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ABSTRACT The selection of code reviewers for a pull request can impact the quality as well as the speed of
the review. In order to have the best experience both for the developer and the reviewers, there is a need for
automatic reviewer recommendation systems for pull requests. Although there has been previous research
in this area, it was mainly focused on smaller and medium repositories of up to around 200 developers,
while larger repositories were rarely targeted. In this paper we evaluate several existing approaches on a set
of 8Microsoft repositories of different sizes, noticing that the average performance of the approaches seemed
to decrease with the number of reviewers the repository has. In order to focus the existing approaches only
on relevant reviewers, we propose a technique for improving their performance by scoping down the set of
candidate reviewers based on multiple filters. We defined several basic filters and determined that 5 out of
the 7 tested existing approaches experienced performance improvements of up to 16.24% better precision
and 19.66% better recall averaged over all datasets, with the per dataset improvements peaking at 36.63%
better precision and 28.63% better recall. Additionally, by combining different basic filters we were able
to achieve additional improvements for 6 out of the 7 existing approaches (with a minor improvement for
the remaining approach), which on average over all datasets had up to 17.60% better precision and 21.23%
better recall, while the per dataset improvements peaked at 43.28% better precision and 30.94% better recall.

INDEX TERMS Modern code review, pull request, reviewer recommendation.

I. INTRODUCTION
The number of software repositories has been growing over
the years, and so has the number of their contributors [1].
This is true both for open-source and closed-source software.
Developers are starting to feel overloaded [2], so in order to
help them to keep up with the growing load and be able to
focus on important tasks, there is a need to automate repetitive
work as much as possible.

An area that has received attention over the past years
is the reviewer recommendation problem for pull requests
in the pull-based development model. The pull-based model
functions by having the developers design and implement
their changes on their copy of the codebase (either a fork
of the repository or a developer branch), and once they wish
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for the change to be integrated they send a pull request (PR).
The maintainers of the codebase (reviewers) perform a code
review by assessing the quality of the code, looking for poten-
tial bugs and regressions, and raising any concerns by leaving
comments on the PR. The selection of reviewers assigned to
a PR can influence the time to completion of the PR [3], [4],
as well as the quality of the code review [5], [6], [7]. This
is even more important for large repositories with many
developers, as developers (and reviewers) tend to specialize
in smaller parts of the codebase [8]. While in smaller teams
it might be acceptable to always choose the best matches for
a given PR, bigger teams might prefer ‘‘local’’ experts (from
the same subteam as the PR developer), who aremore familiar
with the changesmade in the PR. Rather than assigning global
experts to be reviewers every time there are code changes in a
certain area (and thus overloading them with incoming PRs),
subteams can decide to favor local experts who, although
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FIGURE 1. A sequence diagram illustrating the full lifecycle of a PR. After
the PR is created, the developer interacts with the reviewers via
comments, the PR is improved based on the reviewers’ suggestions, and
ultimately it is completed and the changes are merged.

not as proficient as the global ones, can promptly review
minor changes, while the global experts are included only
in the cases of major/critical changes. Out of the several
reviewer recommendation approaches we investigated, the
majority of themwere focused only on small to medium sized
repositories with 100-200 developers [3], [8], [9], [10], and
only some of them have been tested on larger repositories
with more than 200 developers [11], [12], [13].

We propose a technique for improving the performance
of PR reviewer recommendation systems by helping them
to focus. The technique takes the reviewer recommendations
from existing systems and filters out any reviewers which are
irrelevant based on certain locality criteriums (basic filter) or
a combination of criteriums (composite filter). Apart from
using criteriums based on the PR history of the repository,
we also utilize the organizational structure of teams which,
to our knowledge, hasn’t been used for the reviewer recom-
mendation problem up to this point, as most previous papers
were using open-source repositories which didn’t include
that information. In this paper we evaluated 6 basic filters
(of which 2 are from the organizational structure of the teams
- managers, and colleagues reporting to the same manager),
as well as all of their combinations as composite filters.

In this paper, we first present an overview of existing
approaches (Section II). We then evaluate their baseline
performance and propose our technique for improving it
(Section III). We define research questions and metrics
that will help us evaluate the benefits of our technique
(Section IV), and then proceed with the evaluation itself and
the interpretation of the results (Section V). Finally, we give a
brief conclusion of our work and provide some ideas for addi-
tional efforts that could be done in the future (Section VI).

FIGURE 2. A simplified overview of the data content of a PR.

II. RELATED WORK
This section first briefly goes over the relevant background
related to PRs by introducing the PR lifecycle and giving
an overview of the data contained within a PR. After-
wards, it summarizes 7 existing reviewer recommendation
approaches that are used throughout the rest of the paper.

A. BACKGROUND
The general flow of code review, which is common across
tools such as Gerrit and CodeFlow [14], as well as in systems
like GitHub and Azure DevOps, is illustrated in Figure 1.
First, the developer creates a development branch from
the current code in the main branch. He implements some
changes and commits them to the development branch. Once
he believes the changes contain the improvements he wants
to make and that they are of sufficient quality, he creates a PR
containing the changes, with a title and description explaining
what they represent. He can also manually add reviewers to
the PR (if he believes they might be interested in the PR and
would review it), and/or the reviewers could be automatically
added based on some simple pre-defined rules of that reposi-
tory (i.e., static file to reviewermappings). The reviewers then
assess the quality of the code, leave comments suggesting
some additional improvements or requesting clarifications
from the PR’s developer. The developer then replies to the
comments and makes the required code improvements. Since
usually the PR cannot be completed until at least one reviewer
marks it as ‘‘approved’’, the process of reviewers leaving
comments and the developer replying to them and making
additional changes continues until the reviewers are satisfied,
and the PR gets approved. Once that happens, the developer
can ‘‘complete’’ the PR, meaning that the proposed changes
are merged into the main branch, and the PR itself is closed.

When considering what data and metadata a PR con-
tains (Figure 2), apart from the already mentioned title
and description, it also contains timestamps of its creation
and completion, as well as information on which developer
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created it. Then, there is a list of files the PR changes, as well
as list of reviewers which should review the PR and ulti-
mately give their approval. Each reviewer can leave textual
comments on the PR, which also hold a timestamp of their
creation time, as well as an ID to the comment thread (so that
the developer and other reviewers can reply to it).

Since it was shown that the assignment of reviewers to a
PR can impact the review process, it is in everyone’s interest
to select relevant reviewers with enough expertise – for the
author of the PR it means that his change would be less
probable to contain bugs [5], [7] and possibly that the review
process would be faster [3], [4], while the reviewers would be
able to focus only on PRs that are relevant to their expertise
and would not be overwhelmed with unrelated PRs. That is
why dozens of papers have been investigating PRs, the ways
developers approach code reviews and how they interact with
each other during the review process, in order to (among
other things) determine what would be the best approach for
recommending reviewers.

B. EXISTING APPROACHES
In this paper we evaluated the performance of 7 existing
approaches (TABLE 1), out of which only 3 approaches
( [11], [12], and [13]) were tested on larger repositories with
more than 200 develops ([3] and [10] were tested on up to
202 reviewers, which we didn’t consider significantly more
than 200). Of those 3, only 2 ( [11] and [12]) were tested on
extremely large repositors with 1000 or more developers.

Yu et al. [9] proposed a reviewer recommendation method
which combines two scoring functions. The first represents
each PR as a term vector, where the terms are extracted from
the title, description and list of reviewers who commented
on the PR, and the weight of each term is calculated via TF-
IDF (term frequency-inverse document frequency). Then, for
a given PR, using cosine similarity the top k most similar
PRs are selected from the training corpus. The score of
each reviewer is the sum of the cosine similarity of each
PR and the number of comments the reviewer left on that
PR. The second scoring function calculates the sum of all
the comments reviewer R left on developer D’s PRs, where
each comment has an additional time decaying factor (so that
newer comments score higher than older ones) and a locality
decaying factor (so that n comments on 1 PR will score
less than 1 comment on n PRs). After those two scores are
calculated for each candidate reviewer, they are normalized
and added together, and the candidate reviewers are selected
in decreasing order of the final score.

Thongtanunam et al. [3] proposed an approach that takes
each previous PRs and calculates the similarity score to the
new (incoming) PR, based on 4 different file path similarities.
The reviewers are scored by summing up the similarity scores
for each PR assigned to them, and then ranked. The same
process is repeated for each of the 4 file path similarity tech-
niques, resulting in 4 lists of ranked reviewers. Then, using
the Borda count [15], the ranks are combined, creating the
final reviewer rankingwhich is used to recommend reviewers.

TABLE 1. Overview of existing approaches, with statistics regarding the
datasets they used – the number of repositories and the distribution of
repositories by the number of developers that worked on them.

Hannebauer et al. [12] proposed an approach which precal-
culates a metric that denotes the expertise level of a reviewer
for a given file up to a certain point in time, and then calculates
the final score for each candidate reviewer using the precal-
culated metric in combination to the file path similarity of the
files in the target PR and every other file previously reviewed
by the candidate reviewer.

Fejzer et al. [10] proposed an approach that recommends
relevant reviewers based on a function of the file paths they
had previously reviewed. For each PR, a multiset is con-
structed using the path segments from the individual file paths
of the changed files. A given reviewer is described by the
union of the PR multisets which were assigned to him. For a
new PR, its path segment multiset is extracted and compared
to the multisets of all the reviewers using the Tversky index.
The authors considered a couple of modifications by adding
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FIGURE 3. Diagram showing the overview of the proposed technique. The existing approach determines how relevant each reviewer
(represented here by a reviewer ID) is for a given PR, assigns them appropriate scores, and outputs a list of reviewers ordered by their scores.
Then, the filter removes any reviewers from the list that do not match it’s filtering criterium, producing the final recommendation of reviewers.

different extinguishing factors (by date or PR id) but con-
cluded that the best performance is achieved without them.

Jiang et al. [11] investigated several approaches for rec-
ommending reviewers, but the one that showed the best
performance was reviewer activeness. For each candidate
reviewer and for a given target PR, the activeness metric is
calculated by looking at the PRs that the candidate left a com-
ment on and which were no later than γ days before the target
PR (best performance was achieved for + ∝) and summing
up the values of a time-decaying function which gives higher
scores to more recent PRs. Then, the candidate reviewers are
sorted based on the activeness metric and recommended in
that order.

Asthana et al. [8] proposed a scoring function that com-
bines four time-decaying metrics. For a given PR and a
candidate reviewer, the sum of products of the number of
times the candidate reviewer has changed that file and an
inverse time difference between the latest change and the
given PR is calculated. The same is repeated for the casewhen
the candidate reviewer reviewed the file (approved the PR or
left a comment on the PR), as well as for the last-level direc-
tories for both cases (when the candidate reviewer changed
or reviewed the last-level directory). Finally, the four metrics
are added together using different user-defined weights, with
the default value of the weights being 1.0.

Ye [13] used a different approach, extracting 14 metrics
depicting the interactions between each reviewer and the PR
author. The metrics ranged from simple counts of PRs where
there were interactions (where the reviewer accepted the PR
or left comments), to file path similarities between the files
changed in the PR and the change history of each developer,
etc. Some of the metrics also have time filtering - i.e., one
metric is the number of PRs each developer reviewed, and
another one is the number of PRs each developer reviewed
in the last 30 days. After scaling each of the metrics,
a learning-to-rank [16] approach was taken in order to

train an SVM model to predict the rank of each candidate
reviewer [17], and then select the top ranked candidates as
the recommended ones.

III. PROPOSED TECHNIQUE
In order to improve the performance of an existing approach
for larger repositories, we propose a technique for reduc-
ing the reviewer candidate set from every reviewer in the
repository to only those reviewers who share some form of
locality with either the author of the PR, or the changed
files, as both were shown to be important factors for review-
ers [3], [18], [19]. What we propose is relatively simple and
is illustrated in FIGURE 3. First, an existing approach is
used as-is, and for a given PR it outputs an ordered list of
all the reviewers it considers relevant, from most to least
relevant. Then, using a filter we filter out reviewers based on a
locality criterium while preserving the ordering, so that only
reviewers that have a shared locality with the PR remain in
the ordered list. Finally, the top N (N denoting the number
of reviewers the system is asked to recommend) reviewers
are taken from that ordered list and presented as the final
recommendation.

In this paper, we consider two types of filters – basic filters,
which use a single criterium for filtering, and composite
filters, which use multiple criteriums and represent unions of
different basic filters. We propose the following basic filters:

• File Reviewers (FR) – this filter looks at the developers
who previously reviewed the files changed in the PR,
and scopes down the candidates only to those reviewer
candidates. It uses the filepath and reviewer fields
from Figure 2.

• File Authors (FA) – this filter looks at the developers
who previously modified the files changed in the PR,
and scopes down the candidates only to those reviewer
candidates. It uses the filepath and developer fields
from Figure 2.
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TABLE 2. Overview of the repository datasets which were used in the
evaluation.

• Previous Reviewers (PR) – this filter scopes down the
reviewer candidates only to the previous reviewers of the
PR developer’s code reviews. It uses the developer and
reviewer fields from Figure 2.

• Previous Voters (PV) – this filter scopes down the
reviewer candidates only to the previous reviewers who
approved at least one of the developer’s PRs. It uses the
developer, reviewer and approved fields from Figure 2,
and is always a subset of the Previous Reviewers filter.

• Colleagues (CO) – this filter scopes down the reviewer
candidates only to the developer’s colleagues which
report to the same manager. It utilizes the organiza-
tional structure (org chart) of the teams working on the
repository.

• Manager (MN) – this filter scopes down the reviewer
candidates only to the developer’s manager. It utilizes
the organizational structure (org chart) of the teams
working on the repository.

IV. VALIDATION SETUP
In order to assess the proposed technique, in this section we
first define four research questions which will guide us in
the evaluation. Then, we define the metrics which we use to
measure the performance, as well as give an overview of the
datasets that we use in this paper. Finally, we go over the setup
of the experiments we conducted.

A. RESEARCH QUESTIONS
In order to evaluate our proposed technique, we defined the
following research questions:
RQ1: Does scoping down the set of candidate reviewers

using a basic filter improve the performance of existing
reviewer recommendation approaches?
RQ2: Does using a union of different basic filters (a com-

posite filter) improve the performance of existing reviewer
recommendation approaches?
RQ3: What basic filters are the most important for each

existing approach?
RQ4: What basic filters are the most important for each

dataset?

B. METRICS
When measuring the performance of the approaches, we used
the following metrics:

• Precision@k represents the number of correctly rec-
ommended reviewers in the top k recommendations,
divided by k .

• Recall@k represents the number of correctly rec-
ommended reviewers in the top k recommendations,
divided by the actual number of reviewers.

For each of the defined filters, we used the following null
hypotheses to evaluate the improvements for each of the
metrics:

• H0_1 : There is no statistically significant difference
between the Precision@k of the baseline approach with
and without a filter.

• H0_2 : There is no statistically significant difference
between the Recall@k of the baseline approach with
and without a filter.

C. DATASETS
Using CloudMine [20] we gathered the PR history from
8 internal Microsoft repositories for the calendar year 2021,
whose details can be seen in Table 2. They are repositories
of different sizes, from relatively small ones with around
100-200 active developers, over some larger ones with hun-
dreds of developers, up to the biggest one with around
1000 developers and around 1500 reviewers. They are also
different in regard to the number of files they contain, ranging
from a few thousand files, up to more than 300 000 files.

What’s interesting to note is that the developer coverage
metric [8] (the percentage of files a single developer modified
on average compared to all modified files in the dataset)
seems to inversely correlate with the size of the repository
in terms of number of reviewers. This seems to match the
findings that Asthana et al. had, where they noticed that larger
repositories tended to have more specialized developers.

D. EXPERIMENTS
In order to evaluate them, we implemented each of the
existing approaches based on the descriptions from their
respective papers. For each experiment we ran, we split each
dataset into two equal parts, where only the first one is used
for training the approaches and filters, while the second one is
used for validation. After training the existing approaches as
well as the filters on the training dataset, for each PR we used
the existing approaches to generate a sorted list of reviewers
from most to least relevant to the PR. Then, different filters
generate sets of reviewers that matched their filtering criteria
for the given PR, and remove any reviewers that are not
present in their generated sets from the sorted reviewer list,
and output those modified reviewer lists.

Finally, the precision and recall metrics are calculated
by comparing the first k reviewers from the modified
reviewer lists and checking if they were actually present
on the given PR. In order to measure the improvements
of the proposed filters, their metrics are compared to the
metrics obtained from the original (unmodified) reviewer
output by the existing approaches. To validate that the
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TABLE 3. Overview of all the experimental results for RQ1 ((a) precision and (b) recall) and only the best performing filter techniques by existing
approach for RQ2 ((c) precision and (d) recall).

performance improvements are statistically significant,
we used a one-sided Student’s t-test and rejected the appro-
priate null hypothesis if the p-value p < 0.05 and t-value
t < tcrit .

V. RESULTS
This section contains the results that were obtained from the
conducted experiments per each research question, a short
discussion regarding the overall results and conclusions, and
an overview of threats to their validity.

A. RQ1
The results summarized by each approach for the RQ1 vali-
dation are listed in Table 3, while a more detailed overview
of results is shown in Table 5. As we can see in Table 3,
some basic filters like Manager do not result in statis-
tically significant improvements in the majority of cases.
Although [8] and [13] did not experience any improvements
and instead only experienced a decrease in performance,
other approaches experienced some benefits.

When looking at the precision improvements, FileReview-
ers achieved the best average improvements for 3 out of the
7 existing approaches, while PreviousVoters and PreviousRe-
viewers showed the best improvements on one approach each.
On the other hand, the greatest recall improvements were
achieved by PreviousReviewers on 3 out of 7 approaches,
and PreviousVoters on 2 out of 7 approaches. Overall, the
best improvements over all datasets that we measured were a
16.24% improvement in precision and 19.66% improvements
in recall for [10] with PreviousVoters.

One thing worth noting is that, as suspected, some filters
might be too restrictive – for example, Managers will only
allow 1 reviewer candidate to pass, so since the performance
we measured is for the top 1-10 suggestions, the overall
performance ofManagers will not be very good.

B. RQ2
For RQ2 we checked all different unions of the filters, and
the complete results we obtained are provided in Table 6,
while a summarized version showing only the best results per
approach is shown in Table 3. Again, [8] did not experience
any improvements, however, we can see that for all other
existing approaches the union of filters resulted in additional
improvements, even in the case of [13] which initially didn’t
benefit from basic filters in RQ1. Overall the best improve-
ments were achieved again for [10], with 17.60% better
precision for the union ofPreviousVoters andManagerfilters,
and 21.23% better recall for the union of PreviousVoters,
Colleagues and Manager filters.

Looking at each existing approach, the best performance
of the unions of filters outperforms the basic filters, even
in the case of [8], were the regression was much smaller
than previously recorded. This means that our assumption
that certain filters did contain relevant reviewers but were
too restrictive by themselves was valid, and that additional
performance benefits can be achieved by combining different
basic filters.

It’s interesting to note that there are some ties for the best
performing composite filers for some approaches. This hap-
pens in cases when the PreviousReviewers filter is included
in the composite filter. Since PreviousVoters is always a sub-
set of PreviousReviewers, if the PreviousReviewers filter is
already a part of the composite filter, then the PreviousVoters
filter will not contribute anything to the composite filter, and
as such will not affect the performance.

C. RQ3
In order to determine the influence a basic filter has on the
total improvements of a composite filter, we first look at
a composite filter that contains the given basic filter and
at least one other basic filter. Then, we find the composite
filter which consists of the same set of basic filters minus
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FIGURE 4. Radar charts showing the normalized impact each basic filter has when combining with other filters, per each approach.

FIGURE 5. Radar charts showing the normalized impact each basic filter has when combining with other filters, per each dataset.

the given one. By subtracting the performance metrics of
these two composite filters, we can measure how big are
the contributions of the given filter. Repeating this procedure
for each composite filter that contains the given filter and
averaging the differences in performance, we can calculate
its average contributions. This process is repeated for every
basic filter, and the average contributions are normalized per
approach.

When looking at FIGURE 4, we can see that each
approach to some extent benefits from Previous Voters,
with [3] and [10] having this filter as the dominant one. This is
somewhat expected, as [3] and [10] do not consider reviewer
activeness (the reviewer approving the PR or commenting on
it), while all other approaches except [12] consider it, and
the approaches that had the most benefits from a basic filter
which filters out passive reviewers (reviewers which are only
assigned to a PR but did not perform any action) are the
approaches that do not consider reviewer activeness. The only

anomaly is [12], which doesn’t consider reviewer activeness,
but also doesn’t have a dominant Previous Voters filter.
Since [13] scores the reviewers by combining multiple

functions, it can happen that a reviewer has a non-zero score
even though he and the developer had no previous interac-
tions. We can see that filtering out such cases has a positive
effect on [13] (Previous Reviewers) and that a similar cutoff
criterium for File Reviewers is also welcomed.

The Manager filter does help a bit in all the cases, but
it’s far from bringing major improvements in any of them.
Although the Colleagues filter bears no significance in many
of the approaches, it is relatively important for [3] and
somewhat for [10], suggesting that maybe they were rec-
ommending global experts instead of local ones. While File
Reviewers and Previous Reviewers were relatively important
for every other approach, they didn’t help [10], in a similar
way [3] seems to be an exception for File Authors, but we are
unsure why this occurred.
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FIGURE 6. Precision-recall performance of all existing approaches averaged per dataset (A-H) for the top 10 recommendations.

TABLE 4. Maximum precision (a) and recall (b) improvements that any filter achieved per each combination of dataset and existing approach.

D. RQ4
For RQ4, a similar aggregation of average contributions was
done but per dataset (FIGURE 5). First off, we can see that
Previous Voters contributes to each dataset, and additionally
it seems to be more important for the larger datasets (A, B,
C, D, E) than the smaller ones. Interestingly, some datasets
(B, F, and to some extent A, E) seem to operate in teams
that are based on hierarchy (with coworkers reporting to the
same manager – Colleagues), while others still cooperate
with coworkers under the same manager, but they also have
strong collaborations with other developers as well. More-
over, we can see that some datasets (A, B, C, E, F, and
somewhat H) have clear benefits from the Manager filter,
while others don’t (D, G). We believe that the teams from
the first group might have a rule of thumb to include the
developer’s manager on PRs, while in other cases this isn’t as

common. We can see that Previous Reviewers plays a major
role in all datasets except B. We are unsure why dataset B is
an exception, but in general Previous Reviewers is expected
to be impactful, as collaborations that existed in the past are
more likely to continue in the future.

Some of the datasets (D, E, G, H) have a prominent File
Reviewer, which might indicate that they have clearly defined
code components and file ownerships. This would mean that,
while anyone can change a given file, there is a designed
part of the team or person that must review and signoff
the changes to that file. On the other hand, some datasets
(A, B, E) have strong File Authors, which could indicate that
there is a strong task/feature componentization, wherework is
organized so that a part of the team works on a given feature
and changes files across multiple modules. Due to that, the
developers that work on the same feature are reviewers of
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FIGURE 7. Violin plots for the precision and recall improvement obtained
in RQ2, with highlighted extrema and median values.

each other’s PRs, but there isn’t necessarily strict code/file
ownership enforcement.

E. DISCUSSION
While measuring the existing approaches for a baseline,
we noticed that their performance tended to decrease with
the increase of the repository sizes (Figure 6). This seems to
support our theory that larger repositories need help to focus,
as they tend to operate in clusters where groups of developers
work relatively independently from each other, while still
having some level of interaction between them. That is also
consistent with what Asthana et al. [8] observed, where for
larger repositories themajority of reviewers tend to be experts
only for smaller subsets of the repository, with occasional
senior reviewers whose expertise applies to a larger portion
of the codebase.

When looking at the improvements we obtained, overall 5
out of the 7 existing approaches on average experienced
improvements from just the basic filters (RQ1). By combin-
ing different basic filters into composite filters, apart from
achieving higher performance improvements than by using
just basic filters, the number of approaches that on average
experienced benefits increased to 6 out of 7 (RQ2). However,
the results from RQ2 show only the average improvements
per composite filter and approach pairs over all datasets,
which might not be ideal. As can be seen in the results of
RQ3 and RQ4, both the existing approaches and the datasets
are differently affected by the filters, and have different char-
acteristics. Because of that, we think that apart from looking
at the performance across the datasets, it would make sense
to also include the best results (of any composite filter) per
dataset per approach (TABLE 4).
Apart from the dataset with the smallest number of review-

ers (H), the other datasets experienced improvements for

all the approaches except [8]. However, even in the case
of [8], we showed that it is possible to improve the per-
formance in some cases (recall on dataset A). Additionally,
with per dataset/repository tuning of the filters, we were
able to achieve additional improvements compared to RQ2,
which peaked at 43.28% better precision and 30.94% better
recall. When looking at the violin plots of all the improve-
ments achieved in RQ2 by all the different composite filters
(Figure 7), we can see that that, although there are cases
that had a very negative impact on the metrics, the median is
positive. By testing out different filters, the one that achieves
the best improvements for the given approach-repository pair
can be found.

Training a given filter can be done with just one pass over
the training data (O(n), where n is the size of the training
set) which would generate the set of reviewers that match the
filters criterium. In order to test out every composite filter, one
would need to train all the basic filters (O(kn), where k is the
number of basic filters) and then compute all their different
unions in order to generate every composite filter (O(2k )),
resulting in O

(
kn+ 2k

)
complexity of the training process.

However, in order to test the impact of each composite filter
on a baseline approach, every time an existing approach gives
a recommendation on the validation set (O(m), where m is
the size of the validation set) it would need to be passed
through all the filters, resulting in O(2km) complexity for the
validation.

Although it’s far from being an ideal solution with guar-
anteed performance improvements, our technique did result
in some improvements for all of the existing approaches we
tested, and we believe that with a broader set of basic filters
(i.e., utilizing PR titles and descriptions, content of com-
ments, etc.), obtaining improvements would just be a matter
of fine-tuning our technique for a given approach-repository
pair by finding the right composite filter.

F. THREATS TO VALIDITY
One of the things that could have impacted the results of
Managers and Colleagues is the fact that the snapshot of the
management hierarchy was made in June 2022, as no histor-
ical data was available. Due to this, some results returned by
the filters might have been inherently bad - i.e., if a developer
changed teams between Jan and June 2022, then during the
validation he would have been assigned to the new team
instead of the old one, as the PR datasets were collected
for 2021.

Additionally, although the authors tried to focus only
on individual identities for the reviewer recommendation
problem and tried to remove any accounts associated with
automation or any distribution lists, there is no guarantee
that the datasets have been completely cleaned. If a team
had implemented a custom automation account that would
always be added to their pull requests and it slipped into the
datasets, then an account like that would have been a safe bet
by any reviewer recommendation approach and could have
influenced their performance metrics.
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TABLE 5. The extended results of the RQ1 experiment, showing the obtained improvements for each basic filter, dataset and existing approach, as well as
if the appropriate null-hypothesis (H0_1 for precision and H0_2 for recall) was accepted (shown as grayed out, meaning that there were no statistically
significant improvements for those cases), or rejected (clear cells).
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The existing approaches were implemented by hand based
on the descriptions from their respective papers and should
match the original implementation to the best of our knowl-
edge, but there could be implementation errors or slight
differences from the original implementation made by the
authors. Additionally, only a subset of existing approaches
was implemented, so in order to do a more thorough evalua-
tion of our proposed technique ideally it should be validated
on more existing approaches. The same can be said for the
dataset corpus – a more comprehensive set of repositories
could be used, both internal and public Microsoft reposito-
ries, and ultimately OSS repositories and ones from different
companies.

VI. CONCLUSION AND FUTURE WORK
In this paper, we went over several existing reviewer rec-
ommendation approaches and determined that on average
they have a tendency to have reduced performance for larger
repositories. We then introduced a technique which uses a fil-
ter for helping pull request reviewer recommendation systems
focus on relevant reviewers.

We then tested several filters and were able to achieve
performance improvement for the majority of the existing
approaches that we evaluated. Additionally, by combining the
filters, we managed to achieve even greater improvements
which, peaked at 17.60% better precision and 21.23% better
recall over all datasets, while the improvements per dataset
went as high as 43.28% for precision and 30.94% for recall.
Although the performance benefits are not consistent across
repositories and approaches, every approach experienced at
least some level of improvements, with the majority of them
experiencing stable improvements across all but the dataset
with the smallest repository. Because of that, we believe that
the proposed technique represents a valid approach when
trying to improve the performance of existing reviewer rec-
ommendation approaches, especially for larger repositories
with many reviewer candidates.

Our experiments showed that, although there are some
filters that can be expected to benefit almost any case, there
was a difference in the benefits each filter had for different
datasets and approaches. We believe that the size of the
repository and the organization of the development team does
influence the magnitude of improvements, and we plan to
investigate this further. We also plan to continue evaluating
our techniques on more existing approaches and with a larger
dataset corpus.

APPENDIX A
RQ1 – EXTENDED RESULTS
See Table 5.

APPENDIX B
RQ2 – EXTENDED RESULTS
See Table 6.
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