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ABSTRACT The quality of underwater images is often marred by noticeable color casts and blurring,
resulting from complex phenomena such as differential light attenuation based on wavelength, veiling light
scattering, and light scattering by plankton and suspended particles in water. In this paper, we propose
an effective underwater image enhancement method called Optimal Contrast and Attenuation Difference
(OCAD) to tackle these issues. The OCAD method employs a two-step approach. First, it estimates a
coarse transmission map by optimizing contrast and minimizing information loss during image mapping.
This transmission map is then refined using a combination of dark channel prior and guided filter refining
techniques to improve its accuracy. Second, OCAD estimates the veiling light by considering the differential
attenuation of red, green, and blue light underwater. This estimated veiling light is utilized to partially miti-
gate the color cast caused by the attenuation effect, while also addressing the blurring based on an imaging
model. To further enhance the image quality, we introduce the Gray World approach to correct the color
and obtain a deblurred and color-corrected underwater image. To evaluate the performance of our proposed
method, extensive experiments are conducted on well-established underwater image datasets, including the
EUVP, UIEB, and RUIE datasets. Comparative analysis against state-of-the-art and classical underwater
image enhancement methods reveals that our OCAD algorithm significantly enhances underwater images
and outperforms other methods in terms of image quality improvement.

INDEX TERMS Underwater images enhancement, underwater deblur, underwater color correction.

I. INTRODUCTION
Marine resources are abundant, and underwater imaging
technologies play a crucial role in providing clear images
and video information of the underwater environment, mak-
ing them indispensable for the exploration and exploitation
of marine resources. However, the challenging underwater
environment, influenced by factors such as light attenuation
and scattering effects, often results in poor-quality of col-

The associate editor coordinating the review of this manuscript and
approving it for publication was Akansha Singh.

lected underwater images. Therefore, there is a pressing need
for advanced underwater image enhancement technologies
to effectively address the issues of low-quality underwater
images and improve their visual quality [1].

Different from the atmospheric environment, the attenua-
tion coefficients of different wavelengths of light in water are
different, resulting in color distortion, contrast, and bright-
ness decrease in underwater images. As shown in Figure 1,
red light with a long wavelength is absorbed preferentially
in clear sea water and travels the shortest distance, followed
by orange, yellow, green, and blue light. Therefore, Marine
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FIGURE 1. The selective fading of light under water.

FIGURE 2. The hue of underwater images tends to be close to green and
blue.

FIGURE 3. Schematic diagram of underwater imaging.

water bodies are often blue-green [2]. We refer to the effect
that different wavelengths of light are absorbed differently by
water as the attenuation effect. Due to the attenuation effect,
our underwater images tend to have a blue or green hue.
As shown in Figure 2, the blue hues are those taken in the
deep sea, and the green hues are those taken relatively close
to the surface.

A schematic diagram of the camera taking images under-
water with the lighting conditions as an illuminated light
source is shown in Figure 3. Suspended particles or plankton
in the water scatter the ambient background light and the
light propagating from the target scene to the camera. The
imaging sensors eventually capture these lights, resulting in
blurred details and making the image shrouded in a dense
fog [3]. In near-surface waters and rivers where water moves
faster, sediment and other suspended particles or plankton
concentration are generally much higher than in calm, deep
waters. The closer to the surface, the higher the water velocity
and the higher the concentration of contaminants in the water.

The image shown in figure 4 was taken at our aquaculture
farm, where we placed a green target near the shore to take
the picture, with only natural light as illumination. The high
concentration of impurities in the water from active fish,

FIGURE 4. Pictures taken on the bank of a fish pond.

including the excretion of fish waste and the dissolution
of excess fish food, made image sensors almost impossible
to capture a clear image. Only the object’s outline can be
roughly seen. This shows that when the concentration of
impurities in the water is too high, the scattering of light by
the impurities greatly blurs the underwater image. We refer
to these effects as the scattering effect.

The camera acquires imaging information from three com-
ponents, as shown in figure 3:

E = Ed + Ef + Eb. (1)

where E indicates the information captured by the camera
and processed by the camera to provide us with the image
information.Ed denotes the information transmitted directly
from the target scene to the camera, which contains real
information about the target scene and is the signal we need.
Ef refers to the part of the light propagation from the target
scene to the camera where the light is scattered by suspended
particles or plankton on its way to producing stray light and
is picked up by the camera, called the forward scattering. Eb
indicates the fraction of suspended particles in the water that
scatter the illumination light to produce stray light and are
picked up by the camera, called the backscatter.

Current underwater imaging sensors cannot capture images
underwater without the illumination source. Generally, the
maximum distance the illumination source can reach is the
maximum distance from which the device can capture the
image. In general, the distance between the target scene and
the camera in underwater imaging is short due to the limited
illumination range of the light source. In our experiments,
using a single LED light as the underwater light source,
we found that the camera could hardly capture images under-
water at a distance greater than 10 meters. Therefore, our
experiments limit the distance between the camera and the
target scene to 5 meters. We also checked the literature and
found that most target scenes for underwater photography are
set at a relatively short distance from the camera. Because of
the shorter distance, shortening the propagation path reduces
the amount of suspended particles or plankton appearing in
the propagation path. In other words, very few suspended
particles or plankton are expected to be in the path from the
target to the camera, which is negligible. After a long period
of research, it has been found that forward scattering has little
effect on the image of underwater photographs. Therefore,
most studies have ignored Ef in Equation (1) [4].
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With the development of computer vision, after a long
period of analysis, researchers usually accept the equation
linking underwater imaging model with image pixel [5] as
shown in Equation (2).

IC (x, y) = JC (x, y)tC (x, y) + AC
(
1 − tC (x, y)

)
. (2)

where C ∈ {R,G,B}, IC (x, y) is the C channel of the
underwater image captured by the camera, AC is veiling
light. JC (x, y) is the C channel of the real view of the target
scene, and JC (x, y) is also the target image we restored.

tC (x, y) = e−βC r is the transmission map, which represents
the transmission of light from the target scene to the camera
and takes the values [0,1], And r represents the distance
between the camera and target scene. In the same propagation
medium, we consider the attenuation coefficient of the light
and the ambient background light as constants, so βC is a con-
stant. The model of Equation (2) is widely used in underwater
imaging [6], [7], [8], [9], [10] gives a profound and detailed
analysis related attenuation coefficient. Section III presents
our OCAD method based on this model in detail.

Our Contribution to this work is as follows:
1. In our OCADmethod, we proposed estimating the trans-

mission map based on the optimal contrast and the minimum
information loss in mapping between ideal and degraded
underwater images. The method can effectively improve the
estimation of the transmission map of underwater images.

2. Our OCAD method proposes an ambient background
light estimation method based on the difference in the attenu-
ation of red, green, and blue light underwater, allowing partial
color correction of the underwater image while deblurring it
based on the imaging model.

3.We combine the physical model based underwater image
enhancement method and the Gray World algorithm to pro-
vide a new deblur and color correctionmethod for underwater
image enhancement. The test result shows that our method is
significantly more quantitatively and qualitatively effective
than existing underwater image enhancement methods.

II. RELATED WORK
Some researchers use optical hardware technology and sonar
technology to acquire information underwater, e.g., polariza-
tion imaging, range-gated imaging [11], [12], [13], [14], [15],
multi-beam sonar [16]. Our work is mainly based on image
processing algorithms [14], [17] to enhance low-quality
underwater images, so this paper mainly presents the work
related to image algorithms. Since the physical model of
fog imaging is like underwater imaging, some dehazing
algorithms have been extended to deblurring underwater
images [18], [19].

After extensive data analysis, He [20] discovered common
differences between fog maps and general images and pro-
posed the classical prior theory of the dark channel. The dark
channel, a prior theory based on data analysis from many
fog-free outdoor images, suggests that the pixel values in at
least one-color channel in fog-free images are tiny in most

areas, excluding the sky, in RGB color space. Expressed as
an equation, this is shown in Equation (3).

Jdark (x, y) = min
c∈{r,g,b}

(
min

(x,y)∈�
J c(x, y)

)
≈ 0. (3)

This equation indicates that the minimum value of the
image I in one of the channels of RGB at the position of the
region (x, y) tends to zero, which is approximated as zero.
The dark channel, a prior theory proposed by He, suggests
a new method for calculating the transmission rate image,
shown in Equation (4).

t(x, y) = 1 − min
c∈{r,g,b}

(
min

(x,y)∈�

I c(x, y)
Ac

)
(4)

After the Dark Channel Prior theory, He [20] proposed
Soft-Matching, and Guided Filtering [21] to refine the trans-
mission map. Because the transmission map is calculated
based on the image block and the region will make the
defogging result uneven, some regions in the image appear
halo that covers the details.

Han [22] introduced the principles of various underwa-
ter image enhancement tasks and compared their effects.
They divided underwater image enhancement methods into
two categories, underwater image deblurring and underwater
image color correction. Our research divided the underwater
image enhancement methods into pixel-based and physi-
cal model-based underwater imaging. Pixel-based methods
include the relative global histogram stretching (RGHS)
method proposed by Huang [23]. This method processes the
image in RGB and CIE-Lab color space and stretches the
histogram of the image to enhance the quality of the image.

The following methods are all based on the physical model
of underwater imaging. The difference is whether the deep
learning [24] method is introduced. Based on the physical
model of underwater images, Wei [25] proposed Underwater
Light Appreciation Prior (ULAP) to estimate the parameters
of the model, ambient background light, and transmission.

Considering the attenuation coefficient of different wave-
lengths of light in different water types, Berman [26]
established the attenuation ratio model of blue-red and blue-
green light and converted the underwater image deblurring
problem into a single image defogging problem. Since
the water quality type of the target scene is unknown,
the paper obtains some restoration images with different
effects based on the attenuation coefficient of light of all
known water quality types. These results are automati-
cally filtered according to the color distribution, and the
best results are selected simultaneously as color correction.
Li [27] proposed an underwater image enhancement convo-
lutional neural network(CNN) model based on underwater
scenes prior, called UWCNN. This work first synthesizes
underwater image degradation datasets by combining an
underwater imaging physical model with the optical proper-
ties of underwater scenes. The effect of this method mainly
depends on how similar the synthetic degradation dataset is
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to the image degradation effect in the underwater environ-
ment. Liu [28] proposed an object-guided twin adversarial
contrastive learning-based underwater enhancement method.
Ma and Oh [29] decomposed the underwater and correspond-
ing ground truth images into different frequency bands and
then trained two sub-nets by supervised learning. However,
the synthetic and flawed datasets also limit the removing
water ability of this method. This method is similar to our
previouswork [30], we decomposed underwater images into a
base layer, and a detail layer via filters, but our previous work
is the unphysical model method. Islam [31] presented a con-
ditional generative adversarial network-based model, named
FUnIE, for real-time underwater image enhancement and
created EUVP (Enhancing Underwater Visual Perception)
dataset, We experimented on this dataset. Chen [32] proposed
an underwater image enhancement algorithm based on the
underwater image physical model and the depth learning
method. This method can effectively eliminate the influence
of the underwater environment on the imaging, enrich the
color, and enhance the underwater image details. In this
article, we call this method IFM. In Section IV, we compared
with RGHS, ULAP, FUnIE, IFM methods.
We planned to introduce the color correction parameter

into the underwater imaging model, along with the idea that
underwater image enhancement tasks can divide underwater
image deblurring and underwater image color correction. It is
only possible to completely reconstruct the underwater target
scene in the land environment with the effect of water; there
is significant uncertainty in the relevant data, dramatically
impacting the results based on the neural networkmethod. So,
we proposed a new underwater image enhancement based on
an underwater imaging model without deep learning.

III. OPTIMAL CONTRAST AND ATTENUATION
DIFFERENCE (OCAD)
In this study, we proposed OCAD for optimal estimation of
the model parameters, veiling light, and transmission map
based on the underwater imaging model.

Firstly, we estimate the coarse transmission map based
on the optimal contrast and minimum information loss dur-
ing image mapping between the original underwater image
and the ideal underwater image. Then, we optimize the
coarse transmission map by considering the dark channel
prior estimation of the transmission map. The specific step
is to take the larger value of the corresponding position.
Then the optimal transmission map is refined by the Guided
Filter.

Secondly, we estimate the veiling light based on the dif-
ferent attenuation of underwater red, green, and blue light.
This veiling light can partially eliminate the color deviation of
the underwater image caused by the attenuation effect while
deblurring based on the imaging model. As shown in figure 5,
the red dot in the red box in the second figure on the left is
the pixel that can express the ambient background light of the
environment found by our OCAD method.

Thirdly, we introduce the Gray World to correct the image
color further and obtain a deblurred and color-corrected
underwater image.

A. TRANSMISSION MAP ESTIMATION
Through many experiments, we found that the contrast of
underwater images is lower than that of ground truth images,
especially the contrast of areas seriously affected by scatter-
ing in the image is lower than that of other parts of the image.

We used the mean square deviation to reflect the contrast of
the image. The mean square deviation reflects the fluctuation
of the data from the mean value. The larger the mean square
deviation of the image, the more significant the difference
between the pixels of the image and the more excellent con-
trast of the image. Figure 6 shows the Con of the ground truth
image, the corresponding blurred underwater image, and the
Con value that reflects their contrast. TheCon value of ground
truth underwater images is greater than that of corresponding
blurred underwater images.

Con =

∑
C∈{R,G,B}

∑
(x,y)

(
JC(x, y) − JC(x, y)

)2
N

(5)

where JC (x, y) represents the average value of the ideal
image’s C channel, JC (x, y) represents the value of the pixel
at (x, y) inC channel,N represents the total number of pixels.
Compared with the degraded underwater image affected by
the scattering effect and attenuation effect, the Con of the
ideal image reflecting the real information of the target scene
should be more outstanding.

From Equation (2), we can obtain:{
JC (x, y) =

IC (x,y)−AC

tC (x,y) + AC , tC ∈ (0, 1]

IC (x, y) = AC , tC = 0
(6)

There is no need to discuss Cov when tC = 0, because the
sensor can not capture the target scene’s information. When
tC ∈ (0, 1],we get:

Con =

∑
C∈{R,G,B}

∑
(x,y)

(
IC(x, y) − IC(x, y)

)2
NtC(x, y)2

(7)

where IC (x, y) represents the average value of C channel of
the underwater image pixel acquired by the sensor; IC (x, y)
represents the pixel value at (x, y) in C channel. We want
the value of Con to be as large as possible; that is, when the
acquired image IC (x, y) is determined, we want tC to be as
small as possible.

Moreover, we take tC (x, y) and AC as constants, and the
mapping of the ideal image JC (x, y) and underwater image
IC (x, y) captured by the camera as shown in the figure 7 under
certain conditions.

In practice, our image data type is uint8, and the range
of value of JC (x, y) and IC (x, y) is between [0, 255]. If a
pixel value in the image is greater than 255 in the image, the
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FIGURE 5. Method for enhancing underwater images based on Optimal Contrast and Attenuation
Difference (OCAD).

FIGURE 6. Clear underwater image and blurred underwater image, and
their Con value. Con value of left ground truth image is 1.19 ∗ 104, Con
value of right underwater image is 1.11 ∗ 104.

FIGURE 7. The mapping with the ideal image JC
(
x, y

)
and IC

(
x, y

)
collected by the camera.

computer thinks that the pixel value is 255. If a pixel value in
the image is less than 0, the computer pretends that the pixel
value is 0. The red-shaded area in figure 7 indicates that some
data overflowed the range [0, 255] during the mapping from
IC (x, y) to JC (x, y). The overflowing data corresponds to the
black and white dots in the image corresponding to JC (x, y),
meaning that this part of the data has been lost.

To effectively map more data and reduce data loss,
we hope to control the value range of the ideal image to be
between [0, 255].

0 ≤ JC (x, y) ≤ 255 (8)

The above expression indicates that the minimum value of
the image JC(x, y) is equal to or greater than 0 and the max-
imum value is equal to or less than 255. So the transmission
map tC (x, y)follows below relationship.

tC(x, y) ≥
IC (x, y) − AC

−AC
(9)

tC(x, y) ≥
IC (x, y) − AC

255−AC
(10)

tC(x, y) ≥ max
{
IC (x, y) − AC

−AC
,
IC (x, y) − AC

255−AC

}
(11)

Furthermore, we want the Con value to be as large as
possible, so tC (x, y) should be as small as possible from
Equation (7), so we can get a coarse transmission map fol-
lowing Equation (12).

tC (x, y) = max
{
IC (x, y) − AC

−AC
,
IC (x, y) − AC

255 − AC

}
(12)

Then, we get another estimate of transmission map
tDCP(x, y) based on dark channel prior, that prior is signifi-
cantly better than other algorithms in defogging, and it has a
remarkable effect on removing the blur caused by scattering
for the underwater image.

tDCP(x, y) = 1 − min
c∈{r,g,b}

(
min

(x,y)∈�

I c(x, y)
Ac

)
(13)

When tC (x, y) = 1, the light reaches the camera from
the target scene and is unaffected by the attenuation effect.
We can get the following Equation (14).

IC (x, y) = JC (x, y) (14)

Equation (14) indicates that when tC (x, y) is larger and
closer to 1, the acquired underwater image is closer to the
target scene. So, we select the maximum value in correspond-
ing position (x, y) of estimated transmission maps to obtain
the optimal tC (x, y).

tC (x, y) = max
{
IC (x, y) − A

−A
,
IC (x, y) − A
255 − A

, tDCP(x, y)
}
(15)

Moreover, guided filtering can optimize the halo and block
shadows in the image. There is a halo and block in tC (x, y)
because the dark channel prior estimates the transmission
map based on the processing in image blocks.So, we use
guided filter to refine tC (x, y).
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B. VEILING LIGHT ESTIMATION
For Equation (2), when r → +∞, we can get the following
Equation (16).

IC (x+∞, y+∞) = JC (x+∞, y+∞) e−βC (+∞)

− AC
(
1 − e−βC (+∞)

)
(16)

where (x+∞, y+∞) represents the point in the target scene
that is an infinity away from the camera and the pixel in the
underwater image. And e−βC(+∞)

→ 0, we can conclude that
veiling light AC approaches the pixel value IC (x+∞, y+∞),
which represents the pixel value of the farthest point from
the camera to the target scene in the underwater image is the
estimation of veiling light.

Most of the underwater images are blue or green hue, this
is because the blue light and green light travel farther than red
light in the underwater environment. The relevant information
carried by the blue light of the object at the same distance in
the target scene is transmitted to the camera more than the
relevant information carried by the red color. So we believe
that the difference between the blue or green light component
and the red light component of the point farthest from the
camera in the target scene is the largest, and the pixel value of
this point in the underwater image is veiling light estimation.

(xmax, ymax) = argmax
(
IG,B(x, y) − IR(x, y)

)
(17)

AC
= IC (xmax, ymax) ,C ∈ {R,G,B}) (18)

When (xmax, ymax) corresponds to multiple points, the
value of veiling light AC is the average value of these pixels.

AC
= IC (xmax, ymax) (19)

The coarse enhanced underwater image JC (x, y) based on
the underwater physical imaging model can be obtained by
substituting JC (x, y) and AC into Eq.2.

The veiling light is obtained by considering the differential
attenuation of red, green, and blue lights. Therefore, AC can
correct the color of underwater images to a certain extent.
Then we introduced the gray world theory to correct the
underwater image’s color to get the final enhanced underwa-
ter image.

IV. EXPERIMENT AND ANALYSIS
We select 7010 images from the Enhancing Underwater
Visual Perception (EUVP) dataset and the Underwater Image
Enhancement Benchmark (UIEB) dataset as our dataset.
In the experimental section, we first prove that our method
can remove the blur of underwater images and correct the
color cast of underwater images by comparing them with
Dark Channel Prior (DCP) and Gray World (GW). Then
we prove that our method significantly enhances underwater
images and is superior to other existing methods by compar-
ing it with RGHS, ULAP, FUnIE, and IFM methods through
quantitative and qualitative analysis.

A. DATASETS AND EVALUATION METRIC
The Enhancing Underwater Visual Perception (EUVP) [31]
dataset contains separate sets of paired and unpaired image
samples with poor and good perceptual quality to facili-
tate supervised training of models to enhance underwater
images. This dataset contains 5550 dark underwater images
for training the underwater image enhancement task and
570 dark underwater images for validation. We select these
6120 images for validation of our method. The UIEB (Under-
water Image Enhancement Benchmark) [27] dataset includes
two subsets: 890 raw underwater images with corresponding
high-quality reference images and 60 challenging underwater
images. We choose 890 raw underwater images for validation
of our method. The EUVP and UIEB datasets provide a
ground truth of low-quality underwater images. In addition,
we also use the RUIE dataset [33] in the experiment. The
RUIE dataset provides label files for underwater target detec-
tion but does not provide ground truth underwater images.

Then we prove that our method significantly enhances
underwater images and is superior to other existing meth-
ods by comparing it with RGHS, ULAP, FUnIE, and IFM
methods through quantitative and qualitative analysis. In the
quantitative analysis, we mainly evaluated the image quality
by using the commonly used metrics, PSNR (peak signal-
to-noise ratio), SSIM (structural similarity index) [34] and
UCIQE (underwater color image quality evaluation) [35],
to evaluate underwater images. PSNR reflects the difference
between the enhanced image and the ground truth image.
SSIM comprehensively evaluates the image quality from
three aspects: Illumination, Contrast, and Structure. PSNR
and SSIM were calculated using reference images. We used
the ideal image ground truth to calculate the index to evaluate
the image quality. The higher the value of these indicators, the
better the image quality. UCIQE is a linear combination of
color density, saturation, and contrast used to quantitatively
evaluate uneven color, blur, and low contrast of underwater
images. The index does not require a reference image, and
the image quality assessment result can be calculated directly
from a single image. UIQM [34] evaluates underwater image
quality in Lab color space without ground truth image.

B. COMPARISON WITH DARK CHANNEL PRIOR
Both DCP and OCAD can deblur underwater images.
As shown in figure 8, comparing the three images in (8)
is obvious. The amphiprioninae in the yellow box of the
input image is blurred, while the amphiprioninae is visible
in the DCP result and the result of OCAD. The result from
OCAD also eliminates the blue background light from the
image, making it appear brighter and clearer. In each group
of images, the input images have a strong blue hue and are
blurrier than those in the corresponding rows. Although the
DCP result is clear, it has a strong blue hue. The details
comparison in the yellow box of (6) (7) (8) in figure 8 is
shown in figure 9.

In (6) (7) (8) of figure 9, the objects appear to be shrouded
in fog, and the edges of the objects in the image and the
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FIGURE 8. The comparison between our OCAD and DCP methods for enhancing underwater images.
The first row is the original underwater image, the second row is the Ground truth provided by the
EUVP dataset, the third row is the processing result of DCP, and the fourth row is the processing result
of OCAD.

FIGURE 9. The detailed comparison in the yellow box of (6) (7) (8) in figure 8.

TABLE 1. Quantitative comparison of DCP results and OCAD results in
EUVP dataset. The values in the table are the average of each image in
EUVP dataset.

background are the same color, so the target objects in the
image are not visible. Our OCAD method removes the blur
in the image and corrects the image’s color so that the image
looks clearer and the details of objects becomemore apparent.
The OCAD method is more effective for other sets of images
than the DCP method on underwater image deblurring and
color correction tasks.

Data in bold in Table 1 are compared with the same data
group, and the value is greater. The Evaluation metrics of
images proposed by OCAD are better than those processed
by the DCP method. OCAD is generally superior to DCP in
quantitative and qualitative analysis.

C. COMPARISON WITH GRAY WORLD
As shown in figure 10, both GW and OCAD can correct the
color of underwater images. In particular, the background

light of the images in groups (6), (7), (9), and (10) are obvi-
ously eliminated, and the colors of the images are corrected.
From the comparison of the five image groups (1), (2), (3),
(5), and (8), it can be seen that OCAD corrects the color of
the underwater image, making the color of the red object in
each image group brighter, has an obvious deblurring ability
and eliminates the fog on the GW result.

In groups (6), (7), (9), and (10), both the GW result and the
result fromOCAD show corrections for the green background
in the input image, again proving that the OCAD method
has significant color correction capabilities and both results
fromOCAD show blurring that cannot be removed in the GW
results.

The input image in the (4) images has the better image
quality and is less affected by the underwater environment.
The OCADmethod results show that the better-quality image
has not deteriorated due to over-processing.

The detailed comparison of (2) (3) (6) of figure 10 is
shown in figure 11. As you can see in detail in (2) and
(3), OCAD eliminates visible fog in the input image and
GW result. The coral in the yellow box is brightly colored.
In (6), the result from OCAD in the yellow box shows much
better color and sharpness than the input image and the
GW result.
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FIGURE 10. The comparison between OCAD and GW in enhancing underwater images. The first row is
the original underwater image; the second is the Ground truth provided by the UIEB dataset; the third
is the processing result of GW; and the fourth is the processing result of OCAD.

FIGURE 11. The detailed comparison of (2) (3) (6) of figure 10.

TABLE 2. Quantitative comparison of Gray World results and OCAD
results in UIEB dataset. The values in the table are the average
of each image in the UIEB dataset.

Bold data in Table 2 is more significant than the same data
group; This shows that the OCAD method can improve the
image’s color density, saturation, and contrast better than
the GW method. In general, the OCAD method is superior
to the GW method in some respects.

As shown in Table 2, the images processed by our OCAD
method have achieved higher scores in the metrics UIQM and
UCIQE, which do not require ground truth images. In the
UIEB dataset, the ground truth images are synthesized by
underwater image enhancement algorithms, and these images
can not fully reflect the real information of the target scene.
So the comparisons of PSNR and SSIM are not convincible.
In contrast, the metrics UIQM and UCIQE achieved from the
enhanced image are more convincing. Moreover, the images
processed by our OCADmethod have obtained higher UIQM
and UCIQE.

D. COMPARISON WITH OTHER METHODS
Here is a comparison of some OCAD and RGHS, ULAP,
FUnIE, and IFM methods.

TABLE 3. Quantitative comparison of each method in UIEB dataset. The
values in the table are the average of each image in the UIEB dataset.

Figure 12 shows that the OCAD method can eliminate
the image’s blue or green background light and the fog-like
blur in the image and make the scene information more in
line with the actual situation. The yellow box shows that the
backgrounds of (1) and (10) are more apparent. The OCAD in
(2) removes the blur of the image and restores the green color
attached to the stone in the background of the image well. The
OCAD method in (3) eliminates the influence of the green
background light on the image, (4) (5) restores the green
seaweed in the image well, and the yellow box in (6) shows
that the OCAD method restores the purple in the yellow box
coral. (7) The details of the fishtail in the OCAD result are
the clearest. (8) The green turtleback attached to the seaweed
is restored. (9) The image is brighter, and there is no reddish
color distortion of FUnIE. (1) and (10) The background detail
inside the yellow box is clearer.

The detailed comparison of (1), (6), (7), (8), and (10) in
figure 12 are shown in figure 13 and figure 14.
The bold data in Table 3 shows that the values of various

metrics of images processed by OCAD are at the middle
level in the UIEB dataset. Because the size of the image
processed by FUnIE changes, it is inconvenient to calculate
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FIGURE 12. Input images and comparison of OCAD and other methods in UIEB dataset.

FIGURE 13. The detailed comparison of (1) (6) (7) (8) in figure 12.

FIGURE 14. The background detailed comparison of (10) in figure 12.

its image evaluation index. So, only comparing the evaluation
indexes of the images processed by the other methods is
calculated. In general, OCAD can realize underwater image
color correction and underwater image deblurring at the same
time, and the correction effect has some advantages in the
UIEB dataset.

The bold data in Table 4 shows that the values of various
metrics of images processed by OCAD have obvious advan-
tages in the EUVP dataset. In general, OCAD can realize
underwater image color correction and underwater image
deblurring at the same time, and the correction effect has
obvious advantages in the EUVP dataset.
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FIGURE 15. Input images and comparison of OCAD and other methods in RUIE dataset.

FIGURE 16. The detailed comparison of (1) (3) (4) of figure 15.

TABLE 4. Quantitative comparison of each method in the EUVP dataset.
The values in the table are the average of each image in the EUVP dataset.

As shown in figure 15 and figure 16, images processed
by OCAD has obvious deblurring and color correction effect
compared with original underwater images and images pro-
cessed by other methods, and the background information of
the image is better preserved, as shown in (4) of Figure16.

RUIE dataset does not provide ground truth images, so we
only compare UCIQE and UIQM of images processed by
each method. The bold data in Table 5 shows that the values
of various metrics of images processed by OCAD are at the
middle level. The performance of the OCAD method on the
RUIE dataset has a certain corrective effect.

TABLE 5. Quantitative comparison of each method in RUIE dataset. The
values in the table are the average of each image in RUIE dataset.

As shown in Table 3, Table 4, and Table 5, our OCAD
algorithm performs better on the EUVP dataset. Moreover,
the images in the EUVP dataset have a heavy blue or green
tone; these images are collected close-up in a deepsea envi-
ronment. The G channel and B channel contain much more
practical information about the target scene than the R chan-
nel in the deep-sea environment, which is very consistent with
the basic idea of attenuation difference in our OCADmethod,
so our OCAD method is suitable for this kind of scene. The
images processed by OCAD can better reflect the factual
information of objects in the deep-sea environment. The met-
rics comparison of ourOCADmethod obtained higher PSNR,
SSIM, and UIQM values, as shown in Table 4, so the OCAD
method has obvious advantages in the EUVP dataset.
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FIGURE 17. Canny results comparison of each method mentioned in Subsection D. The first row is the
original image, ground truth image, and the results of each method, and the second row is Canny
results of these images.

The comparison in Table 3 and Table 5 also shows that our
OCAD method lacks ability when dealing with the colorful
UIEB dataset. However, the images processed by our OCAD
method have obvious deblurring and color correction results;
the UIQM and UCIQEmetrics values are not the highest. Our
OCAD method is generally suitable for the EUVP dataset,
which is suitable for deep-sea close-range images; the exper-
iments show that our OCAD method achieved significant
image enhancement. However, there is still room to improve.
We will combine deep learning methods in future research
to improve the robustness and generalization of our OCAD
method.

E. COMPARISON OF DETAIL EXTRACTION
We compare the Canny results of the enhanced underwater
images by the methods mentioned in Subsection D. We nor-
malize the images and use the Canny method to extract the
images’ edges.

As shown in figure 17, the FUnIE result has obvious noises,
so its corresponding Canny result has the most white lines,
even more than the Canny result of ground truth. The stones
in the yellow box have obvious texture features. Except for
the Canny result corresponding to FUnIE, which introduces
a lot of noise, other methods lose the texture features of the
stone in the background of the image.

Overall, our OCAD method can significantly improve the
underwater image quality and restore the background features
of the degraded underwater image.

V. CONCLUSION
We proposed an OCAD method and demonstrated the sig-
nificant advantages of this method over other methods, both
qualitatively and quantitatively.

We compared the EUVP and UIEB underwater image data
sets with the state-of-the-art and classical underwater image
enhancement algorithms and analyzed them in detail. The
experimental results show that our algorithm can enhance
underwater images significantly and is superior to othermeth-
ods. We have experimentally verified that the OCADmethod
has significant underwater image enhancement capability.

Although the OCADmethod achieves good qualitative and
quantitative evaluation results in most cases, it may distort
the results when processing images with an extensive back-
ground but no major object. In future research, we plan to

semantically divide the image into background and object
parts by segmenting the object into specular and diffuse
reflective objects for future processing. We believe more
targeted and selective image processing will lead to better
processing results.
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