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ABSTRACT Due to their distinctive features, unmanned aerial vehicles (UAVs) have been recently exploited
to support a wide range of applications. The features include low maintenance cost, compact size, and
excellent capability of maneuvering. In particular, UAVs have the potential capabilities to support different
technologies such as Internet-of-things (IoT) devices, sensors, cameras, and systems, thus, performing
civilian, target tracking, industrial, and military applications. Specifically, target tracking has been recently
configured as one of the most attractive applications of UAVs. With this, UAVs estimate and detect the
behavior or locate a moving or a stationary item. Accordingly, several research efforts have been conducted
to investigate the promising capabilities of UAVs in target-tracking missions, including indoor and outdoor
tracking missions. This paper surveys UAV-based target tracking and monitoring for indoor and outdoor
environments, where the deployment scenarios of such UAV-based systems are characterized and investi-
gated. Furthermore, we discuss a set of practical design challenges of UAV-based target tracking systems,
and thus, we provide a set of potential solutions to deal with these challenges. Specifically, we present a set of
recent enabling technologies that might be integrated into UAV target tracking systems, including machine
learning (ML), cloud computing, and emerging fifth-generation (5G) technologies. We also demonstrate a
use-case scenario in which ML is used to facilitate indoor target tracking and monitoring. Finally, future
research directions are outlined that can help in improving the efficiency of the UAV-based target-tracking
systems.

INDEX TERMS Target tracking systems, drones, uncertainmovement, indoor/outdoor deployment, artificial
intelligence (AI).

The associate editor coordinating the review of this manuscript and

approving it for publication was Gianluigi Ciocca .

I. INTRODUCTION
Unmanned aerial vehicles (UAVs), popularly known as
drones, have been recently nominated as promising solu-
tions to support a wide set of agricultural and civilian
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applications [1]. In particular, an UAV is a type of aircraft
that needs no pilots on board to operate and can be controlled
either autonomously or by using portable or ground-based
control equipment [2]. To be specific, the concept of UAVs
is not new, as it was initially suggested for military pur-
poses at the beginning of the 20th century [3]. However,
due to the revolutionary development in UAVs’ manufac-
turing [4], several distinctive features have been recently
offered for UAVs, which thus, enable the further deployment
of UAVs to facilitate our daily life activities. The features
include a long service lifetime, small size, low maintenance
and operation cost, excellent maneuvering capability, and
the capability of flying at different altitudes [4]. In addi-
tion, UAVs can hoover under various degrees of autonomy
while offering an appealing paradigm to exploit various tech-
nologies, i.e., sensors, global positioning systems (GPSs),
and cameras [5]. Furthermore, the fact that UAVs can self-
optimize and operate completely and independently makes
this technology highly valuable for completing tasks in sit-
uations where human availability is impossible (inaccessible
locations). Accordingly, UAVs can be used to support a broad
range of applications, including agriculture monitoring [6],
[7], rescue missions [8], military tasks [9], transportation [4],
communication coverage, [10], and target tracking [11].

In particular, target tracking tasks include estimating and
detecting the behavior of an object, predicting the object’s
future location, or locating a moving or stationary item [12],
[13], [14]. Accordingly, target tracking is crucial in a wide
range of applications and sectors where it is needed to observe
and track the movement of items, people, or vehicles. Tar-
get tracking has a variety of uses, including surveillance
and rescue applications [15], [16], tracking desired activ-
ity [4], traffic management, military operations [9], industrial
automation [17], and human activities recognition [18]. It is
important to note that traditional tracking techniques have a
number of practical drawbacks, including limited mobility,
limited access to difficult-to-reach areas, high cost, large
number of required personnel and equipment and relatively
higher response time. However, in UAV-based target track-
ing systems, the integration of computer vision, localization
methods, and sensing devices with UAVs allows precise
identification of the considered target and improves naviga-
tion/control. UAV-based systems can also provide efficient
tracking solutions at a low-cost and high level of security
and reliability [5]. Furthermore, UAVs have the ability to
rapidly cover large and inaccessible areas, whether indoors
or outdoors. As a result, UAV technology is seen as a
promising option for autonomous surveillance and target
tracking missions [4]. Accordingly, tracking and detecting
targets using UAVs have been recently investigated in the
literature as a promising technique to perform a wide range
of tasks, namely, those involving stationary and dynamic
target tracking tasks [10], [13]. In addition, UAVs are able
to autonomously perform target tracking tasks with and
without prior knowledge of the target’s movement behavior.

For example, substantial studies have been conducted on
using UAVs to search and locate stationery items [15],
[16], [19]. colorblackIn [10], it has been assumed that the
UAV(s) should detect and track one or multiple stationary
target(s) to aid personnel in reaching the target(s) promptly.
Unlike stationary target tracking scenarios, a dynamic target
tracking scenario has been considered in [20]. The targets
are assumed to move continuously from one place to another
under known/unknown probability distributions. On the other
hand, employing multi-UAVs for target tracking tasks has
also been investigated in [21].

While UAV-based target tracking can be exploited to sup-
port a wide set of applications, several issues should be
considered. For instance, the unavailability of information
regarding the target behavior is one of the major aspects that
might restrict the capabilities of UAV-based tracking systems.
This occurs when the target is mysterious and has uncertain
and unknown movement behavior. Another difficulty faced
by UAV-based tracking systems is the limited UAV battery
capacity, which restricts flight time and the UAV’s searching
capabilities [22]. Furthermore, the expected delay between
UAVs and ground stations is one of the primary obstacles
encountered during target tracking using UAVs. Therefore,
it is essential to propose efficient latency-aware communi-
cation protocols to facilitate timely information exchange in
UAV-based target tracking systems [23], [24], [25]. To end
with, target camouflage, localization [26], collision avoid-
ance [6], UAV size [27], and weather conditions [28] are
also key challenges associated with using UAVs for target
tracking.

A. CONTRIBUTION
Although many interesting surveys have been recently pub-
lished to overview existing UAV-based target tracking sys-
tems (e.g., [29], [30], [31], [32], [33], [34], [35]), most
of them only cover a subset of the challenges related to
the efficient deployment of such systems. Inspired by this
fact and the rapid growth of UAV capabilities and AI
technologies, in this paper, we shed light on the different sys-
tem classifications of existing UAV-based tracking systems.
In addition, we discuss the recent exploitation of UAVs in
several target-tracking scenarios. Then, we highlight some
potential state-of-the-art enabling technologies that can be
utilized to improve the performance of UAV-based tracking
systems. To be specific, we summarize themain contributions
of this paper as follows:

• We provide a detailed overview of recent classifications
of UAV-based target tracking based on various aspects.

• Then, we discuss the target tracking policies and tech-
niques used in indoor and outdoor systems. Furthermore,
we illustrate some of themain challenges facing efficient
designs of UAV-based target tracking systems.

• We also provide a set of potential enabling technologies
that can be used to deal with the discussed challenges
and improve tracking performance.
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FIGURE 1. Structure of the paper.

• Finally, we provide a set of promising research direc-
tions for designing efficient UAV tracking systems.

The rest of this survey is organized as follows.
Section II demonstrates the classification of UAVs based on
indoor or outdoor tracking environments. Section III presents
the applications of UAV-based target tracking systems. The
tracking mechanisms and target categorization are discussed
in Section IV. Section V addresses some design challenges
that face UAV systems. Also, some enabling technologies
that can be used in UAV systems are presented in Section VI.
After that, we provide a use case for indoor tracking in
Section VII. Finally, concluding remarks are provided in
Section VIII. Fig. 1 depicts the structure of this survey.

II. INDOOR VERSUS OUTDOOR UAV OPERATING
ENVIRONMENT
This section presents an overview of the classification of
UAV-based target tracking systems depending on their oper-
ating environment, namely indoor and outdoor UAV-based
systems. In the UAV-based indoor environment, UAVs are
intended for use in enclosed spaces, where GPS signal is
not available, or unreliable [26]. Indoor UAVs are small,
light, and very maneuverable compared with outdoor UAVs,
allowing them to fly in confined spaces and quickly change
directions without endangering themselves or their surround-
ings [16]. In particular, altitude control is an important
design factor in indoor scenarios as UAVs need to remain
stationary in one location while performing inspection and

surveillance tasks. Several indoor UAVs incorporate sen-
sors and cameras to assist them in spotting obstructions and
avoiding collisions [6]. However, outdoor UAVs are built
to operate in open-air environments, where their designs
are capable of covering larger areas with extended flight
times [4]. To be specific, compared to indoor UAVs, out-
door UAVs are generally larger, more robust, and equipped
with advanced sensors and cameras. Outdoor UAVs are often
used for surveying, mapping, and monitoring large areas
and inspecting infrastructure such as power lines and wind
turbines [36]. In summary, indoor and outdoor UAV-based
systems’ operating environments, applications, advantages,
and design challenges are fundamentally different. Each sys-
tem offers particular benefits, support certain applications,
and imposes unique constraints and design challenges.

III. UAV-BASED MONITORING AND
TRACKING APPLICATIONS
UAV-based tracking systems can be deployed in both indoor
and outdoor scenarios. Fig. 2(a) and Fig. 2(b) show scenar-
ios for using indoor and outdoor UAV-based target tracking
systems, respectively.

A. UAV-BASED TRACKING IN INDOOR SCENARIOS
Recently, there has been an increase in the deployment
of UAVs in various indoor applications, including mon-
itoring and surveillance tasks in greenhouses, shopping
malls, offices, and hospitals, among others [6]. Such various
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FIGURE 2. Examples of possible UAVs tracking environments.

applications can be realized in indoor scenarios by equipping
UAVs with HD cameras, communication units, motion detec-
tors, and laser-range finders. We provide a detailed list of
some applications for using UAV-based tracking systems in
indoor environments:

• Indoor search and rescue (SAR)missions: SARmissions
are carried out by emergency services to locate and
detect someone who is in danger, lost, ill, or injured in
remote or difficult-to-reach places [37]. SAR is consid-
ered one of the most important applications for using
UAVs to save lives. Single-UAV or multi-UAV systems
are viable options in this type of environment. Some
tasks that can be executed in SAR missions include
detecting and recognizing objects, exploring the mis-
sion area, and supplying essentials like medicine [27].
Locating and detecting people trapped inside a col-
lapsed building can also be accomplished with the help
of a small, lightweight, fast-moving multi-copter drone
equipped with a thermographic camera [38].

• Health care and epidemic control: UAVs are valu-
able tools for achieving health and privacy objec-
tives. UAV-based tracking systems have the potential
to offer strategies for societal safety and security in
populated spaces [39]. For instance, during times of
widespread pandemics (e.g., COVID-19) [40], the UAVs
can monitor the social distance between individuals and
detect people with high temperatures in crowded areas
(e.g., shopping malls). This can help in decreasing the
spread of COVID-19 and other diseases [41], [42].

• Agriculture (e.g., greenhouse): Instead of using a large
number of sensors in large greenhouses, UAVs can be
considered good candidates to perform different tasks.
Such tasks include visual inspections of plants and
collection of the required information [6]. UAVs have
surpassed wireless sensor networks (WSN) and mobile

farm robots. Using UAVs, measurements can be taken
from any point in the three-dimensional greenhouse
space, improving the accuracy and convenience of cli-
mate control and crop monitoring [43], [44].

• Indoor surveillance and security: In this context, a mini
UAV is given instructions on where to search for a
specific target inside an indoor potentially hazardous
environment [45]. colorblackDue to their sizes, vari-
ous designs of mini UAVs are encouraged for indoor
monitoring. UAVs can take the roles of humans dur-
ing the daily routine of warehouse inspection, detect
potentially hazardous situations, inspect difficult-to-
reach indoor places, and detect potential criminal
activity [17].

B. UAV-BASED TRACKING IN OUTDOOR SCENARIOS
Due to their high operating flexibility, UAVs can be effec-
tively used for target tracking in different outdoor scenarios.
Using UAVs in search and tracking systems can considerably
increase search coverage and capabilities while accomplish-
ing missions in a relatively short time [16]. Specifically,
several UAV-based systems have been used for outdoor mon-
itoring and tracking applications, which include:

• Target Tracking: UAVs are distinguished by their ability
to take off and land reasonably, quickly, and smoothly.
With such features, UAVs can be used in different
outdoor environments. In particular, UAVs can also
quickly and accurately provide targets’ locations and
images of their surroundings, allowing them to focus
efforts and save time and resources in different mis-
sions. Systems for searching and tracking objects using
UAVs can greatly expand their coverage, improve their
effectiveness, and save expenses [16]. To overcome the
challenge of tracking and finding small and fast-moving
dynamic targets, we can employ a convolutional neural
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network (CNN), deep neural network (DNN), and
YOLOv8 technique with a camera integrated into UAVs.

• SAR: UAVs are increasingly being used for exploratory
navigation in outdoor regions due to their advanced
sensing capabilities with a high degree of adaptability.
In addition, UAVs can monitor and search environments
that are unreachable or dangerous for humans. Due to
the aforementioned features of UAVs, they have been
proposed to accomplish several critical missions, includ-
ing urban/outdoor SAR, and to find missing immobile
humans or objects in unknown environments [15].

• Wildlife monitoring: Given the importance of wildlife in
maintaining balance and stability to nature’s processes,
there are a number of attempts to conduct wildlife sur-
veys in different environments. With the evolution of
technologies, significant improvements have been seen
in the methods used to collect data from different envi-
ronments. UAV technology is one of the technologies
with a significant footprint in monitoring and collecting
data from different environments. This makes the UAV
technology one of the most important tools for wildlife
monitoring, replacing direct field investigations [28].
One of the primary features distinguishing UAVs from
other wildlife monitoring technologies is their ability to
cover large areas with high spatial and temporal accu-
racy. In addition, UAVs can also be used to explore
potentially hazardous or inaccessible regions [46].

• Pollution monitoring: Air pollution monitoring with
UAVs has recently received much attention from sci-
entists. Accordingly, many different approaches have
been suggested to address this problem. For example,
small gas sensors can be installed on UAVs, allowing
them to monitor a variety of pollutants in urban environ-
ments [47]. In addition, an aerobatic robotic (called an
environmental drone) has been developed to learn more
about climate change and air pollution [48].

• Smart Agriculture: The possibilities presented by the
integration of UAVs in precision agriculture hold
immense potential for addressing various challenges and
improving agricultural practices worldwide. However,
the price and simplicity of controlling UAVs for smart
farming are crucial to encourage their use. The main
benefits of using UAVs in agriculture are their porta-
bility, their ability to capture HD pictures, and their
ability to analyze these pictures in real-time. Farmers can
automate the irrigation process by remotely monitoring
the crop field with various sensors attached to the UAVs.
UAVs can also monitor crop quality and weed/animal
attacks. Farmers and other stakeholders can remotely
access UAV data from cloud-based platforms to evaluate
crop yield, fertilizer, pesticide, etc. [49], [50].

• Border patrolling: Ensuring secure borders is a cru-
cial necessity for safeguarding nations, necessitating
continuous monitoring and control of these borders.
The mission of monitoring and controlling borders
might be difficult, especially when such borders extend

thousands of kilometers with harsh terrains. In such
cases, conventional solutions like installing domestic
monitoring points at regular intervals would be inef-
ficient and expensive. This inefficiency and costliness
make the exploitation of UAVs for border protection
feasible [9].

IV. CLASSIFICATIONS OF EXISTING UAV-BASED
TARGET TRACKING SYSTEMS
In the previous discussions, UAV-based target tracking sys-
tems are classified based on their operational environments.
However, this section provides a comprehensive overview of
the UAV-based target tracking systems in terms of the target
behavior (i.e., stationary or dynamic), number of used UAVs
(single or multiple), target size, and target altitude.

A. STATIONARY VERSUS DYNAMIC MOVING TARGET
The locations of stationary targets remain fixed and can be
identifiedmore easily with the assistance of image processing
and AI techniques. In the case of tracking and detecting
stationary targets, the UAV(s) need to search for single or
more targets located in fixed locations and maintain track of
their locations [10]. On the other hand, for dynamic target
tracking tasks, the UAV(s) are tasked with searching for and
detecting one or more dynamic, uncertain targets. Specifi-
cally, for moving targets, the tracking task is divided into
three processes: UAV launch, target detection, and succes-
sive tracking. With uncertain knowledge about the mission
field and the behavior of the target, intelligent methods can
be integrated into UAVs to substantially enhance tracking
performance. These methods attempt to predict the tar-
get’s mobility pattern by interacting with their surroundings,
enabling the UAVs to make appropriate decisions during the
mission [19], [51].

B. SINGLE VERSUS MULTIPLE UAVS
In target detection and tracking missions, target tracking
can be accomplished by exploiting single or multiple UAVs.
While utilizing a single UAV can simplify the tracking sys-
tem design and reduce the administrative cost, relying on
a single UAV for tracking poses time constraints regarding
the frequent need for battery recharge [52]. Additionally,
employing a single drone can result in a single point of
failure and can negatively impact the system’s performance.
Thus, multiple UAVs have been utilized to enhance tracking
performance (e.g., [53], [54]) by mitigating the delay and
energy limitations associated with the single-drone systems.
Specifically, employing a group of UAVs allows for more
extensive temporal and spatial data collection than relying
on one UAV, enabling the successful execution of various
missions. In addition, if one of the UAVs cannot perform
its mission, the remaining UAVs can adapt the mission as
needed, leading to a more resilient system [55]. Thus, using a
group of UAVs enhances the system’s reliability and reduces
the time needed to accomplish tracking missions [56].
However, designing target tracking systems with multiple
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UAVs imposes several design challenges related to UAV
coordination, UAV route planning, andUAV-to-UAVcommu-
nication.

Accordingly, UAV-based tracking systems can be catego-
rized into eight groups based on the number of used UAVs,
nature of the target movement, and number of targets:

• SDSST: Single-drone single-stationary target tracking
systems (e.g., [15]).

• MDSST: Multi-drones single-stationary target tracking
systems ([54]).

• SDMST: Single-drone multi-stationary target tracking
systems (e.g., [57]).

• MDMST:Multi-drones multi-stationary target tracking
systems (e.g., [54], [58]).

• SDSDT: Single-drone single-dynamic target tracking
systems(e.g., [20], [21], [59]).

• SDMDT: Single-drone multi-dynamic target tracking
systems (e.g., [20], [21], [59]).

• MDSDT: Multi-drones single-dynamic target tracking
systems (e.g., [51], [60]).

• MDMDT:Multi-drones multi-dynamic targets tracking
systems (e.g., [56], [61]).

Figure 3 provides an overview of the primary categorization
of current indoor and outdoor target tracking systems. Table 1
compares a number of existing indoor and outdoor UAV-
based tracking systems in terms of the number of used UAVs,
type of target, number of targets, type of environment, and the
use of AI.

C. LARGE SIZE VERSUS SMALL SIZE TARGETS
The targets can be further classified based on their size and
their proximity to the UAV tracking system as large and
small targets. The small size of the target makes it difficult
to identify and track, especially in crowded scenarios. This
makes small target tracking challenging. Tracking different
size targets poses unique difficulties due to the requirement
for long-range tracking of targets with different sizes and
shapes [62]. To identify and track targets of varying sizes
in situations with poor visibility, specialized sensors are
required. These sensors can include infrared or acoustic sen-
sors. Additionally, advanced AI algorithms are necessary to
enhance target detection accuracy. Such AI algorithms need
to be designed to work effectively regardless of the target
size [63], [64]. We note that YOLOv8 (You Only Look Once
v8) technique with an HD camera can be utilized to detect
targets of different sizes and shapes. YOLOv8 is considered
a state-of-the-art robust object detection platform. It can be
utilized as an effective AI-based vision solution to identify,
in real-time, a wide range of complex objects of different
sizes (e.g., small objects in crowded indoor spaces). YOLOv8
introduces improvements over its previous YOLO versions
for better performance, accuracy, and flexibility. YOLOv8 is
expected to bewidely implemented in various target detection
and tracking systems [65].

D. HIGH-ALTITUDE VERSUS LOW-ALTITUDE
DYNAMIC TARGETS
Based on their flying altitude, dynamic targets can be
classified as high-altitude (within a few kilometers) and low-
altitude targets (within 100’s meters) [66]. Tracking objects
flying at different altitudes is a challenging task due to the
need for high precision, real-time response, and the presence
of signaling error and noise [67]. Specifically, the task of
achieving high precision and real-time performance involves
several key factors. Effective algorithms for target identi-
fication, tracking, and prediction are crucial. Additionally,
reliable sensor systems are required to provide accurate and
timely measurements of the target’s location, velocity, and
other essential data [68]. Thus, target tracking systems should
combine several sensors, AI algorithms, and advanced signal-
processing techniques to provide reliable tracking solutions
for targets flying at different altitudes [69].

V. DESIGN CHALLENGES FOR EFFICIENT UAV-BASED
TRACKING SYSTEMS
Although the utilization of UAVs for tracking and monitoring
missions has a number of features, there is a set of challenges
corresponding with such UAV-based systems. In this section,
we discuss some of these challenges and introduce a set of
solutions to deal with them.

• Indoor navigation and collision avoidance: The use of
UAVs in indoor environments has a number of techni-
cal difficulties. These difficulties include the numerous
barriers that make hoovering more difficult, the GPS-
denied operating environment, and the possibility of
UAV failures and collisions with indoor obstacles [17].
Accurate localization and navigation without relying on
GPS are essential in indoor operations. For autonomous
UAVs navigating in unknown indoor scenarios, a num-
ber of unaided methods have been suggested in recent
years. These methods rely on simultaneous localiza-
tion and mapping, artificial landmarks, stereo vision
sensors, DNN with image processing and laser range-
finders [75], [76], [77], [78], [79]. On the other hand,
collision avoidancemethods are essential for UAV track-
ing systems in both indoor and outdoor environments.
However, indoor environments aremore crowded, which
as a result, limiting maneuverability and enforcing pre-
cise control requirements [6], [27]. Most methods for
indoor collision avoidance are based on either reactive
or proactive planning [4], [80]. To be specific, reactive
planning involves utilizing theUAV’s onboard sensors to
obtain information regarding its operating surroundings
and respond immediately to existing obstacles. On the
contrary, proactive planning allows the UAV to utilize
its sensors to generate a map of the operating surround-
ing and accordingly allows for obstacle-aware UAV
navigation [80].

• Battery capacity: UAVs face a major challenge with
regard to battery capacity, which is considered one of the
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FIGURE 3. UAV-based Target Tracking system classification based on target mobility, the number of used drones, number of targets, mission
environment, and UAV size.

TABLE 1. Comparison of existing UAV-based target tracking systems.

most critical design factors in providing efficient UAV
deployment. In particular, the limited battery capacity
of a typical small UAV restricts the amount of time
the UAV can fly. For this reason, there are ongoing
efforts to increase the traveling time of UAVs. Several
suggested solutions can be exploited to increase flight
time, such as expanding battery capacity, intermittent
charging, and using optimization algorithms to optimize
flight trajectories [22], [81]. Meanwhile, expanding bat-
tery capacity is challenging with current technologies,
where increasing the battery capacity requires using
heavy-weight batteries [22], [82]. The second alter-
native is intermittent charging, either through wired
or wireless methods. Wired methods are intricate and
can restrict the UAV’s mobility while being charged,
while wireless options provide more freedom but with
reduced efficiency [82]. Finally, several studies have
identified that optimizing the flying path and commu-
nication parameters can provide energy-efficient UAV
deployment [83].

• Limited UAV computational resource: Achieving a
totally autonomous mission in an indoor environment

with small aerial robotics poses an implementation
challenge due to their limited payload and computa-
tional capabilities. Therefore, when UAVs are designed
for autonomous tasks without human supervision, the
development of advanced decision-making algorithms
becomes crucial. These algorithms need to strike a
balance between mission performance and the compu-
tational resources available onboard the UAVs [27].

• Target recognition: The traditional recognition methods
involve the drone capturing an image and sending it to
a ground station for detection. The ground station then
transmits back commands to the drone to control its
actions. However, this approach is limited in responsive-
ness due to issues related to the network latency and
high bandwidth requirements [25]. One of the recent
attractive solutions to deal with this challenge is to
deploy deep learning algorithms for image detection
and recognition using deep learning [84]. Such algo-
rithms have attracted much interest since they are able to
offer promising performance. Specifically, the embed-
ded system loaded on the UAV usually utilizes CNN
(or region-based CNN)-based methods for image
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analysis and pattern recognition, which can result
in decreasing the needed bandwidth and response
time [85].

• Communication protocols: Communication and data
exchange is necessary to manage and support UAV trip
control operations. High-performance, reliable commu-
nication plays an essential role in meeting the design
challenges related to operating a swarm of UAVs
[1], [86]. The key challenges in designing efficient
data communication and routing protocols for UAV net-
works are the mobility of UAVs, network partitioning,
intermittent links, scarce resources, high bit-error-rate
links, and varying QoS requirements [23]. Due to the
UAV’s unique operating environment, existing com-
munication protocols designed for conventional mobile
ad hoc routing networks are not applicable to UAV
networks. New data communication protocols that can
adapt to the UAV’s high mobility and dynamic topology
are needed [87]. Such protocols should be designed
to enable efficient UAV-to-UAV coordination, mission
planning, and secured data/control exchange [24].

• Communication Security: UAV systems, in general, suf-
fer from security attacks, including jamming attacks
and ghost-control scenarios, where unauthorized agents
attempt to take control of UAVs through spoofed nav-
igation and control signals [88]. On the other hand,
due to their restricted operational height and proxim-
ity to eavesdroppers, physical attacks might also affect
the UAV-based target tracking systems, especially in
indoor scenarios. Consequently, in addition to stan-
dard software-security measures, the implementation of
distinct physical-level security protocols becomes nec-
essary for UAV communications. This presents new
challenges and research opportunities, including the
need for AI-based proactive network management to
detect and prevent real-time physical attacks.

While the aforementioned challenges restrict all UAV-
based target tracking missions, the degree of importance of
each challenge varies upon the classification of UAV-based
target tracking systems. For example, the challenge of the
limited battery capacity has a considerable impact when con-
sidering the outdoor tracking mission, while such a challenge
is of less importance when considering indoor tracking mis-
sions. On the other hand, unlike the outdoor scenarios, due to
the crowded nature of the indoor target tracking scenarios,
proposing efficient collision avoidance protocols becomes
of vital importance. Fig. 4 highlights the importance of the
various design challenges with respect to the various tracking
classifications.

VI. ENABLING TECHNOLOGIES
Over the past few years, several enabling technologies have
been proposed to address the design challenges of deploying
UAVs in target-tracking missions. Next, we shed some light
on a set of such technologies, where we also demonstrate the

potential roles of such technologies in handling the design
challenges of UAV-based target tracking systems.

A. BEYOND 5G AND 6G TECHNOLOGIES
As demonstrated in the previous section, successful UAV-
based target-tracking missions cannot be accomplished
without developing efficient and reliable communication pro-
tocols. Accordingly, the recent advances of B5G and 6G are
expected to facilitate the widespread deployment of UAV
technology in target tracking missions while fulfilling the
demanding communication requirements (in terms of rate
and latency) of such systems [89]. Specifically, the provision
of wireless connectivity that is dependable, risk-free, and
efficient in terms of cost is necessary for the practical support
of such a massive deployment of UAVs. In particular, UAVs
are considered flying user equipment, and thus, serving them
by cellular networks is a critical issue. Even though the exist-
ing cellular networks offer promising connectivity solutions
for UAVs, allowing reliable UAV operations still present
many challenges [90], [91]. The capabilities and advanced
features of 5G make it possible to provide practical support
for UAV communications. Some examples of these capa-
bilities and features include spectrum flexibility, advanced
antenna technologies, and network slicing [92]. The use of
5G drones presents a number of difficulties, including lim-
ited range, interference, bandwidth restrictions, and latency.
These issues can hinder drones’ ability to communicate with
ground stations and other drones at greater distances, cause
connectivity and control loss, and make it challenging to
control multiple drones in the same space. The transition to
6G technology is crucial for a number of reasons, including
better connectivity, increased range, improved security, and
more effective spectrum use [93]. At the same time, 6G
technology claims to provide 5G with better encryption and
security features, faster speeds, lower latency, and increased
capacity. This might make ground stations and drones’ com-
munications more reliable, expand the applications available,
reduce the chance of hacking or other cyberattacks, and lessen
interference from drones flying in the same area. In general,
the transition to 6G technology is critical for the growth and
development of drone technology, which has the potential to
change a variety of industries completely [94].

B. CLOUD AND FOG COMPUTING
Connecting the UAVs to cloud and fog computing platforms
can open up a wide range of applications, such as a cloud-
enabled system for intelligent risk-aware navigation in urban
scenarios [95]. It was proposed that a cloud-based system
could be used for monitoring unmanned air traffic within
cities. This system offers services for the administration
and control of traffic, making it possible to maintain safety
and avoid collisions [96]. The use of cloud computing can
improve UAVs in a number of ways. For example, UAV oper-
ators may be given a platform by cloud computing to store
and process large amounts of data produced by the UAVs,
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FIGURE 4. The importance of the different design challenges with respect to the different UAV-based tracking system classifications (✓ being
important and ✓✓ being most important).

enabling real-time analysis and decision-making. Cloud com-
puting can give users access to sophisticatedmission planning
tools, such as 3D maps and weather information, which
can aid operators in more efficient mission planning [97].
Additionally, cloud computing can enhance ground stations’
and UAVs’ interactions, fostering more effective mission
execution. To protect UAVs from cyber threats, cloud com-
puting can offer sophisticated cyber-security features [98].
In general, cloud computing can improve UAV capabilities,
allowing for more effective, efficient, and secure operation
in various applications [99]. On the opposite side, cloud
computing is currently impractical due to bandwidth and
latency constraints. The processing capabilities of UAVs
can be increased by placing fog nodes closer to the event
we want to monitor. In UAV systems, fog computing can
solve latency, bandwidth, and energy consumption problems.
By utilizing fog computing, UAVs can reduce the amount
of data that should be sent back to the cloud for process-
ing by offloading computation and storage tasks to edge
devices like gateways, drones, and other Internet-of-things
(IoT) devices [100]. UAVs can make more precise and timely
decisions with the help of fog computing, which can facilitate
more effective and responsive data analysis. In addition, fog
computing can give UAVs more dependable and secure con-
nectivity by enabling direct communication between UAVs
and nearby edge devices rather than relying on cloud-based
communication. Also, by allowing ML and other advanced
algorithms to run at the edge, closer to the data source,
fog computing can improve UAV autonomy and intelli-
gence [101]. Integrating fog and cloud computing with UAVs
might be challenging, even though both can provide several
benefits to facilitate UAV operations and usage. Middleware
can facilitate the smooth and efficient combination of UAV
applications for smart cities with cloud and fog resources.
To facilitate this type of amalgamation, the service-oriented
middle-ware SmartCityWare was created [102]. In summary,
cloud computing can be utilized to address the security
and limited UAV computational/storage challenges by offer-
ing huge cloud-based computational/storage capabilities.

However, fog computing can yield benefits such as decreased
latency, enhanced communication reliability/security, and
improved resource utilization by positioning the computa-
tional and storage resources closer to the UAVs.

C. FEDERATED DEEP LEARNING
To guarantee the efficiency of tracking tasks, UAVs can
be outfitted with intelligent capabilities that allow them to
comprehend the operation in the environment and take the
appropriate actions as the mission progresses. A wide variety
of AI and ML-based methods were developed and integrated
for further enhancement of the UAV’s capabilities for accom-
plishing various types of tasks in different environments. This
can be achieved by employing AI and ML methods such
as reinforcement learning (RL), which enable UAVs to fly
autonomously and accomplish different tasks autonomously.
RL will allow UAVs to learn in an unknown environment
and gradually improve their performance over time [15], [19],
[103]. Recent developments at Google have led the company
to introduce the decentralized, federated deep learning (FDL)
concept. In FDL, wireless devices utilize their local data to
construct local DL models cooperatively and then send the
local models and the associated weights to an FDL server for
aggregation. As a result, FDL makes it possible to maintain
the confidentiality of sensitive data in the exact location in
which it was created while also training distributed deep
learning models. In addition, FDL dramatically reduces the
overhead of the network by eliminating the need to send
data to a centralized location. Therefore, compared to the
centralized ML scheme, the bandwidth requirements of FDL
are significantly lower [104]. Furthermore, it was also shown
that FDL is better suited for ultra-low latency applications
because it allows wireless devices to learn a sharable predic-
tion model concurrently while maintaining all training data
locally [105]. This treatment suggested that, compared to
the centralized cloud-centric frameworks, FDL could be an
enabling technology for future UAV-based wireless networks
for learning approaches. To this end, the FDL concept is better
suited for UAV-basedwireless networks than centralized deep
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learning schemes, which UAVs cannot independently support
due to power, computing limitations, and limited available
bandwidth. UAVs could use the FDL concept to create a
learning model that is then used in UAV-based networks.
In addition to protecting the privacy of UAV data, this will
also make better use of UAV resources like power and pro-
cessing speed. FDL protects the privacy of data collected
by UAVs and decreases network overhead and latency. Also,
FDL can be used by wireless networks supporting UAVs to
overcome these obstacles [106]. In summary, FDL can be uti-
lized by UAV tracking systems to mainly address the security,
communication reliability, and limited UAV computational
resource (i.e., resources needed for target recognition and
collision avoidance) challenges.

D. SIMULTANEOUS WIRELESS POWER AND
INFORMATION TRANSFER
Simultaneous wireless power and information transfer
(SWIPT) has been recently categorized as an appealing
solution to overcome the energy constraints of wireless com-
munication systems. With SWIPT, a communication node
should be able to harvest energy from the radio frequency
(RF) wave while simultaneously decoding information. Such
an energy-harvesting approach aligns with the mobile nature
of UAVs and, thus, can play a major role in extending the
flight’s duration of a UAV while securing an appropriate
communication exchange. Specifically, due to the limited
battery capacity of UAVs, charging them with conventional
resources has an undesirable impact on the flight’s duration.
This, as a result, limits the potential capabilities of deploying
UAVs in target-tracking applications, especially those related
to outdoor applications. With this, SWIPT can be identified
as an appealing solution to deal with UAV’s battery chal-
lenge [107]. On the one hand, employing SWIPT for UAVs
extends the flight times, thus, enabling UAVs to carry out
difficult target-tracking tasks. On the other hand, deploying
SWIPT with UAVs improves the energy efficiency of such
UAV-based systems, while also reducing the CO2 emission.
Furthermore, SWIPT can also reduce the weight and size of
UAV batteries, thereby increasing the payload capacity of the
UAVs. This allows for the integration of additional sensors,
cameras, or other equipment, further expanding the potential
applications of UAVs [108], [109]. It is worth mentioning
that SWIPT can be performed by splitting the received signal,
either in time or power, as a part of an RF signal is dedicated
to harvesting energy, while another part is utilized to decode
information. Despite the potential benefits of SWIPT for
UAVs, its implementation faces various technical challenges,
including optimizing power and data transmission protocols,
designing efficient rectenna circuits, and addressing inter-
ference from other wireless devices. Nonetheless, SWIPT
technology is still promising for improving the performance
and capabilities of UAVs [110].

E. INTELLIGENT REFLECTING SURFACE (IRS)
Recently, intelligent reflecting surface (IRS) has been inves-
tigated as a promising candidate to enhance and control the
propagation of electromagnetic waves, thus, improving the
QoS of a communication system [111]. Specifically, IRS
consists of passive reflecting elements that can smartly steer
the reflected signals toward the intended users. In fact, estab-
lishing reliable communication links between BS and UAVs
has been considered a restrictive requirement for success-
ful target-tracking tasks. This requirement becomes of vital
importance in crowded environments, i.e., indoor tracking
applications. To deal with such circumstances, IRS can be
viewed as a potential solution to improve the communication
channel between the BS and UAVs. On the one hand, due
to their light weights and ease of deployment, IRS units
can be installed in difficult-to-reach locations, and, thus, can
help to initiate a line-of-sight (LoS) link when such a link
cannot be achieved due to the possible severe blockage [111].
On the other hand, IRS can be used to decrease the amount
of power required for communication, extending the battery
life of UAVs. Longer UAV flights and greater mission capa-
bilities can be achieved by reducing the power consumption
of the UAV communication system and enhancing the signal
quality and strength [112]. To end with, the deployment of
IRS technology in UAV-based networks can greatly improve
the performance and capabilities of UAVs, increasing their
dependability, effectiveness, and flexibility to meet a variety
of needs. However, several key design challenges towards the
practical deployment of IRS UAV-based networks should be
addressed. For example, determining the optimal phase shift
matrix of the IRS and designing appropriate IRS units that
can be placed on UAVs.

F. BLOCKCHAIN TECHNOLOGY (BCT)
UAVs have a variety of sensors that depend on the specific
application being used and contribute to the completion of
various tasks. These tasks in the UAVs are controlled and
monitored via a communication system, either directly or
remotely. The BCT can be considered an excellent candidate
to reduce the dangers associated with UAV data maintenance
and improve security and privacy in the transmission data
process [113]. Due to the distributive nature and architecture
of UAVs, when they communicate with devices on the ground
level or flying objects, it is necessary to use an anonymous
mechanism such as BCT to ensure the safety of the commu-
nicating data. In summary, utilizing BCT technology in UAV
tracking systems can achieve better security, data integrity,
and decentralized communication. Thus, BCT can effectively
be utilized by UAV-based tracking systems to address the
security and communication challenges [114].

Figure 5 illustrates the application of the various enabling
technologies in addressing the various challenges encoun-
tered in designing efficient UAV-based tracking systems.

VOLUME 11, 2023 68333



M. Alhafnawi et al.: Survey of Indoor and Outdoor UAV-Based Target Tracking Systems

FIGURE 5. Linking enabling technologies with design challenges.

VII. USE CASE: INDOOR TRACKING FOR SHOPPING MALL
The use of real-time tracking systems yields numerous ben-
efits across many fields. Applications range from Indoor
Navigation to Real-Time Tracking, Motion Profile Analysis,
and more. Indoor tracking is frequently used in crowded pub-
lic spaces like airports and shopping centers. Once we know
the behaviors of customers inside the shopping center, the
quality of customer service can be enhanced even further. You
can set alerts to go off whenever a customer enters a certain
area, for instance, notifications of newly released films or
ticket sales when they are near a theater. Indoor tracking and
monitoring technology can also be useful for management.
Tracking can provide information about customer journeys.
We can find out more information about how users navigate
the mall, which areas are the busiest, and even how long they
spend in various stores; all of this information can help the
mall make important decisions.

To givemore insights about UAV-based indoor target track-
ing, we consider a shopping market of 40m× 40m× 5m area
that is split into 16 uniform shops. Accordingly, we employ
a single UAV equipped with a microprocessor for finding
and tracking the behaviors of a 5 people group. This group
moves according to the following pattern of unknown certain
movement { 1, 2, 3, 4, 8, 12, 16, 11, 10, 9, 13, 14, 15, 11, 7,

6, 5, 2, 3, 7, 12, 8, 4, 3, 2, . . . }, and repeats its behavior every
25 transitions. Here, we present the suggested RL algorithm
for an intelligent UAV that would be used to identify people’s
movement patterns inside a mall. The convergence-based
algorithm serves as the exploration technique for the RL
algorithm [115]. To calculate the value function and assess
the used policy, state-action-reward-state-action is adopted.
The UAV is also assumed to fly at a constant speed and fixed
height. In contrast, the UAV is equipped with a lithium-ion
battery along with ultrasonic sensors to keep it from colliding
with obstacles. Furthermore, the UAV is equipped with an
internal map of the shopping center to help the UAV in the
navigation process and a camera to recognize objects. Fig. 6
compares the trajectory path for both the RL algorithm and
a circular technique for 50-time units. To assess the track-
ing performance, we use a qualitative method that involves
plotting the UAV and target trajectories on the environment
map. The trajectory plots represent the target and UAV paths
after sufficient training. It can be easily observed that the
great superiority of the RL algorithm and how the UAV can
understand and predict the target movement pattern. On the
other hand, Fig. 7 plots the commutative discount return in
the shopping center for both the RL algorithm and circular
path. As we can see, the RL algorithm performs better than
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FIGURE 6. Trajectories of the UAV and the target.

FIGURE 7. Search benefits function.

the circular path. Target movement patterns can be predicted
in less time and with fewer samples than with the circular
path. This is because it uses a learning strategy that tries to
accurately evaluate various actions in different states to find
an appropriate policy and use it to catch the target quickly.
Finally, Fig. 8 shows the comparison between the developed
RL algorithm and the circular technique according to the
target percentage detection. This chart illustrates the typical
success rate in catching the target in RL and circular. We look
into how well the RL algorithm works. This graph demon-
strates how the RL-based algorithm outperforms the circular
method. To support this statement, the RL-based algorithm
can acquire a statistical model of the target’s movement over
time, enabling it to navigate to specific subareas where the
target is more likely to be located. The circular algorithm
doesn’t have a good result because it does not learn from past

FIGURE 8. Detection percentage.

mistakes when it tries and takes advantage of the different
possible actions.

VIII. SUMMARY AND FUTURE DIRECTIONS
UAVs possess various characteristics that make them suitable
for diverse applications, such as hovering capability, compact
size, low maintenance cost, and the ability to integrate sen-
sors, cameras, and other tools. We can classify tracking and
monitoring missions using UAVs into two main categories
according to the nature of the mission environment: indoor
or outdoor. Recently, there has been an increase in utilizing
UAVs in indoor environments. Target tracking, search and
surveillance, and plant monitoring tasks in greenhouses are
examples of applications where UAVs can be used indoors.
On the other hand, outdoor UAV systems can also per-
form different missions in outdoor environments, such as
pollution monitoring, outdoor tracking, outdoor SAR, and
border patrol. Deploying UAVs in indoor environments can
be challenging as it requires addressing different UAV design
and application considerations. These considerations include
obstacles’ height, high worker/machine density, GPS-denial,
and the UAV size. Hence, non-GPS-based location solutions,
such as fiducial markers, can be a viable option for accurately
locating UAVs in complex indoor spaces.
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