2 12 227x227%12 114x114x12
Conv2 3X3X12 1 24 114x114x12 114x114%24
Batchnorm2 - - 24 114x114%24 114x114%24
ReLU2 - - 24 114x114%24 114x114%24
Max pooling2 2X2 2 24 114x114%24 57x57%24
Conv3 3X3X24 48 57x57%24 57x57%48
Batchnorm3 - - 48 57x57x48 57x57x48
ReLU3 - - 48 57%x57%48 57x57%48
Maxpooling3 1X1 2 48 57x57x48 29%29x48
Conv4 3X3X48 1 96 29x29x48 29%29x96
Batchnorm4 - - 96 29%29%96 29%29%96
ReLU4 - - 96 29%29%96 29%29%96
Maxpooling4 1X1 2 96 29%29%96 15%15%96
Conv5 3X3X96 192 15%15%96 15x15%192
Batchnorm5 - - 192 15x15%192 15x15%192
ReLUS5S - - 192 15%15%192 15%15%192
Maxpooling5 1X1 2 192 15x15%192 77192
Fully connected1 - - 4 7x7x192 1x1x4
Dropout - - 4 1x1x4 1x1x4
ELM - - 4 4 4
Output - - 4 -4 4

the output retention probability of the hidden layer node is
0.5, which is close to the optimal value for various networks
and tasks. Hence, this paper sets the random deactivation
probability of the Dropout layer at 0.5.

The number of neurons in the ELM hidden layer is artifi-
cially set, which requires several experiments. The number of
hidden layer neurons significantly impacts the generalization
performance of the ELM classifier [39]. Figure 8 reflects the
relationship between the ELM classification error value and
the number of neurons in the hidden layer. The error value
decreases gradually with the increase in the number of hidden
layer neurons. When the number of neurons in the hidden
layer reaches 10000, the error value tends to be stable, so the
number of neurons in the ELM hidden layer is set to 10000.

D. COMPARATIVE ANALYSIS OF THE EFFECT OF
DIFFERENT IMAGE CONVERSION METHODS

To verify the superiority of SWT in image conversion,
SWT was compared with short-time Fourier transform
(STFT) [40], continuous wavelet transform (CWT) [6],
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FIGURE 8. The relationship between the ELM classification error and the
number of hidden layer neurons.

synchrosqueezing short-time Fourier transform (FSST) [41],
and other methods, and four methods were used to carry out
two-dimensional time-frequency image conversion for signal
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FIGURE 9. (a) Result of STFT; (b) Result of CWT; (c) Result of FSST;
(d) Result of SWT.

data samples in different states. Here is an example of one set
of Figure 9:

As can be seen from the figure, STFT uses a fixed win-
dow function, which significantly limits the optimization of
time-frequency domain resolution, resulting in fuzzy feature
performance. SWT breaks through the limitation of single
resolution of STFT through the constantly changing time-
frequency window. However, there is noise. The energy
distribution still di-verges in the frequency interval. FSST is
the application of synchrosqueezing compression conversion
after a short-time Fourier transforms to super-position the
spectrum within the pseudo-frequency interval to concentrate
the energy on the actual instantaneous frequency. However,
due to the defects of the STFT method, the sharpening effect
of the time-frequency ridge could be better. Based on the con-
tinuous wavelet transform, SWT has better time-frequency
aggregation, a better sharpening effect on the time-frequency
ridge, higher image recognition, and a better noise reduction
effect.

Then we use the peak signal-to-noise ratio (PSNR) and
the structural similarity index measure (SSIM) as the image
conversion effect evaluation index. PSNR is an error-sensitive
image quality evaluation index. The larger the value, the
better the image quality. As a perception model, SSIM can
be used as an indicator to measure the degree of distortion.
The larger its value is, the smaller the degree of distortion
is [42]. Its calculation formula is shown in (16) and (17).

mnMAX ,2

m—1n—1
> 2 UG — KGN

j=0 i=0

PSNR = 10 x Ig (16)

where m and n are the dimensions of noiseless image /and
noiseless image K respectively. MAX12 is the maximum pos-
sible pixel value in the image; i and jare the coordinates of
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FIGURE 10. (a) Result of STFT; (b) Result of CWT; (c) Result of FSST;
(d) Result of SWT.

the pixels in the image.

(2uxuy + C1)(2ny +c2)
3 +u} +c1)(0f + 02 +c2)

SSIM (x,y) = a7
where x is the noiseless image; y is the noise image; uis the
mean; o2 is the variance; Oyy is the covariance of x and y; ¢
and ¢y are constants.

The PSNR and SSIM of the four methods under different
working conditions are calculated, and the results are shown
in Table 5. It can be seen from the table that the PSNR and
SSIM of the SWT method adopted in this paper are both
more extensive than those of other methods, indicating that
the image quality after SWT method processing is higher. The
distortion degree is more minor, which proves the superiority
of the SWT method adopted in this paper in the noise reduc-
tion effect.

TABLE 5. PSNR and SSIM of four methods.

Conversion STFT CWT  FSST  SWT
method

PSNR (dB) 28.64 2934 2956  30.17

SSIM (%) 7982 8195  82.16  84.68

To better illustrate the influence of the SWT method on
the diagnosis results, STFT, CWT, FSST, and SWT were
used to convert 2D time-frequency images to the original
signals. The processed images were input into the DCNN-
ELM model established above for fault classification, and
the effect of signal processing was evaluated according to the
diagnosis results. According to the classification of the image
sample set, there are 60 test samples for each state, and the
classification results are shown in Table 6 and Figure 9.

To verify the effectiveness of the improved DCNN model
proposed in this paper, the Loss function was introduced
to measure the consistency between the output value of the
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TABLE 6. Classification result.

Status tag STFT CWT FSST SWT
S1 93.33% 95.00% 100.0% 100.0%
S2 91.67% 98.33% 96.67% 100.0%
S3 91.67% 93.33% 96.67% 100.0%
S4 88.33% 95.00% 98.33% 100.0%
Accuracy rate 91.25% 95.42% 97.92% 100.0%

3 0 s0 6 70 80
Epochs

(d)

FIGURE 11. (a) Result of S1; (b) Result of S2; (c) Result of S3; (d) Result
of S4.

model and the actual value, to analyze and compare the
model’s performance and verify the model’s effectiveness.
The AlexNet and improved deep convolutional neural net-
work models were used to train and optimize the training and
verification sets of four different states. Then, 60 test set sam-
ples were calculated as the loss value by comparing the loss
value of the AlexNet network model and the improved DCNN
model under four different states to verify the superiority and
effectiveness of the improved DCNN model.

In the training process, the loss function selects the cross
entropy loss function, the iteration times (Epoch) is 80, and
the learning rate is fixed at 0.0001. The changes in loss values
of the AlexNet network model and improved DCNN model
under four different states are shown in Figure 10:

According to Figure 10, the loss function value of the
improved DCNN model in four different states is lower than
that of the AlexNet model in each iteration, indicating that the
output of the improved DCNN model is closer to the actual
result than that of AlexNet model, and has faster convergence
and better fault prediction performance.

E. COMPARATIVE ANALYSIS OF THE DIAGNOSTIC

EFFECT OF DIFFERENT CLASSIFIERS

To verify the reliability of the ELM classifier in the improved
DCNN-ELM fault diagnosis model proposed in this paper,
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two-dimensional time-frequency graphs of fault signals in
four states processed by SWT were input into the improved
DCNN model to extract features. The extracted advanced fea-
tures are input into Softmax, K-nearest neighbor (KNN) [43],
support vector machine (SVM) [44], and ELM classifier,
respectively, for fault diagnosis. At the same time, to verify
the overall effectiveness and superiority of the improved
DCNN-ELM fault diagnosis model, we select another two
classical methods in deep learning, extended short-term
memory network (LSTM) [45] and deep confidence network
(DBN) [3], and input training sets and verification sets of dif-
ferent states into these two networks for training and feature
extraction. Then, the Softmax classifier in LSTM is replaced
with ELM. Since DBN is an unsupervised deep learning
model, ELM is added as its classifier. Finally, the test set
is input into two network models for fault diagnosis, and a
confusion matrix represents the results. The results are shown
in Table 7 and Figure 11:

TABLE 7. Classification result.

Diagnostic model Diagnostic lengnostlc
accuracy time (s)
Three-phase YIENNA Rectifier 90.42% 250
Circuit

DCNN- KNN 96.67% 2.13

DCNN- SVM 98.75% 0.76

DCNN- ELM 100% 0.97

LSTM- ELM 97.92% 0.92
DBN-ELM 98.33% 1.14

It can be seen from the figure and table that the Softmax
classifier only performs the conversion of probability distri-
bution and requires multiple gradient updates. Hence, the test
accuracy and test time could be better. The k-nearest neighbor
(KNN) classifier performs well in test accuracy, but it needs
to store all sample sets, occupies a large memory, and runs
slowly, leading to a lengthy test time. Both support vector
machines (SVM) and extreme learning machines (ELM) have
high diagnostic accuracy and speed. Although the test time of
ELM is slightly increased compared with SVM, the test accu-
racy is higher than SVM. After comprehensively considering
the balance between diagnostic accuracy and speed, the best
classifier is ELM. Thus, the superiority of ELM as a fault
diagnosis model classifier is verified.

Simultaneousl, LSTM solves the problem of gradient
explosion or gradient dissipation in traditional cyclic net-
works by introducing the gating concept and optimizing
the information transmission mode. Therefore, the diagnosis
time is speedy. However, since LSTM mainly models the
time series of data, the fault diagnosis accuracy rate based on
two-dimensional images is slightly inferior. As a probabilistic
generation model, DBN effectively optimizes initial network
weights, with advantages such as fewer parameters, spe-
cific training, and fast convergence speed. However, although
DBN, as an unsupervised learning model, has the classifi-
cation function after joining ELM, there still needs to be a
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FIGURE 12. (a) Result of DCNN-Softmax; (b) Result of DCNN-KNN;
(c) Result of DCNN-SVM; (d) Result of DCNN-ELM. (e) Result of LSTM-ELM;
(f) Result of DBN-ELM.

gap in fault diagnosis accuracy compared with the improved
DCNN-ELM model. The superiority of the improved DCNN-
ELM model in fault diagnosis of electronic circuits is verified
by comparative analysis.

F. COMPARATIVE ANALYSIS OF DIAGNOSTIC EFFECT

OF DIFFERENT CIRCUITS

The practicability and validity of the proposed fault diagnosis
method are further verified by fault diagnosis experiments
on different types of electronic circuits. In this paper, dif-
ferent circuits of the rectifier are compared and analyzed.
According to the different topological circuits and application
occasions, in addition to the three-phase VIENNA rectifier
circuit mentioned above, the three-phase PWM rectifier cir-
cuit, three-phase T-type rectifier circuit, and single-phase
NPC rectifier circuit are established respectively through the
Simulink toolbox in MATLAB software. The four circuits are
shown in Figure 13:

As can be seen from the figure, in addition to the switching
tube of the three-phase VIENNA rectifier circuit being a
MOSFET tube, the other three circuit switching tubes are
IGBT tubes, compared with MOSFET switching tubes, IGBT
tubes are more used in high voltage and high power occasions,
switching loss and conduction loss is more extensive, and the
failure rate is higher. Referring to the processing scheme of
the three-phase VIENNA rectifier circuit mentioned above,
the results of the failure mode of the IGBT switch tube
break are mainly analyzed, and the processing is carried
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FIGURE 13. (a) Three-phase VIENNA Rectifier Circuit; (b) Three-phase
PWM Rectifier Circuit; (c) Three-phase T-type Rectifier Circuit;
(d) Single-phase NPC Rectifier Circuit.
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FIGURE 14. (a) Result of Three-phase VIENNA Rectifier Circuit; (b) Result
of Three-phase PWM Rectifier Circuit; (c) Result of Three-phase T-type
Rectifier Circuit; (d) Result of Single-phase NPC Rectifier Circuit.

out according to the fault presetting and signal acquisition
schemes mentioned above. Each circuit is divided into four
different working states, and each working state generates
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300 two-dimensional video images. The image sample set
will be divided into the training set, verification set, and
test set according to the ratio of 6:2:2.The training set and
verification set of each circuit with different states are input
into the improved deep convolutional neural network model
for training and optimization. Then 60 samples of the test set
are tested for fault diagnosis, and the results are represented
by a confusion matrix, as shown in Figure 14:

The diagnostic accuracy and diagnostic time are shown in
Table 8:

TABLE 8. Classification result.

Diagnostic model ]:lij‘cgl::;sct;c D:?f:;o(ss;ic
Three-phase VIENNA Rectifier Circuit 100% 0.97
Three-phase PWM Rectifier Circuit 99.17% 1.03
Three-phase T-type Rectifier Circuit 99.58% 0.91
Single-phase NPC Rectifier Circuit 99.58% 0.96

It can be seen from Fig.14 and Table 8 that the four cir-
cuits are basically at the same level in terms of diagnostic
accuracy and diagnosis time, thus verifying the universality
and effectiveness of the proposed method in electronic circuit
fault diagnosis.

VI. CONCLUSION
In this paper, a fault diagnosis method of electronic cir-
cuits based on SWT and DCNN-ELM is developed. Firstly,
SWT is used to convert the original fault signal to a two-
dimensional time-frequency image so that the fault sample
has a higher identification degree. Based on AlexNet’s classic
network model, an improved DCNN model with more vital
generalization ability and faster training speed is obtained
by adjusting network levels and parameters. Meanwhile, the
original Softmax classifier is replaced with the ELM clas-
sifier, and the final DCNN-ELM fault diagnosis model is
formed. Finally, taking the fault data sample set of a three-
phase VIENNA rectifier as an example, the effectiveness and
superiority of the SWT method, improved DCNN model, and
ELM classifier are verified by comparing and analyzing with
different noise reduction methods, network models, diagnosis
methods, and circuits. It is proved that the diagnostic methods
of SWT and DCNN-ELM proposed in this paper have spe-
cific application potential in electronic circuit fault diagnosis.
At the same time, the experiment conducted in this paper
only studied the single fault of the electronic components
in the electronic circuit, and there are still shortcomings in
the research on the verification of diagnostic methods under
different fault conditions, such as short circuits and high
resistance. The next step will focus on this direction.
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