
Received 24 June 2023, accepted 29 June 2023, date of publication 4 July 2023, date of current version 10 July 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3292143

A Novel Secure and Privacy-Preserving Model
for OpenID Connect Based on Blockchain
BELFAIK YOUSRA1, SADQI YASSINE 1, (Senior Member, IEEE),
MALEH YASSINE 2, (Senior Member, IEEE), SAFI SAID1,
TAWALBEH LO’AI 3, (Senior Member, IEEE), AND KHALED SALAH 4, (Senior Member, IEEE)
1Laboratory LIMATI, FPBM, Sultan Moulay Slimane University, Beni-Mellal 23000, Morocco
2Laboratory LISERT, ENSAK, Sultan Moulay Slimane University, Khouribga 25000, Morocco
3Department of Computer Engineering, Jordan University of Science and Technology, Irbid 22110, Jordan
4Department of Electrical Engineering and Computer Science, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates

Corresponding author: Maleh Yassine (yassine.maleh@ieee.org)

ABSTRACT OpenID Connect (OIDC) is one of the most widely used delegated authentication protocols in
web and mobile applications providing a single sign-on experience. It allows third-party applications, called
Relying Parties (RP), to securely request and receive information about authenticated sessions and end-users
from an identity provider. The OIDC specification defines several parameters, including the client_id,
client_secret, authorization code, access token, id token, state, and redirect_uri, as keys to the protocol
operation, with significant security and privacy implications. Therefore, securing these parameters is critical
to prevent attackers from impersonating legitimate entities, gaining unauthorized access, having complete
control over users’ accounts, and/or violating their privacy. To enhance OIDC security and preserve its
users’ privacy, we propose a novel model for OIDC based on the Ethereum Blockchain and the non-fungible
token (ERC721) standard. To prove the robustness and safety of the proposed system, we perform a detailed
security analysis formally using the most widely accepted protocols security verification tools, AVISPA and
Scyther, and informally by discussing various attacks. The analysis results show that the proposed system
is resilient against well-known attacks. Furthermore, we evaluate the cost and performance of the proposed
solution, confirming its affordability and assuring that our approach does not impact the user experience
and performance of existing OIDC-based systems. Finally, we conduct a security and privacy comparative
analysis with similar existing systems, proving the superiority and efficiency of our proposed Blockchain-
based OIDC system.

INDEX TERMS Authentication, blockchain, OpenID connect, privacy-preserving, security.

I. INTRODUCTION
Nowadays, the number of internet users is steadily increasing
worldwide. According to the 2022 mid-year estimates of
the world internet usage statistics [1], there are more than
5.47 billion active internet users out of the 7.93 billion global
population. This significant growth can be explained by the
increasing number of internet services and the remarkable
development in network technologies. All Internet services
require an authentication mechanism to accept or deny users’
requests to access their functionalities. Despite its security

The associate editor coordinating the review of this manuscript and

approving it for publication was Sedat Akleylek .

and usability risks, password-based authentication is the most
widely used authentication scheme in network systems. Gen-
erally, users cannot remember their passwords for multiple
accounts, which makes them choose easily-guessable pass-
words, write them down, use the same password for several
applications, and other poor security practices [2]. Delegated
authentication protocols provide a solution to this dilemma.
These protocols allow users to seamlessly log in to other ser-
vices called ‘‘clients’’ or ‘‘Relying parties (RPs)’’, using their
identity on an identity provider (IdP), eliminating the need for
each service to have its password. OpenID Connect (OIDC)
is the most widely used delegated authentication protocol
today [3]. Microsoft, Amazon, AT&T, Google, Meta, PayPal,

67660
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0002-0772-9916
https://orcid.org/0000-0003-4704-5364
https://orcid.org/0000-0002-2294-9829
https://orcid.org/0000-0002-2310-2558
https://orcid.org/0000-0001-7005-6489

B. Yousra et al.: Novel Secure and Privacy-Preserving Model for OpenID Connect Based on Blockchain

Verizon, Salesforce, Oracle, Symantec, Deutsche Telekom,
VMWare, IBM, WordPress, Yahoo, GitHub, and Twitter are
among the top digital companies that support OIDC [4]. This
protocol allows billions of users to access millions of services
effortlessly and securely compared to earlier solutions [5],
and it is considered the new standard of the Single Sign-On
system [6], [7]. According to Zhang et al. [8], over onemillion
websites support Single Sign-on (SSO) via OIDC.

A. RESEARCH MOTIVATION
The widespread adoption of OIDC on the web, mobile, cloud,
Fog Computing, IoT, and SSO systems makes its security and
privacy-preserving a must. One of the critical drawbacks of
this standard is that it does not verify authenticity since it only
verifies and validates the parameters contained in a request
but not the identity of the sender of this request. Therefore,
attackers can get unauthorized access to restricted resources
due to theft, improper protection, and/or incomplete valida-
tion of tokens. OIDC specification defines several sensible
parameters, including the client_id, client_secret, authoriza-
tion code, access token, id token, state, and redirect_uri, used
in the protocol operation and its extensions workflow. How-
ever, a significant concern arises when an adversary gains
access to one or more of these parameters, as it can lead
to unauthorized access to restricted resources, impersonation
of the RP, falsification of users’ identities, exposure of per-
sonal information, and potentially acquiring full control over
accounts, at the same level as a legitimate authenticated user.
Therefore, ensuring confidentiality, integrity and availability
of those parameters and users’ unlinkability and anonymity
will significantly enhance OIDC security and privacy.

OIDC’s security and privacy have been widely examined.
Previous works have analysed the security and privacy threats
of OIDC specification and its different implementations.
Various approaches have been proposed to improve OIDC
security and privacy, including changing the structure or treat-
ment of tokens, using cryptographic mechanisms, modifying
the flow steps described in the analysed specification, chang-
ing the traditional implementation way or redefining policies,
agreements, reputation systems, and other similar techniques
[3], [4], [9], [10], [11]. However, the combination of the above
approaches is still far from ideal for overcoming the security
and privacy threats explored in OIDC. There is still a need for
a more efficient and trustworthy OIDC model.

B. MAIN CONTRIBUTIONS
Inspired by the above challenges, this paper proposes a
novel model for OIDC based on blockchain technology
and smart contracts to efficiently secure the authorization
and authentication process in the OIDC protocol, prevent
IdPs from tracking user activities, and preserve privacy.
Blockchain is a distributed and shared database ledger that
organizes an increasing number of transaction records into
a cryptographically linked chain of blocks. The widespread
adoption of blockchain technology in the development of

various industries is due to its desirable characteristics, such
as decentralization, integrity, immutability, verification, fault
tolerance, anonymity, auditability, and transparency. Taking
advantage of these features, our proposed blockchain-based
approach meets the security and privacy requirements that
OIDC needs. Our model uses Ethereum, an open-source
blockchain-based platform designed for distributed data stor-
age, smart contracts, and decentralized applications (DApps),
as well as the smart contract ERC-721, also referred to as the
non-fungible token NFT standard. The proposed system in
the present manuscript takes the approach provided in [12]
as its basis but applies to all the sensitive security parame-
ters exchanged during authentication in the OIDC protocol
instead of OAuth 2.0 access tokens. Our approach aims to
ensure security and authenticity and verify the ownership
of an entity requesting an OIDC security parameter or a
protected resource using NFTs. However, it’s important to
note that NFTs provide proof of possession by mapping the
ownership of the token directly to the public Blockchain
address of the intended owner. Furthermore, the proposed
system ensures compatibility with existing OIDC-based sys-
tems since it does not change the workflow of the OIDC
standard. The main contributions of this paper are as follows:
• We propose a novel model for OIDC based on
blockchain technology. In this system, we have used the
Ethereum Blockchain and NFTs to uniquely identify the
OIDC-sensitive parameters, prove and verify the own-
ership of these parameters, securely store them in the
blockchain, and exchange them with legitimate entities
after a robust verification process.

• We suggest some minus modifications to the OIDC’s
client registration and user authentication flows to pre-
serve users’ privacy and prevent entities (e.i. RPs and
IdPs) from tracking their activities and linking data
about their interests and preferences.

• We present a prototype implementation proof-of-
concept of the proposed Blockchain-basedOIDCmodel.
Furthermore, we provide a cost and performance evalua-
tion of the proposed system to prove its affordability and
that our approach does not impact the user experience
and performance of existing OIDC-based systems.

• We prove the security of our proposed system formally
using AVISPA and Scyther tools and informally by dis-
cussing various attacks.

• We perform a comparative analysis of our proposed
Blockchain-based OIDC approach and other similar
systems.

C. ORGANIZATION OF THE PAPER
The rest of this paper is organized as follows. Sections II
and III present the concepts and technologies used in this
work and the OIDC’s security and privacy previous works,
respectively. Section IV describes the security and privacy
threats of OIDC. Section V examines the network model
and outlines the different phases of the proposed Blockchain-
based OIDC system. Section VI presents a proof of concept

VOLUME 11, 2023 67661

B. Yousra et al.: Novel Secure and Privacy-Preserving Model for OpenID Connect Based on Blockchain

and cost and performance evaluation of the proposed solution.
Sections VII and VIII, respectively, conduct a formal and
informal security analysis of our proposed scheme and a
comparison with similar schemes. Finally, we conclude the
paper in section IX.

II. PRELIMINARIES
A. OpenID CONNECT
OpenID Connect (OIDC) is a delegated authentication proto-
col developed by the OpenID Foundation in November 2014.
It is built on the creation of a basic identity layer on top
of the authorization protocol OAuth 2.0 [13]. OIDC enables
Relying Parties of all types, including Web-based, mobile,
and IoT, to authenticate an end-user by getting his basic
profile information (name, family_name, given_name, email,
picture, etc.) from an Identity Provider. OIDC enables RPs to
verify end-user identity by introducing a new type of token
to OAuth2.0, notably the id token, in addition to the existing
access token and authorization code. The OIDC architecture
includes three roles (see Fig. 1): the end-user, the relying
party, and the OpenID provider (OP). The OP is itself an
identity Provider (IdP) that supports OIDC.

FIGURE 1. OpenID Connect typical sequence diagram.

When an end-user accesses an application (i.e. RP) that
requires his authentication, the RP submits an authentication
request to the IdP. Next, the IdP verifies the end-user identity
and asks for his authorization. After obtaining the autho-
rization grant, the IdP responds with an id token and access
token. If the id token does not contain all the claims needed
to authenticate this end-user (defined in the scope parameter
of the authentication request), the RP sends a request to
the IdP with the access token. If the received access token
is successfully verified, the IdP respond with the end-user
claims.

OIDC supports three different flows to authenticate the
end-user on an RP:Authorization code flow, Implicit flow, and
Hybrid flow. The most common OIDC authentication flow of

these three is the authorization code [12], on which we will
describe our proposed system.

1) OIDC CLIENT REGISTRATION
To use OIDC services for an end-user, the RP must first reg-
ister with the IdP. To record a new RP at the IdP, the RP sends
an HTTP POST message to the Client Registration Endpoint
(a URL through which an RP can be registered at an IdP)
with the Client Metadata that it chooses to specify for itself,
including the redirect URI (redirect_uri) (i.e. required meta-
data). The redirect_uri is a URI to where send the browser,
and the IdP authorization response after end-user interaction
at the Idp is complete. Upon successful registration, the IdP
creates a unique client identifier client_id, and optionally a
client_secret to the RP, and associates it to all the registered
metadata about this client [14].

2) TOKENS
OpenID Connect protocol uses three tokens that perform dif-
ferent activities, namely the authorization code, access token,
and id token. The authorization code is a temporary code used
to give RP authorization to retrieve tokens from the IdP by the
RP to have an access token. The code itself is obtained from
the IdP where the user gets to see what information the RP is
requesting and approve or deny the request. The lifetime of
this token must be short (10 mins max) to mitigate the risk of
leaks and it must be used once. Furthermore, OIDC uses the
access token to authorize RPs to access the user’s protected
resources stored at an Idp. The most common types used for
access tokens are the bearer token type and the JWT type. The
Bearer token is a data structure that gives any party in posses-
sion of the token rights to use it. This token can be associated
with a secret key to prove the ownership of these tokens for
additional security. The second type is a compact and safe
way of representing the claims as JSON objects, which are
encrypted and signed to ensure a secure transmission between
parties [15]. The ID token is the primary extension that OIDC
makes to OAuth2.0 to enable users’ authentication into an
RP. It is a JSON Web Token (JWT) containing information
about the identity of the end-user registered on an IdP, namely
claims.

3) THE AUTHORIZATION CODE FLOW
The authorization code flow (see Fig. 2) begins when an
end-user requests access to an RP. Therefore, the RP prepares
an authentication request and sends it to the IdP with the
following parameters:
• scope: its basic and required value for OIDC is
‘‘openid’’. It indicates that the RP intends to use the
OIDC protocol to verify the identity of a user. The scope
parameter can have other values, such as ‘‘profile’’ and
‘‘email’’, which represent the group of claims needed to
authenticate the end-user on the RP.

• response_type: it identifies the flow used. In this case,
it takes ‘‘code’’ as a value.

67662 VOLUME 11, 2023

B. Yousra et al.: Novel Secure and Privacy-Preserving Model for OpenID Connect Based on Blockchain

• client_id: a unique identifier for the RP registered with
the IdP previously.

• redirect_uri: is the redirection URI to which the
response will be sent.

• state: is a recommended parameter used to maintain the
state between the request and the callback. It is used to
mitigate Cross-Site Request Forgery attacks.

Next, the IdP compares the value of the redirect_uri with
the one registered in the RP registration phase. The process
is ended if the comparison fails. The IdP then authenticates
the end-user, if he is not already authenticated, and obtains
his permission for the RP to access his resources stored in
the IdP. Next, the IdP returns the end-user back to the RP
with an authorization code and the parameter state. The state’s
value should be identical to the one sent in the authenti-
cation request. Next, the RP sends a token request to the
IdP containing the authorization code received, redirect_uri,
and the parameter ‘‘grant_type’’ taking as a value ‘‘autho-
rization_code’’. If the code and client credentials are both
successfully valid, the IdP returns an access token and an id
token to the RP. The received tokens are then validated by the
RP. If the id token does not contain all the claims needed to
authenticate the end-user (defined in the scope parameter),
the RP sends a Request to the IdP with the access token.
Finally, if the access token is valid, the IdP responds with the
end-user’s claims to the RP.

FIGURE 2. OpenID Connect authorization code flow.

B. BLOCKCHAIN TECHNOLOGY
Blockchain is a distributed, shared, and immutable database
ledger that records an increasing number of transaction
records into a cryptographically linked chain of blocks. This
technology has come into existence in 2008 by Satoshi
Nakamoto, who introduced the term blockchain for the first

time as the distributed ledger underlying Bitcoin transac-
tions. Bitcoin is the first cryptocurrency that effectively
addressed the problem of double-spending on digital currency
by employing a decentralized peer-to-peer network without
the need for a trusted third-party [16], [17].

In recent years, Blockchain has been widely adopted in
different environments including cryptocurrency, finance,
Internet-of-Things (IoT), healthcare, agriculture, identity
management, voting, education, etc. The wide popularity of
Blockchain is due to its desirable features of decentralization,
transparency, integrity, immutability, anonymity, auditability
and irreversibility [18]. Blockchain eliminates the need for a
centralized authority to control or decide things for an orga-
nization’s transactions, as well as the need for a third-party
intermediary to verify and validate the data transactions.
Furthermore, a transaction can not be removed or modified
once it has been recorded in the blockchain. Because of the
decentralized and distributed nature of the blockchain, any
modification to an involved block can impact all the subse-
quent blocks, since each block in the blockchain possesses
the previous block’s cryptographic hash value. Blockchain
uses public and private keys to ensure security and pre-
vent forgeries. The public key is the common address that
everyone in the network knows, while the private key is a
unique and random value known only by the user and used
to sign transactions. Moreover, the blockchain protects users’
privacy because transactions are carried out using the user’s
public address rather than his real identity.

Our proposed system is based on Ethereum, which is an
open-source platform based on blockchain technology devel-
oped for distributed data storage as well as smart contracts,
and deployed as a peer-to-peer network, known as being the
second most popular public blockchain after Bitcoin [19],
[20]. Ethereum was proposed for the first time by Vitalik
Buterin in his whitepaper [21] in 2013, crowdfunded for its
development in 2014, and then on 30 July 2015 Ethereum net-
work went live. Ethereum is a next-generation smart contract
and decentralized application (DApp) platform as defined
in its whitepaper. DApp is a web application that functions
as a central trusted authority between untrusted parties in a
transaction, such as an online marketplace. The Dapp’s back-
end code runs on a decentralized peer-to-peer network, while
the frontend code and user interfaces can be written in any
language to make calls to the backend. DApps are considered
decentralized because they are controlled by the logic written
into the smart contract, not a user or company [22].

A smart contract [17], [23] is a self-executing program that
runs on the blockchain network with no need for any inter-
mediary. It contains a collection of functions and data that
resides at a specific address on the blockchain and describes
how the process will be performed and what actions will be
taken once an event has occurred. Smart contracts can be
considered a type of decentralized automation that facilitates,
verifies, and enforces agreements in transactions, and records
the results in a distributed ledger. To execute the bytecode of
smart contracts in Ethereum, a decentralized virtual machine

VOLUME 11, 2023 67663

B. Yousra et al.: Novel Secure and Privacy-Preserving Model for OpenID Connect Based on Blockchain

called the Ethereum Virtual Machine (EVM) is installed in
each network node [24]. This will enable nodes to agree to
execute the same instructions by running the EVM code.
A cost in Gas units is assigned to each instruction executed.

In the blockchain, the shared public ledger needs an effi-
cient and secure consensus algorithm to ensure security and
establish a high level of trust between participants in terms of
updating or transferring data [25]. The consensus algorithm
is essentially a set of rules and regulations to be followed by
every participant to approve transactions and add blocks to the
blockchain taking advantage of the fact that the majority of
users have a common interest to keep the network honest [17].
Therefore, every transaction transmitted in the network must
be approved and validated by the majority of participants
based on the consensus algorithm, to add it to the block. Thus,
consensus algorithms allow blockchain to preserve trust and
ensure honesty between anonymous users while transmitting
data in the network.

For blockchain, numerous consensus algorithms have been
developed. The Proof of Work (PoW), Proof of State (PoS),
and Delegated Proof of State (DPoS) consensus algorithms
are the most frequently used ones in public blockchains.
Proof of Work involves highly efficient and powerful nodes
called miners to solve a complicated mathematical puzzle in
order to add new blocks to the chain. The miner who solves
the puzzle first will be rewarded with cryptocurrency. The
consensus algorithm used by Bitcoin and Ethereum is PoW.
The PoW consensus process has a significant drawback in
that it takes a long time and a lot of energy to finish. To
overcome these problems, the PoS consensus model has been
proposed as a solution for others. PoS requires nodes called
validators to stake their coins in the network to participate
in the system and mine the next block. A validator is chosen
randomly to create new blocks, share them with the network
and earn rewards. Using PoS you only need to stake your
money in the network, instead of doing intense computational
work. If the validator tries to insert an invalid block into the
chain, he will lose his stake. The Ethereum 2.0 upgrade has
been activated on September 15, 2022, enabling Ethereum
to validate transactions through the PoS consensus algorithm
instead of the PoW consensus algorithm.

C. CRYPTOGRAPHIC TECHNIQUES IN ETHEREUM
Blockchain uses cryptography and consensus mechanisms
to ensure security, establish trust between anonymous
and untrusted parties, and prevent problems such as
double-spending and the retrospective change of transac-
tion data in a block after it has been successfully added to
the chain. Blockchain uses popular cryptographic techniques
such as asymmetric cryptography, hash functions, the Merkle
tree, and digital signatures.

A blockchain account is an entity with a balance of cryp-
tocurrency that can send transactions on the network. An
account is consisting of two keys: public and private. The

private key is stored in a digital wallet (i.e. an application
that let you read your balance, send transactions, manage your
account, and connect to applications). The private key is used
to sign transactions, which are called digital signatures, and
the public key is used to verify whether or not a transaction
was signed by the sender [25]. This prevents forgeries and
malicious entities from disseminating fraudulent transactions
since we can always verify the sender’s legitimacy. Because
knowledge of a public key is required for digital signature
verification, a user’s public key can logically be chosen as
the person’s identity. It is a mechanism used to manage the
identity of users in the Blockchain without disclosing their
real identity.

In Ethereum, Elliptic Curve Cryptography (ECC) is used
to generate the public key from the private key which is a
random value made up of 64 hex characters. The public key
is calculated from the private key using the following function
Kb = Kr * G, where Kr is the private key, Kb is the resulting
public key, and G is the Elliptic Curve base point of order n
(i.e. prime number), and * is the elliptic curve multiplication,
which is the operation of successively adding a point along
an elliptic curve to itself repeatedly and it is irreversible.
Ethereum uses the elliptic curve secp256k1 together with
the Elliptic Curve Digital Signature Algorithm (ECDSA) to
sign transactions. The secp256k1 curve is defined with the
equation y2 = x3 + 7 and it has a security level of 256 bits,
which is considered secure [26]. The base point G is specified
as part of the secp256k1 standard and it is the same for all
Ethereum users.

Hashes are fixed-size and one-way functions used in
blockchain to securely record transactions in the blocks
which are structured in a specific way using the Merkle tree.
Each transaction passes through a hash function. The hash
values of the transactions are paired and passed once again
through the hash function until only one hash value is left,
and this is called the Merkle root hash. Each block in the
blockchain is made up of a header and a body. The Merkle
root is stored with the hash of the previous block, a times-
tamp, Nonce and a difficulty target value in the block header;
otherwise, the transaction data is stored in the block body. To
add a block to the chain, it should contain the hash value of
the previous block, which forms a secure interconnection link
between the blocks and make the blockchain immutable. The
Merkle tree can prevent tampering with data. This means that
if an adversary tries to tamper with data, the hash value of all
the blockswill change, rendering the chain invalid. Therefore,
it is an efficient and easy way to detect whether the data has
been tampered with.

Ethereum uses a hash function called keccak-256 with
secp256k1 ECDSA signatures to securely submit transac-
tions in the network [26]. When a user wants to send a
message transaction, the transaction data will be first hashed
using the keccak-256 hash function. Then, the hash value of
the transaction will be signed with the user’s private key using
ECDSA. The user then transmits their transaction data and

67664 VOLUME 11, 2023

B. Yousra et al.: Novel Secure and Privacy-Preserving Model for OpenID Connect Based on Blockchain

the digital signature to the Blockchain network. The received
digital signature will be decrypted and validated, and the
transaction verified by the miner using the user’s public key.

D. ERC-721 NON-FUNGIBLE TOKEN (NFT) STANDARD
The ERC-721 (Ethereum Request for Comments 721) is
a non-fungible token standard that implements an API for
tokens within smart contracts. This standard is based on the
ERC-20 token standard and builds on two years of experience
gained since that standard’s inception [27]. Unlike ERC-20
tokens, ERC-721 tokens are unique and cannot be exchanged
for other tokens (non-fungibility), and this is exactly why we
chose to use this type of token in our model. ERC-721 tokens
have a unique identifier, referred to in our system as tokenId,
and can only be possessed by a single user [12]. ERC-721
standard defines several methods/functions and events that
allow providing different functionalities. We call a smart
contract that implements these methods and events an ERC-
721 Contract, and once deployed, it would be responsible
for keeping track of the created tokens on Ethereum. In this
work, we assume that once a token is created, its tokenId and
metadata are defined and that only the contract owner has the
right to create new tokens. To associate a token with some
metadata, the ERC recommends using the ERC-721metadata
extension, which specifies several functions to associate an
ERC-721 tokenwith its metadata. In ourmodel, the tokenURI
method is used to associate a tokenId to a URI where the
metadata is stored. Table 1 describes the methods used in our
proposed scheme.

III. RELATED WORKS
In this section, we present the previous studies that address
the security and privacy concerns related to the OIDC proto-
col in both specification and implementation aspects.

In 2015, Fett et al. [28] proposed a privacy-respecting Sin-
gle Sign-On system for the web called SPRESSO (for Secure
Privacy-REspecting Single Sign-On). SPRESSO is a protocol
designed to protect the privacy of SSO users by prevent-
ing IdPs from tracking users and collecting their activities.
They proved that SPRESSO provides strong authentication
and security properties based on an expressive Dolev-Yao-
style web infrastructure model. Moreover, in 2017 authors
provided an in-depth formal security analysis of OIDC and
recommended adequate and effective security principles so
that implementers have a high level of security respect-
ing authentication, authorization, and session integrity when
using OIDC [4]. In 2020, Zhang et al. [8] proposed EL
PASSO, an asynchronous SSO system that preserves users’
privacy against both IdPs and RPs. Motivated by the fact
that SPRESSO only prevents IdPs from profiling users
and does not protect them from colluding and malicious
RPs and the synchronous nature of most SSO systems,
EL PASSO uses zero-knowledge proofs, PS signatures and
anonymous credentials to enable a privacy-preserving asyn-
chronous authentication solution. The authors evaluated EL
PASSO performance, latency and cost against OIDC and

conducted a thorough security analysis of the EL PASSO
system compared to other existing SSO systems.

In 2017, Weingärtner and Westphall [11] proposed a sys-
tem that addresses privacy problems within the personally
identifiable information (PII) stored in identity providers
of OpenID Connect federations. This work suggests using
encrypted PII data stored in the IdP with a key that only
the user has. This approach is a continuation of their previ-
ous work proposed in 2014 [29], which suggests the use of
user-inserted policies in IdPs to support and automate the dis-
semination process. Unfortunately, this task is complex and
difficult for users to perform. For this reason, they propose in
their new design a method for IdPs to develop and maintain
dissemination policies, which would provide a better user
experience by making this task transparent and getting direct
feedback about their decisions in the dissemination interface.

Mainka et al. [9] classified OIDC attacks into single-phase
and cross-phase attacks and introduced two new attacks in
OIDC, namely identity provider confusion attack and mali-
cious endpoints attack. They also evaluated the officially
referenced OIDC libraries and found 75% of them vulner-
able to at least one single-phase Attack. They have provided
PrOfESSOS: an open-source implementation for a fully auto-
mated evaluation-as-a-Service platform for SSO services.
PrOfESSOS introduces a generic approach to improve the
security of OIDC implementations by systematically detect-
ing vulnerabilities.

In 2018, Asghar et al. [30] proposed a privacy-preserving
identity and access management system that prevents IdPs
from profiling users’ behaviour and controls users’ personal
information disclosure. PRIMA enables a user to get digi-
tal credentials stored locally in his device after registering
with an IdP, which allows users to control access, private
data shared, and revocate from a service at any time. The
authors have also conducted a performance analysis of the
PRIMA system and a comprehensive evaluation to prove its
feasibility.

In 2018, Deeptha and Mukesh [31] proposed the EOIDC
system, which enhances the current OpenID Connect autho-
rization code flow to meet the high-level security and
reliability requirement of mission-critical applications, such
as bank and government services. EOIDC includes features
such as end-to-end encryption, message signing, andmessage
replay protection to ensure the authenticity and integrity of
user authentication and authorization messages, as well as
protection against impersonation and replay attacks and other
types of security threats. The authors have also performed
a security analysis and performance evaluation to prove the
efficiency and safety of the EOIDC system.

Navas and Beltrán [10] performed a depth threat model
of OIDC specification and its current implementations and
summarized the main impacts and consequences of each
identified threat on security and privacy. They also identified
a number of mitigations, countermeasures and remediation
options for both specification and implementation. In 2019,
Li et al. [32] developedOAuthGuard, anOAuth 2.0 andOIDC

VOLUME 11, 2023 67665

B. Yousra et al.: Novel Secure and Privacy-Preserving Model for OpenID Connect Based on Blockchain

TABLE 1. The ERC-721 and ERC-721 metadata extension methods used in this model.

vulnerability analyzer and defender to protect users’ security
and privacy even when RPs improperly implement OAuth
2.0 or OIDC protocols. They demonstrated its effectiveness
by using it to search for five OAuth 2.0 or OIDC security
and privacy vulnerabilities on the top 1000websites accepting
Google sign-in. In 2020, they performed a systematic analysis
of the OAuth2.0 and OIDC systems’ user access privacy
properties [33]. They also proposed possible mitigations to
make the protocols truly respect privacy.

In 2020, Hammann et al. [3] proposed two solutions to
address a huge privacy threat in OIDC: IPs can track users and
link the data about which RPs the user visits. They also gave
formal security analysis using the Tamarin security protocol
verification tool for OIDC standard and their extensions.

In 2020, Baum et al. [34] proposed PESTO which is a
solution that aims to address the single point of failure threat
in SSO systems, in which a compromised IdP can imper-
sonate users and control all their accounts associated with
this IdP. PESTO is a distributed SSO system with proactive
security that uses cryptographic techniques and proactive
secret sharing to distribute trust among multiple servers and
securely recover servers after a compromise. In the PESTO
approach, even a compromised password is not enough to
obtain access to the user’s accounts since each access token
must be signed by all servers, and they can reject the request
if they discover suspicious access patterns. The authors have
also performed a thorough security analysis of the PESTO
system against existing SSO systems.

In 2022, Mir et al. [35] proposed DAMFA, a Decentral-
ized Anonymous Multi-Factor Authentication scheme for
single sign-on systems. DAMFA uses multifactor authenti-
cation, Blockchain network, non-interactive zero-knowledge
proof and cryptographic techniques such as pseudo-random
functions, hash functions, signatures and credentials and
secret-sharing schemes to address three main challenges in
web SSO authentication. These challenges include the theft of
authentication data stored by IdPs, user tracking and control
over their sensitive data, and system and data availability.
The authors have conducted a security analysis, performance
evaluation and comparison of DAMFA against the existing
SSO schemes.

The aforementioned works discussed the different security
and privacy threats targeted at OIDC protocol [3], [4], [9],
[10], [33] and proposed mitigations and new systems to over-
come OIDC-based systems’ security and privacy challenges

[11], [8], [28], [30], [31], [34], [35]. Those schemes are based
on cryptographic techniques, anonymous credentials, dis-
tributed verification techniques, and/or Blockchain network
properties to provide a highly secure authentication system
while maintaining users’ privacy. Indeed, none of these sys-
tems provides an approach that significantly enhances OIDC
security and users’ privacy while maintaining the features
already available in OIDC. In contrast to the above works, our
proposed scheme is the first to employ Blockchain to enhance
OIDC security and privacy-preserving without changing the
OIDC protocol specification or workflow, making our solu-
tion compatible with the existing OIDC-based systems.

IV. OIDC THREAT MODEL
In this section, we provide the security and privacy threats
of OpenID Connect protocol specification and its common
implementations [3], [4], [9], [10].

A. SECURITY THREATS
1) TOKENS REPLAY
The improper protection of the authorization code, access
token and id token, and/or the incorrect validation of these
tokens and their audience presents a significant threat in
OIDC. If an adversary obtains legitimate tokens, he can
replay a token to access RP resources if it has not yet expired
or if the expiration process has been handled improperly.
He can also use the code to obtain tokens at the IdP (if the
audience of the authentication and token requests are not
checked). Or even worse, replay the id and access tokens
intended for an RP to gain access to the resources of another
RP that is not appropriately verifying the token’s audience
(i.e. verify whether this RP is truly the intended receiver of
the token).

2) MANUFACTURE OF FAKE TOKENS
Because of the improper and faulty validation of id tokens,
an adversary may be able to access RP resources by providing
fake tokens tailored to his purposes. Fake tokens can be
created by making simple modifications to the parameters
of a legitimate token. To avoid the token being rejected
because of an invalid signature, the adversary can use signa-
ture bypassing to modify the token’s data without invalidating
the signature, enforce the RP to employ incorrect keys during
the signature verification or remove the signature by relying
on an RP policy to accept tokens without signatures at all.

67666 VOLUME 11, 2023

B. Yousra et al.: Novel Secure and Privacy-Preserving Model for OpenID Connect Based on Blockchain

Furthermore, a malicious IdP can create fake tokens from
scratch. If the RP has not properly examined the token’s
parameters, it will be validated, and a spoofing attack will
occur.

3) IMPERSONATION OF LEGITIMATE ENTITIES
This threat occurs because of the adversary’s ability to inter-
cept the authentication flows impersonating legitimate enti-
ties RP/IdP. The adversary can manipulate the redirect_uri
parameter using a malicious RP to retrieve information like
authorization codes, access tokens, and id tokens from a
legitimate IdP if the redirect_uri is not properly validated.
Furthermore, an adversary would be able to obtain a valid
authorization code if he has control of a malicious IdP and
the client_id parameter of the target RP is the same in both
the legal and themalicious IdP. This threat differs from threats
based on replaying valid or manufactured tokens in that the
adversary utilizes tokens or codes for the first time and has
not been used by the legitimate user even once.

4) COMPROMISED IdP ACCOUNT
In single sign-on systems, IdPs are considered keys to the
kingdom of users’ accounts. If an attacker can compromise
an IdP account, he can impersonate the user at any RP that
supports this IdP. Thus, it causes unwanted actions like read-
ing the victim’s messages, sending new messages, changing
personal information, etc. The adversary can compromise the
IdP account by obtaining the victim’s IdP password, which
can be accomplished by installing malicious software on the
target user’s device, spying on the network, or employing
phishing techniques. Furthermore, the attacker can get control
of an IdP account by hijacking the IdP session cookie straight
from the browser, sniffing it when it is delivered across an
unsecured network, employing malicious software, or relying
on XSS attacks.

B. PRIVACY THREATS
1) USER DATA LEAKAGE
This threat is triggered by privileged entities (IdPs and RPs)
who share users’ Personally Identifiable Information (PII)
with third parties without their awareness. The IdPs and
RPs often don’t give end-users the resources they need to
understand how their PII is shared or distributed. Even though
IdPs and RPs are reliable agents, adversaries may still have
varying degrees of access to their infrastructure. Therefore,
if sensitive data is transferred through non-secure communi-
cationwithout the appropriate encryption, PII can be retrieved
from these infrastructures.

2) USER TRACKING
IdPs can track and correlate end-user activity across many
apps, services, and resources, allowing them to obtain
detailed information about user behaviour, habits and inter-
ests. The subject identifier attribute in the id token uniquely
identifies the end-user, allowing the IdP to link data about

which RPs the user accesses. Furthermore, the IdP may
monitor end users’ movements over time, routines, and rela-
tionships with others via their devices, mainly utilizing data
from cell towers, GPS satellites, location logs from various
applications, Wi-Fi history, IP addresses, etc.

C. ADVERSARY MODEL
To better assess the security of the proposed scheme, we apply
the widely used Dolev-Yao (DY) threat model [36]. In this
model, an attacker has complete control over the network
and can intercept, modify, analyse, and/or delete messages
sent over public channels (if he knows the required keys).
Furthermore, the adversary can guess a user’s identity or
password, but not both of them simultaneously. He can also
steal a legitimate user’s device and its stored values and
attempt various attacks, such as impersonation, man-in-the-
middle, replay attacks, etc.

V. PROPOSED SYSTEM
This section begins by examining the network model uti-
lized in our proposed system. Next, it presents the notation
and assumptions that must be taken into account within our
system. Finally, a comprehensive explanation of the system
model for our proposed scheme is provided following the
most commonly used OIDC flow known as the authorization
code flow. Additionally, we outline the suggested modifica-
tions to be made in the OIDC core specification and its client
registration extension.

A. NETWORK MODEL
TheNetworkmodel of our proposed Blockchain-basedOIDC
system is shown in Fig. 3. As with the standard OIDC proto-
col, our system revolves around three key entities: the user,
the RP, and the IdP. The RP and IdP also act as Ethereum
nodes in the Blockchain network, where the IdP assumes
ownership of the smart contract responsible for generating
non-fungible tokens. The process typically begins with the
user attempting to access the resources of an RP that requires
authentication. The IdP serves as the trusted intermediary
responsible for authenticating the user and providing identity
information to the RP. Therefore to authenticate the user, the
RP initiates a request to the IdP to get the user’s consent to
access their identity information on the IdP by redirecting
the user browser to the IdP. It is important to note that,
in the OIDC specification, the authentication request should
be transmitted securely via TLS. However, due to the incor-
rect implementation of OIDC and mistakes made by RP
developers [32], this request is transmitted over an insecure
channel. Thus, an attacker can intercept such a request and
uses a malicious RP to generate a manipulated similar request
with legitimate variables to gain a valid access token from the
IdP. To mitigate this security concern, we use Blockchain to
verify the authenticity of the RP sending this request using
the smart contract. The user then is presented with a login
page provided by the IdP where they can enter their creden-
tials. Upon successful authentication, the IdP generates an

VOLUME 11, 2023 67667

B. Yousra et al.: Novel Secure and Privacy-Preserving Model for OpenID Connect Based on Blockchain

authorization grant (i.e. a code or an access token depending
on the OIDC flow used) and then redirects the user browser
back to the RP through a series of HTTP-based interactions,
typically utilizing redirects. This kind of communication
is susceptible to attacks such as replay, man-in-the-middle,
impersonation, fake token manufacturing, sniffing, phishing,
etc., [10].

FIGURE 3. Network model of the Blockchain-based OIDC system.

Therefore, to secure these tokens and ensure the authen-
ticity of the entity receiving these tokens, we use the smart
contract to generate NFTs equivalent to each token, which are
then transmitted securely over the blockchain to the attended
RP. The RP can then use this code or token to make token
requests to the IdP to obtain an ID token and access token.
The ID token contains the user’s identity information, while
the access token allows the RP to access protected resources
on behalf of the user. The IdP typically responds to the RP’s
token request in the OIDC protocol by using HTTP-based
communication, which is not secure. As in the previous step,
our system ensures the validity and authenticity of the entity
sending the token request. Then, the IdP creates the access
token and ID token and their equivalent NFTs. Next, the IdP
transmits only the access token over HTTP/HTTPS channel
and transfers both NFTs to the RP over the blockchain. This
will ensure that the Id token is only used by the legitimate
RP. Depending on the scope, the RP may still need additional
identity information to authenticate the user. In this case, the
RP uses the access token to send a user-claims request to
the IdP. Based on the same process, our system verifies the
authenticity of the RP sending this request before responding
with the user’s information.

B. NOTATION AND ASSUMPTIONS
Within our system, we assume that both identity providers
(IdPs) and relying parties (RPs) are trustworthy entities with
no malicious intent. This implies that the IdP only sends
valid and correct tokens, whereas the RP only registers

redirect_uris linked to its domain and receives valid signed
tokens from the approved IdP. Furthermore, we assume that
all tokens are of the JSON Web Token (JWT) format and
have not yet expired. The end-user’s identity is classified as
Personally Identifiable Information (PII), as it encompasses
a set of attributes (claims) used to identify the user, such as
name, surname, email address, phone number, photo, etc.

TABLE 2. Description of different notations used in our blockchain-based
OIDC system.

In our system, each IdP owns an ERC-721 smart contract,
referred to as Contract_IdP, and is the only entity able to
create new ERC-721 tokens. Each ERC-721 token (ErcTK)
is identified with a unique identifier, referred to tokenId, and
some metadata. The metadata associated with an ErcTK of
our system is the base64url code of a JWT. To associate

67668 VOLUME 11, 2023

B. Yousra et al.: Novel Secure and Privacy-Preserving Model for OpenID Connect Based on Blockchain

a token with its metadata, we use the tokenURI(tokenId)
method of the ERC-721 metadata extension, which returns
the URI token metadata. Furthermore, a URI is used to
uniquely identify the end-user’s claims, referred to as the
URIclaim. When an RP requests a specific URIclaim from
the IdP, it is expected that the RP has already confirmed the
owner of such claims. We also assume that each RP has a pair
of keys, a public key and a private key, used to conduct trans-
actions on the Ethereum blockchain. The address Ethereum of
an RP is denoted as EthRP. Table 2 summarizes the notations
used in our system.

C. BLOCKCHAIN-BASED OIDC SYSTEM DESIGN
The proposed solution aims to enhance security and
user privacy-preserving in OIDC systems incorporating the
Ethereum blockchain and NFTs. This approach ensures the
integrity, availability, and confidentiality of OIDC security
parameters and restricts their access to authorized entities
through a robust verification process. Our system is divided
into three phases; the RP registration on the IdP, the end-user
authentication on the IdP, and the end-user U authentication
on the RP. The proposed system model is shown in Fig. 4,
illustrating the various components and their interactions
within the system.

1) RP REGISTRATION ON THE IdP
To register a new client (i.e. RP) with the IdP, the client initi-
ates a registration request to the IdP. This request includes RP
metadata (RP_metadata) that the client chooses to provide for
itself during the registration process. Upon receiving a valid
registration request, the IdP prepares a response containing
a newly-created client identifier (client_id) and, optionally, a
(client_secret), along with all the registered data about this
client. Our solution proposes adding a required parameter
called ‘‘client_add’’ to the IdP registration response. This
parameter must take as value the client’s Ethereum address
(EthRP). Its value is required in the following steps to verify
the ownership of the client_id. Next, the IdP generates an
ERC-721 token where its id (tokenId) matches the value of
the client_id parameter, and its metadata (TKmetadata) sets
equal to the base64url encoding of the registration response,
which is of a JSON data type. Finally, the IdP sends his
response to the client over HTTP/HTTPS channel and trans-
mits the created ErcTK token to the client’s Ethereum address
EthRP over the blockchain network using the transferFrom()
method of the ERC-721 smart contract.

2) END-USER AUTHENTICATION ON THE IdP
When an end-user (U) visits a client application that requires
his authentication, the client sends an authentication request
to the IdP. In this step, we propose adding the parame-
ter client_add as a required parameter in the authentication
request. This addition will enable the IdP to verify the authen-
ticity of the client who sent this request by executing the
ownerOf() method with the client_id value obtained in the
request as input. If the returned address matches the EthRP

Algorithm 1 RP Registration on the Idp
Input: RegRequ.
Output: RegResp, ErcTK.

1. RP chooses its RP_metadata
2. RP generates a RegRequ contains RP_metadata
3. RP sends the RegRequ to IdP
4. IdP creates {client_id, client_secret}
5. IdP generates a RegResp containing: {client_id,
client_secret, client_add, RP_metadata}
6. IdP creates ErcTK where: tokenId ← client_id and
TKmetadata← based64url{RegResp}.
7. IdP sends RegResp to the RP and ErcTK to the EthRP

provided in the authentication request’s client_add parameter
and all the other parameters are validated, the IdP authenti-
cates the end-user and obtains his consent for this client. Next,
the IdP generates an authorization code and creates an ERC-
721 token equivalent to this code. Then, the IdP redirects the
end-user with this code to the client over HTTP/HTTPS chan-
nel and transmits the created ErcTK’ token to the EthRP over
the blockchain network using the transferFrom() method. The
authorization code is a unique parameter with a short lifetime
(10 minutes maximum), which neither OAuth2.0 nor OIDC
specified its type. In our system, we use JWT as the type of
code.

Algorithm 2 End-User Authentication on the IdP
Input: AuthRequ.
Output: AC, ErcTK’.

1. RP generates an AuthRequ containing {client_id,
client_add, redirect_uri, scope, response_type, state}
2. RP sends AuthRequ to the IdP to authenticate U
3. IdP verifies the ownership of the request using the
ownerOf() method ownerOf(client_id) =? client_add.
4. IdP verifies all other parameters according to OIDC spec-
ification
5. IdP validates AuthRequ
6. IdP authenticates U if he is not already authenticated.
7. IdP obtains the U’s consent for the RP
8. IdP generates AC where: { iss ← Contract_IdP, sub ←
EthRP, aud ← Contract_IdP, jti, exp ≤ 10min}
9. IdP creates ErcTK’ where: {tokenId ← jti and
TKmetadata← based64url{AC}.
10. IdP sends AC to the RP and ErcTK’ to the EthRP

3) END-USER AUTHENTICATION ON THE RP
Upon receiving an authorization code (AC), the client can
use this code to send a token request (TkRequ) to the
IdP. The IdP first(1) verifies who generates this code by
examining if the ‘‘iss’’ claim value of the AC matches the
Contract_IdP, (2) verifies if the ‘‘aud’’ claim value matches
the Contract_IdP, (3) verifies if the ownership of the code

VOLUME 11, 2023 67669

B. Yousra et al.: Novel Secure and Privacy-Preserving Model for OpenID Connect Based on Blockchain

is the legitimate client or not using the ownerOf() method
which takes as input the ‘‘jti’’ claim of the AC, and checks
whether the returned address matches the EthRP included
in ‘‘sub’’ claim of the AC, and finally (4) verifies if the
returned metadata of the tokenURI() method corresponds
to the base64url code of AC JWT value. Moreover, the
IdP verifies the redirect_uri parameter and validates the
TkRequ request. Upon successful validation, the IdP cre-
ates an Id token (IdTK), an access token (AccTK), and
two ERC-721 tokens (ErcTk’’) and (ErcTkÂ◦), equivalent to
the IdTK and AccTK, respectively. Next, the IdP transfers
only the AccTK to the client over HTTP/HTTPS channel and
the created ErcTk’’ and ErcTkÂ◦ tokens to the EthRP over
the blockchain network. The RP can get the Id token (e.i.
of JWT form) by encoding the string output of the tokenURI()
method of the received ErcTk’’ to the JSON form. If the client
needs additional claims to authenticate the end-user, it sends
a request ClRequ to the IdP with the AccTK. Next, the IdP
validates this token by examining (1) if the ‘‘iss’’ claim value
matches the Contract_IdP, (2) if the URIclaim included in the
‘‘aud’’ claim corresponds to the URI of the end-user claims,
(3) if the ownership of the token is the legitimate client or
not using the ownerOf() method with the ‘‘jti’’ claim of the
AccTK as input, and verifies whether the returned address
corresponds to the EthRP given in theAccTK’s sub claim, and
finally (4) verifies if the returned metadata of the tokenURI()
method corresponds to the base64url code of AccTk value.
If the token is successfully validated, the IdP responds with
end-user claims.

VI. PROOF OF CONCEPT AND EVALUATION
A. PROOF OF CONCEPT
In this section, we provide a proof of concept for our proposed
blockchain-based OIDC solution. We initially developed an
ERC-721 smart contract in Solidity, the primary program-
ming language in Ethereum, that contains all the methods
used in our system (specified in Table 1). Then, we com-
pile it using one of the most commonly used development
environments for smart contracts on Ethereum, Remix IDE.
Next, we employed Ganache, a local personal blockchain
serving as our web3 provider and the environment where to
deploy our smart contract and run our tests. Ganache provides
pre-funded accounts, each equipped with 100 Ether. From
these accounts, we selected two: one representing the IdP
and serving as the ERC-721 contract owner, while the other
representing the RP. Then, we adjusted the gas limit and
gas price within the Ganache network to match their current
values of 30M and 54 gwei, respectively. Fig. 5 (a) depicts
the account balance associated with the IdP, which takes
0 × 906. . .F1919 as its address, and Fig. 5 (b) illustrates the
transaction log where the IdP calls the constructor to deploy
the smart contract.

Moreover, we have used an educational sandbox for web3,
including drag-and-drop programming and open-source
building blocks, called ETH.build, to set up a prototype of the

Algorithm 3 End-User Authentication on the RP
Input: TkReq, ClRequ.
Output: AccTK, IdTk, ErcTK", ErcTKÂ◦.

1. RP generates TkRequ containing {AC, redirect_uri’}
2. RP sends TkReq to the IdP
3. IdP verifies iss =? Contract_IdP
4. IdP verifies aud =? Contract_IdP
5. IdP verifies ownerOf(jti) =? EthRP included in the sub
6. IdP verifies tokenURI(jti) =? based64url{AC}
7. IdP verifies redirect_uri’ =? redirect_uri
8. IdP validates TkRequ
9. IdP creates AccTK and IdTk where AccTk: {iss′ ←
Contract_IdP, sub′ ← EthRP, aud ′ ← URIchaim, jti’,
exp’ } and IdTK: {iss′′ ← Contract_IdP, sub′′ ← EthRP,
aud ′′← client_id , jti’’, exp’’}
10. IdP creates ErcTK" and ErcTKÂ◦ where ErcTK":
{tokenId ← jti′′} and TKmetadata ← based64url{IdTK }}
and ErcTKÂ◦: {tokenId ← jti′ and TKmetadata ←
based64url{AccTK }
11. IdP sends AccTK to the RP and {ErcTK", ErcTKÂ◦} to
the EthRP
12. RP generates a ClRequ containing the AccTK
13. RP sends ClRequ to the IdP
14. IdP verifies iss’ =? Contract_IdP
15. IdP verifies aud’ =? URIclaim
16. IdP verifies ownerOf(jti’) =? EthRP included in sub’
17. IdP verifies tokenURI(jti’) =? based64url{AccTK}
18. IdP validates AccTK
19. IdP sends U’s claims to the RP

proposed system and run our tests. In the ETH.build sandbox,
we have used Ganache as the Ethereum blockchain where we
run out our tests. We have connected the ABI of our compiled
ERC-721 smart contract, the Ganache blockchain, and the
IdP address as the inputs of the contract component. Then,
we will see all the functions used in the smart contract pop
out as outputs. Furthermore, we have used a JSONweb token
(JWT) with its different attributes to test the process of trans-
ferring the security parameters of OIDC, which are of type
JWT, on the Ethereum network.We have used the _safeMint()
method to safely mint a new token. The tokenId input takes
as a value the jti attribute of the JWT, the _data input takes
as a value the byte32 code of the JWT, and the to address
is the contract owner (i.e. IdP address). Next, we transfer
this token from the IdP address to the RP address on the
Ethereum network, using the transferFrom() method. We can
use the approve(), ownerOf(), and tokenURI() methods to,
respectively, approve the token to another address, verify the
token’s owner, and obtain the metadata URI of the token.

B. COST EVALUATION
Our proposed system requires the invocation of smart con-
tract functions, which generate a computational effort for
which a fee is required. Gas is the fee necessary to complete

67670 VOLUME 11, 2023

B. Yousra et al.: Novel Secure and Privacy-Preserving Model for OpenID Connect Based on Blockchain

FIGURE 4. The proposed blockchain-based OpenID Connect system model.

VOLUME 11, 2023 67671

B. Yousra et al.: Novel Secure and Privacy-Preserving Model for OpenID Connect Based on Blockchain

FIGURE 5. Remix IDE screen of our deployed ERC-721 smart contract.

TABLE 3. Cost of the operations used on our proposed blockchain-based
OIDC system.

an Ethereum transaction successfully. Since each transac-
tion requires computational resources to execute, transactions
consume an amount of Gas. The ether (ETH), the native
currency of Ethereum, is used to pay the gas fees. Gas costs
are expressed in (gwei), which is a denomination of (ETH),
and one (gwei) equals 10-9 (ETH). The Ether consumption
can be calculated as Ether_cost = (Gas_cost × Gas_price
per unit) × 10−9. According to [37], the Ethereum average
gas price on May 19, 2023, is 53.95 (gwei). Table 3 shows
the gas cost of each operation used in our system and the
corresponding Ether cost, starting from the contract deploy-
ment in the Ganache Ethereum network to the destruction of
a token. Furthermore, the functions tokenURI and ownerOf
are declared as view functions, which only read the state of
the blockchain without doing any modifications. Therefore,
they afford no cost or computational effort.

C. PERFORMANCE EVALUATION
In this subsection, we evaluate the performance of our
proposed system in terms of time and Bytes needed to authen-
ticate a user. However, the transaction speed, denoted as
the number of transactions per second within a blockchain
network, depends on various factors such as block time,
gas limit, and transaction gas, which refers respectively to
the number of seconds to wait between mining new blocks
and transactions, the maximum amount of gas available to
each transaction and block and the gas fees required to
successfully conduct a transaction or execute a contract on
the blockchain. The transaction speed is calculated using
the following formula [22]: Transaction speed = Block gas
limit ÷ (Transaction gas × Block time). To ensure reliable
outcomes, we set the block gas limit and the block time at
their current values (May 19, 2022). According to [38] and
[39], the Ethereum block time is 12.15 seconds, and the block
gas limit is 29,999,954 gas. Table 4 presents the number
of transactions processed per second, the time required to
process a single transaction, and the transaction TX data size
for the various functions employed in our system.

TABLE 4. Transaction speed and process time.

When authenticating a user using the OIDC authoriza-
tion code flow, typically, the RP sends two requests. The
first is the authentication request to get the authorization
code, and the second is the token request to get the Id and
access tokens. To calculate the approximate time between
the RP request and the IdP Response in these two phases,
we have used the Google API console to establish our test
in the same infrastructure as Google. First, we created a
web application (i.e. RP) in the Google API console that
can interact with Google’s APIs [40]. Next, we configured
our application to make requests to Google Gmail API
using Postman. This means that we set up the callback
URI (i.e. redirec_uri) of our application to the Postman
domain (https://oauth.pstmn.io/v1/browser-callback) from
which we can send API requests to Gmail API. Upon
a valid HTTPS GET request to the Google authorization
endpoint (https://accounts.google.com/o/oauth2/v2/auth),
Google responds with a one-time authorization code in
1158ms, taking into consideration that the average round-trip
time to and from Google Cloud is 41 ms. Next, we used the
received code to send an HTTPS POST request to the Google
token endpoint (https://oauth2.googleapis.com/token). Upon
a successful response to this request, Google sends back

67672 VOLUME 11, 2023

B. Yousra et al.: Novel Secure and Privacy-Preserving Model for OpenID Connect Based on Blockchain

an Id token and access token in 329 ms. In our proposed
blockchain-based OIDC system, Table 4 shows that time
needed to create and send an ERC-721 token over the
blockchain network is approximately 50 ms. This proves that
in all OIDC authentication phases, our system will not affect
users’ experience and the performance of the existing OIDC-
based systems.

VII. SECURITY ANALYSIS OF THE PROPOSED SYSTEM
In this section, we analyse the security of our proposed system
formally using AVISPA and scyther tools and informally by
discussing its different security aspects.

A. FORMAL SECURITY ANALYSIS
To ascertain the security of our scheme, we present in
this subsection the simulation of the proposed model using
the most widely used and accepted tools for formal secu-
rity verification and analysis of protocols in recent years,
AVISPA [41] and Scyther [42], which are both based on the
adversary model Dolev-Yao. The Automated Validation of
Internet Security Protocols and Applications (AVISPA) tool
is a modern push-button tool used to specify protocols and
their security properties by using a modular and expressive,
role-based, formal language called the High-Level Protocol
Specification Language (HLPSL) [43]. The robustness and
flexibility of AVISPA are due to its modular approach where
the back-end tools are independent of the specification lan-
guage, giving third parties the possibility to develop their
back-ends as long as they follow the intermediate format
[44]. The HLPSL2IF tool translates HLPSL specifications
into an intermediate format (IF), a lower-level language at
a lower abstraction level. AVISPA uses the IF specification
format as input to other verification tools (back-ends) that
analyse the same protocol in different ways [45]. Presently,
AVISPA supports four back-ends: On-the-flyModel-Checker
(OFMC) [46], Constraint-Logic-based Attack Searcher
(CL-AtSe) [47], SAT-based Model-Checker (SATMC) [48],
and Tree Automata based on Automatic Approximations for
the Analysis of Security Protocols (TA4SP) [49].

To verify the security of a protocol using AVISPA needs
to be described in the HLPSL language. This means defin-
ing the roles and their composition for representing the
protocol. Then, specify the execution environment and the
security properties that should be satisfied by the pro-
tocol. AVISPA verifies protocols’ safety based on three
types of security goals: confidentiality (secrecy_of), strong
authentication (authentication_on), and weak authentication
(weak_authentication_on). In the HLPSL specification of our
proposed system, we defined two basic roles: role_IdP and
role_RP. Then, we specified two goals for authentication and
two goals for tokens’ secrecy in the goal section. The HLPSL
description of our system is presented in Appendix A. In
general, if the analysis result of the two models OFMC and
CL-AtSe is SAFE, the protocol can be considered secure
against replay and MITM attacks. The simulation summaries

of OFMC andCL-AtSe are presented in Fig. 6 and 7 and show
that our proposed protocol is SAFE. The translation time in
CL-AtSe is 0.01 seconds, and the search time in OFMC is
0.02 seconds for visiting 16 nodes with a depth of 4 piles.

FIGURE 6. AVISPA verification result with OFMC backend.

FIGURE 7. AVISPA verification result using CL-AtSe backend.

For a more in-depth analysis, we have re-analyse the
security of our proposed system using the scyther tool
since it provides additional features not offered by AVISPA
[50]. Scyther guarantees protocols’ security verification
for a bounded/ unbounded number of sessions, provides
multi-protocol analysis by verifying the concatenation of
their description files and generates attack graphs when
attacks are found [42]. Scyther takes as input a formal

VOLUME 11, 2023 67673

B. Yousra et al.: Novel Secure and Privacy-Preserving Model for OpenID Connect Based on Blockchain

description of the security protocol to be analyzed, which
is specified in the form of a security protocol description
language (SPDL) file. The SPDL language describes the
protocol’s roles which are defined by a sequence of declara-
tions, sending and receiving events, claim events and security
properties that the protocol is expected to satisfy. In the SPDL
file of our blockchain based-OIDC system, we have defined
two roles: the IdP and the RP, in which we have defined
claims to verify confidentiality (Secrecy) and other authen-
tication properties such as aliveness (Alive), non-injective
synchronisation (Nisynch), non-injective agreement (Nia-
gree) andweak agreement (Weakagree). Appendix B presents
the SPDL description of our proposed system. As illustrated
in Fig. 8, the Scyther tool finds no attacks for our proposed
system.

FIGURE 8. Results of Scyther’s evaluation of the proposed system.

B. INFORMAL SECURITY ANALYSIS
1) RESISTANCE TO REPLAY ATTACKS
A replay attack allows an attacker to intercept and record
a legitimate data transmission, such as tokens, and then
replay that data to gain unauthorized access to restricted
resources. Let’s assume that an attacker obtains one of the
OIDC security parameters (i.e. access token, authorization
code, redirect_uri, and client_id). Our proposed blockchain-
based OIDC system ensures authenticity by verifying not
only the parameters contained in a request but also the iden-
tity of the sender of this request using the smart contract’s
OwnerOf() function. For example, if an attacker gets a legit-
imate access token and attempts to re-transmit it to obtain
the user authentication claim or an id_token, the system
would not approve this request because the ownerOf() output
address of this token would not match the address of the
attacker.

2) RESISTANCE TO IMPERSONATION ATTACKS
An attacker can impersonate legitimate entities and access
protected resources if he obtains one of the OIDC-sensitive
parameters transmitted over the authentication flows. Our
system prevents this attack due to our robust verification
process. If the attacker attempts to impersonate the user and
sends a request to access restricted resources using a stolen
freshly generated token, his request will be rejected because
the attacker’s Ethereum address will not match the address
contained in the ‘‘sub’’ attribute of the JWT nor the output
address of the ownerOf() function.

3) RESISTANCE TO FAKE TOKEN MANUFACTURER ATTACKS
A fake token manufacturer attack allows an attacker to cre-
ate counterfeit tokens that look like legitimate tokens and
distribute them to gain unauthorized access to RP resources
and the user’s sensitive information. Our system prevents
this attack since we create for each token generated by
the IdP an associated ERC-721 token transmitted over the
blockchain network, which enables the RP to verify if this
token is generated from the legitimate IdP address by a simple
check on the public ledger and if the returned string of the
tokenURI() function is equal to the base64url representation
of the received token.

4) INTEGRITY AND AVAILABILITY
Our proposed system is based on the Ethereum blockchain,
which maintains integrity and availability through crypto-
graphic hash functions, digital signatures, consensus mecha-
nisms, and a distributed network of nodes. In the Ethereum
network, each transaction is hashed using the keccak-256
hash function, which is considered highly secure, and then
signed with the private key using a digital signature algorithm
called Elliptic Curve Digital Signature Algorithm (ECDSA).
Finally, the transaction is broadcast to the entire network for
miners to verify and approve. Before adding transactions to
the network, miner nodes have to agree on the validity and the
correctness of those transactions using a consensus protocol,
such as Proof of Work (PoW), Proof of Stake (PoS), Proof of
Authority (PoA), etc. This makes it challenging for attackers
to gain network control and tamper with the transactions.
Moreover, our system ensures availability where authorized
users can access the network and interact with it at any time
without interruption. Due to the blockchain’s decentralized
and distributed architecture, nodes have a simultaneous copy
of the ledger andwork together to validate transactions, create
new blocks, andmaintain the integrity of the network. If some
nodes go offline, the transaction processing and the network
can continue ensuring system availability.

5) REVOCATION AND DELEGATION
Our proposed system allows access revocation from an RP
by using the ERC-721 contract transfertFrom() function and
returning the token to the IdP. If the RP has already used
the JWT and this token has been associated with a session

67674 VOLUME 11, 2023

B. Yousra et al.: Novel Secure and Privacy-Preserving Model for OpenID Connect Based on Blockchain

TABLE 5. Comparison of the proposed system with other existing systems.

identifier, the verification process will fail if the RP tries to
use it after the revocation because the output of the ownerOf()
function will not match the RP Ethereum address EthRP
given in the JWT ‘‘sub’’ attribute. Delegation property is also
guaranteed in our system, enabling the user to log in to his
RP account using another device that does not have access to
the EthRP address and delegate tokens to another Ethereum
address using the approve() function.

6) ANONYMITY AND UNLINKABILITY
In the traditional OIDC protocol, IdP and RPs agents can
track users’ activities and collect data about their behaviour
and interests. The IdP can associate data about which RPs
the user accesses using the ‘‘sub’’ attribute included in the
id token. Our proposed system effectively addresses this
concern by substituting the user’s real identity in the ‘‘sub’’
attribute of a generated id token with the public address
EthRP. Moreover, an Ethereum account consists of a pair
of public and private cryptographic keys. The public key is
generated from the private key using the ECDS algorithm,
and the public address of an Ethereum account is the last
20 bytes of the Keccak-256 hash of the public key. There-
fore, users can generate multiple addresses for different RPs,
allowing a single user to possess distinct EthRP addresses
for each RP he attempts to sign-up with. This property also
prevents colluding RPs from linking users’ accounts with a
specific individual since the Id token does not contain any
identifying information about the user’s real identity. Thus,
our system ensures the unlinkability of the IdP and colluding
RPs, thereby safeguarding user privacy.

VIII. COMPARATIVE ANALYSIS
In this section, we compare our proposed Blockchain-based
OIDC system with similar authentication schemes in terms
of security and privacy-preserving in order to understand the
strengths and weaknesses of each one. Table 5 presents the
results of our evaluation of the seven schemes, including
our work, based on their effectiveness in ensuring integrity,
system availability, users anonymity, RP and IdP unlikabil-
ity, Real-time assessment, resistance to fake manufacturer
attacks, replay token attacks and impersonation attacks,

access revocation and delegation. Symbolic notations are
employed in the table, where × indicates that the scheme
does not provide the corresponding property, ✓ denotes the
opposite, and ≈ indicates that the property is partly ensured
by this scheme or under certain conditions.

The comparison shows that all schemes ensure data
integrity using a secure communication channel over TLS
protocol or relying on cryptographic techniques such as
one-way hash functions. In addition, all schemes guarantee
system availability except PESTO, which is vulnerable to
Denial of Service (DoS) attacks since a single offline server
can lead to a shutdown of the entire system. Our work and
DAMFA are the only schemes ensuring real-time assessment
due to the public decentralized and distributed architecture
of the Ethereum blockchain. Moreover, all schemes are safe
against fake manufacturer attacks, except OIDC and EOIDC,
where tokens have no inherent protection against modifi-
cation. As for impersonation and token replay attacks, the
schemes EOIDC, PESTO, DAMFA and our work demon-
strate resilience against these threats. In terms of anonymity
and unlinkability, the schemes EL PASSO, DAMFA and our
work are the only ones that enable users to interact anony-
mously with the system while preventing IdPs from tracking
their activities and RPs from colluding. Although the PRIMA
system also provides IdP unlinkability, it still shares personal
information with RPs, which could enable colluding RPs to
link several accounts to a single user. Finally, our proposed
scheme and PRIMA are the only systems that provide access
revocation and delegation. The comparison results showed
that our proposed Blockchain-based OIDC system provides
all nine security and privacy-preserving properties, demon-
strating its high security and efficiency.

IX. CONCLUSION
In this paper, we proposed an efficient newmodel for OpenID
connect protocol based on blockchain technology to ensure
data security, integrity and availability and protect users’
privacy. Our proposed system used the Ethereum blockchain
and non-fungible token NFT standard to securely record
OIDC critical parameters, namely the access token, id token,
authorization code, and client credentials in the blockchain

VOLUME 11, 2023 67675

B. Yousra et al.: Novel Secure and Privacy-Preserving Model for OpenID Connect Based on Blockchain

network, verify the authenticity of entities asking for legiti-
mate data and deal with validation errors. Furthermore, our
system prevents IdPs from profiling users and protects them
from colluding RPs by using the pseudonymity property of
blockchain and modifying the attributes of the exchanged
JWT tokens. We also provided a proof-of-concept, a cost
and performance evaluation of the proposed system and ana-
lyzed its security formally using AVISPA and scyther tools
and informally against different possible attacks. Moreover,
we compared our proposed blockchain-based OIDC sys-
tem against other existing similar schemes. Our system has
proved that it’s highly resilient against several attacks, such
as replay, impersonation, fake token manufacturer, Man-In-
The-Middle, etc. providing strong privacy guarantees while
maintaining a fast and efficient authentication process, but it
still has some limitations. Firstly, the system is still vulnerable
to compromised IdP accounts threat, but it provides users
with an access revocationmechanism in case they suspect that
their accounts have been taken over. Secondly, IdPs must be
online and available to generate the required OIDC tokens
to authenticate users on RPs. To address these challenges
in future work, we believe that a decentralized anonymous
multifactor authentication mechanism with indirect commu-
nication between the IdP and RP would significantly enhance
the security and privacy of the field.

APPENDIX A
THE PROPOSED SYSTEM DESCRIPTION IN HLPSL
role role_RP (A,B:agent, Ka,Kb:public_key, SND,RCV:channel(dy))
played_by A
def=

local
State:nat,
AuthReq:text,
Na,Nb,Nt:text,
Ts:text,
H:hash_func,
CodeTk,ERCTk:text

init
State:= 0
transition
0. State=0 /\ RCV(start) =|>

State’:=2 /\ Na’:=new() /\ SND({A.Na’}_Kb)

2. State=2 /\ RCV({B.Na.Nb’}_Ka) =|>
State’:=4 /\ AuthReq’:=new() /\ SND({Nb’.AuthReq’}_Kb)

/\ request(A,B,auth_1,Na)
/\ witness(A,B,auth_2,Nb’)

4. State=4 /\ RCV({Na.CodeTk’.ERCTk’.Ts’.Nt’.
H(ERCTk’.Ts’.Nt’).{H(ERCTk’.Ts’.Nt’)}_inv(Kb)}_Ka) =|>
State’:=6

end role

role role_IdP (A,B:agent, Ka,Kb:public_key, H:hash_func,
SND,RCV:channel(dy)) played_by B
def=

local
State:nat,
AuthReq:text,
Ts:text,
Na,Nb,Nt:text,
CodeTk,ERCTk:text

init
State:= 1

transition
1. State=1 /\ RCV({A.Na’}_Kb) =|>

State’:=3 /\ Nb’:=new() /\ SND({B.Na’.Nb’}_Ka)
/\ witness(B,A,auth_1,Na’)

3. State=3 /\ RCV({Nb.AuthReq’}_Kb) =|>
State’:=5 /\ CodeTk’:=new() /\ ERCTk’:=new() /\ Nt’:=new()
/\ Ts’:=new() /\ SND({Na.CodeTk’.ERCTk’.Ts’.Nt’.

H(ERCTk’.Ts’.Nt’).{H(ERCTk’.Ts’.Nt’)}_inv(Kb)}_Ka)
/\ request(B,A,auth_2,Nb)
/\ secret(CodeTk’,sec_1,{A,B})
/\ secret(ERCTk’,sec_2,{A,B})

end role

role session(A,B:agent,Ka,Kb:public_key,H:hash_func)
def=

local
SND2,RCV2,SND1,RCV1:channel(dy)

composition
role_RP(A,B,Ka,Kb,SND1,RCV1) /\ role_IdP(B,A,Ka,Kb,H,SND2,RCV2)

end role

role environment()
def=

const
ka,kb:public_key,

authReq,ts:text,
h:hash_func,
code,ercTK:text,
sec_1,sec_2,auth_1,auth_2:protocol_id,
id_provider,rp:agent

intruder_knowledge = {rp,id_provider,ka,kb}
composition
session(rp,id_provider,ka,kb,h)

/\ session(rp,id_provider,ka,kb,h)
end role

goal
secrecy_of sec_1
secrecy_of sec_2
authentication_on auth_1
authentication_on auth_2

end goal

environment()

APPENDIX B
THE PROPOSED SYSTEM DESCRIPTION IN SPDL
usertype string;
usertype JWT;
usertype ERCToken;
usertype timestamp;
hashfunction H;

protocol blockchainOIDC(RP,IdP){

role RP {

fresh AuthReq: string;
fresh Na: Nonce;
var Nb: Nonce;
var Nt: Nonce;
var T: timestamp;
var codeTk: JWT;
var ERCtk: ERCToken;

send_1(RP,IdP,{Na,RP}pk(IdP));
recv_2(IdP,RP,{IdP,Na,Nb}pk(RP));
send_3(RP,IdP,{Nb, AuthReq}pk(IdP));
recv_4(IdP,RP,{Na,codeTk,ERCtk,T,Nt,
H(ERCtk,T,Nt),{H(ERCtk,T,Nt)}sk(IdP)}pk(RP));

claim_RP1(RP,Secret,codeTk);
claim_RP2(RP,Secret,ERCtk);
claim_RP3(RP,Alive);
claim_RP4(RP,Weakagree);
claim_RP5(RP,Niagree);
claim_RP6(RP,Nisynch);
}

role IdP{

var AuthReq: string;
var Na: Nonce;
fresh Nb: Nonce;
fresh Nt: Nonce;
fresh T: timestamp;
fresh codeTk: JWT;
fresh ERCtk: ERCToken;

recv_1(RP,IdP,{Na,RP}pk(IdP));
send_2(IdP,RP,{IdP,Na,Nb}pk(RP));
recv_3(RP,IdP,{Nb,AuthReq}pk(IdP));
send_4(IdP,RP,{Na,codeTk,ERCtk,T,Nt,
H(ERCtk,T,Nt),{H(ERCtk,T,Nt)}sk(IdP)}pk(RP));

claim_IdP1(IdP,Secret,codeTk);
claim_IdP2(IdP,Secret,ERCtk);
claim_IdP3(IdP,Alive);
claim_IdP4(IdP,Weakagree);
claim_IdP5(IdP,Niagree);
claim_IdP6(IdP,Nisynch);
}
}

ACKNOWLEDGMENT
The authors express their gratitude to the anonymous review-
ers and the associate editor for their valuable feedback on the
article, which greatly contributed to enhancing its quality and
presentation.

REFERENCES
[1] (2020). World Internet Users Statistics and 2020 World Population Stats.

[Online]. Available: https://www.internetworldstats.com/stats.htm

67676 VOLUME 11, 2023

B. Yousra et al.: Novel Secure and Privacy-Preserving Model for OpenID Connect Based on Blockchain

[2] S. Gaw and E. W. Felten, ‘‘Password management strategies for online
accounts,’’ in Proc. 2nd Symp. Usable Privacy Secur. (SOUPS), 2006,
pp. 44–55, doi: 10.1145/1143120.1143127.

[3] S. Hammann, R. Sasse, and D. Basin, ‘‘Privacy-preserving OpenID con-
nect,’’ in Proc. 15th ACM Asia Conf. Comput. Commun. Secur., Oct. 2020,
pp. 277–289, doi: 10.1145/3320269.3384724.

[4] D. Fett, R. Kuesters, and G. Schmitz, ‘‘The web SSO standard OpenID
connect: In-depth formal security analysis and security guidelines,’’ 2017,
arXiv:1704.08539.

[5] (2023). OpenID Market Share and Web Usage Statistics. SimilarTech.
[Online]. Available: https://www.similartech.com/technologies/openid

[6] M. Ghasemisharif, A. Ramesh, S. Checkoway, C. Kanich, and J. Polakis,
‘‘O single sign-off, where art thou? An empirical analysis of single sign-
on account hijacking and session management on the web,’’ in Proc. 27th
USENIX Secur. Symp. (USENIX Secur.) 2018, pp. 1475–1492. [Online].
Available: https://www.usenix.org/conference/usenixsecurity18/ presenta-
tion/ghasemisharif

[7] D. Fett, R. Kuesters, and G. Schmitz, ‘‘A comprehensive formal security
analysis of OAuth 2.0,’’ 2016, arXiv:1601.01229.

[8] Z. Zhang, M. Król, A. Sonnino, L. Zhang, and E. Rivière, ‘‘EL
PASSO: Privacy-preserving, asynchronous single sign-on,’’ 2020,
arXiv:2002.10289.

[9] C. Mainka, V. Mladenov, J. Schwenk, and T. Wich, ‘‘SoK: Single sign-
on security—An evaluation of openID connect, in Proc. IEEE Eur. Symp.
Secur. Privacy (EuroS&P), Jan. 2017, pp. 251–266.

[10] J. Navas and M. Beltrán, ‘‘Understanding and mitigating OpenID
connect threats,’’ Comput. Secur., vol. 84, pp. 1–16, Jul. 2019, doi:
10.1016/j.cose.2019.03.003.

[11] R. Weingärtner and C. M. Westphall, ‘‘A design towards personally
identifiable information control and awareness in OpenID connect iden-
tity providers,’’ in Proc. IEEE Int. Conf. Comput. Inf. Technol. (CIT),
Aug. 2017, pp. 37–46.

[12] N. Fotiou, I. Pittaras, V. A. Siris, S. Voulgaris, and G. C. Poly-
zos, ‘‘OAuth 2.0 authorization using blockchain-based tokens,’’ 2020,
arXiv:2001.10461.

[13] M. Schwartz andM.Machulak, Securing the Perimeter: Deploying Identity
and Access Management With Free Open Source Software. Berkeley, CA,
USA: Apress, 2018, pp. 151–203, doi: 10.1007/978-1-4842-2601-8.

[14] Final: OpenID Connect Dynamic Client Registration 1.0 Incorpo-
rating Errata Set 1. Accessed: Mar. 20, 2023. [Online]. Available:
https://openid.net/specs/openid-connect-registration-1_0.html

[15] J. Bradley, N. Sakimura, and M. B. Jones. JSON Web Token (JWT).
Accessed: Mar. 10, 2023. [Online]. Available: https://tools.ietf.org/
html/rfc7519

[16] S. S. Kushwaha, S. Joshi, D. Singh, M. Kaur, and H. Lee, ‘‘Sys-
tematic review of security vulnerabilities in Ethereum blockchain
smart contract,’’ IEEE Access, vol. 10, pp. 6605–6621, 2022, doi:
10.1109/ACCESS.2021.3140091.

[17] H. Guo and X. Yu, ‘‘A survey on blockchain technology and its security,’’
Blockchain, Res. Appl., vol. 3, no. 2, Jun. 2022, Art. no. 100067, doi:
10.1016/j.bcra.2022.100067.

[18] A. S. Rajasekaran, M. Azees, and F. Al-Turjman, ‘‘A comprehensive
survey on blockchain technology,’’ Sustain. Energy Technol. Assess-
ments, vol. 52, Aug. 2022, Art. no. 102039, doi: 10.1016/j.seta.2022.
102039.

[19] S. Paavolainen and C. Carr, ‘‘Security properties of light clients on the
Ethereum blockchain,’’ IEEE Access, vol. 8, pp. 124339–124358, 2020,
doi: 10.1109/ACCESS.2020.3006113.

[20] S. Hakak, W. Z. Khan, G. A. Gilkar, B. Assiri, M. Alazab, S. Bhattacharya,
and G. T. Reddy, ‘‘Recent advances in blockchain technology: A survey on
applications and challenges,’’ 2020, arXiv:2009.05718.

[21] V. Buterin. (2014). Ethereum Whitepaper. [Online]. Available:
https://ethereum.org/en/whitepaper/

[22] Introduction to Dapps. Accessed: Feb. 10, 2023. [Online]. Available:
https://ethereum.org/en/developers/docs/dapps/

[23] D.Mohan, L. Alwin, P. Neeraja, K. D. Lawrence, andV. Pathari, ‘‘A private
Ethereum blockchain implementation for secure data handling in Inter-
net of Medical Things,’’ J. Reliable Intell. Environments, vol. 8, no. 4,
pp. 379–396, Dec. 2022, doi: 10.1007/s40860-021-00153-2.

[24] Introduction to Smart Contracts. Accessed: Feb. 5, 2023. [Online]. Avail-
able: https://ethereum.org/en/developers/docs/smart-contracts/

[25] R. Zhang, R. Xue, and L. Liu, ‘‘Security and privacy on blockchain,’’ 2019,
arXiv:1903.07602.

[26] L. Chen, D. Moody, A. Regenscheid, A. Robinson, and K. Randall.
(Feb. 3, 2023). Recommendations for Discrete Logarithm-Based Cryp-
tography: Elliptic Curve Domain Parameters. [Online]. Available:
https://csrc.nist.gov/publications/detail/sp/800-186/final

[27] W. Entriken, D. Shirley, J. Evans, and N. Sachs. (Jan. 24, 2018). EIP-
721: ERC-721 Non-Fungible Token Standard. Ethereum Improvement
Proposals. [Online]. Available: https://eips.ethereum.org/EIPS/eip-721

[28] D. Fett, R. Küsters, and G. Schmitz, ‘‘SPRESSO,’’ in Proc. 22nd ACM
SIGSAC Conf. Comput. Commun. Secur., Oct. 2015, pp. 1358–1369, doi:
10.1145/2810103.2813726.

[29] R. Weingärtner and C. M. Westphall, ‘‘Enhancing privacy on identity
providers,’’ in Proc. 8th Int. Conf. Emerg. Secur. Inf., Syst. Technol.
(SECURWARE), 2014, pp. 1–7.

[30] M. R. Asghar, M. Backes, and M. Simeonovski, ‘‘PRIMA: Privacy-
preserving identity and access management at internet-scale,’’ in
Proc. IEEE Int. Conf. Commun. (ICC), May 2018, pp. 1–6, doi:
10.1109/ICC.2018.8422732.

[31] R. Deeptha and R. Mukesh, ‘‘Extending OpenID connect towards mission-
critical applications,’’ Cybern. Inf. Technol., vol. 18, no. 3, pp. 93–110,
Sep. 2018, doi: 10.2478/cait-2018-0041.

[32] W. Li, C. J. Mitchell, and T. Chen, ‘‘OAuthGuard,’’ in Proc. 5th ACM
Workshop Secur. Standardisation Res. Workshop, 2019, pp. 35–44, doi:
10.1145/3338500.3360331.

[33] W. Li and C. J. Mitchell, ‘‘User access privacy in OAuth 2.0 and OpenID
connect,’’ IEEE Eur. Symp. Secur. Privacy Workshops (EuroS&PW)
Sep. 2020, doi: 10.1109/EUROSPW51379.2020.00095. [Online]. Avail-
able: https://ieeexplore.ieee.org/document/9229747

[34] C. Baum, T. Frederiksen, J. Hesse, A. Lehmann, and A. Yanai,
‘‘PESTO: Proactively secure distributed single sign-on, or how to trust a
hacked server,’’ IEEE Eur. Symp. Secur. Privacy (EuroS&P) Sep. 2020,
pp. 587–606, doi: 10.1109/eurosp48549.2020.00044. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/9230400

[35] O.Mir, M. Roland, and R.Mayrhofer, ‘‘Decentralized, privacy-preserving,
single sign-on,’’ Secur. Commun. Netw., vol. 2022, pp. 1–18, Jan. 2022, doi:
10.1155/2022/9983995.

[36] D. Dolev and A. C. Yao, ‘‘On the security of public key protocols,’’ IEEE
Trans. Inf. Theory, vol. IT-29, no. 2, pp. 198–208, Mar. 1983.

[37] Ethereum Average Gas Price Chart|Etherscan. Ethereum (ETH)
Blockchain Explorer. Accessed: Feb. 11, 2023. [Online]. Available:
https://etherscan.io/chart/gasprice

[38] Ethereum Average Block Time Chart|Etherscan. Ethereum (ETH)
Blockchain Explorer. Accessed: Feb. 11, 2023. [Online]. Available:
https://etherscan.io/chart/blocktime

[39] Ethereum Average Gas Limit Chart|Etherscan. Ethereum (ETH)
Blockchain Explorer. Accessed: Feb. 11, 2023. [Online]. Available:
https://etherscan.io/chart/gaslimit

[40] OpenID Connect|Authentication. Google Developers. Accessed: Feb. 10,
2023. [Online]. Available: https://developers.google.com/identity/openid-
connect/openid-connect

[41] Y. Berguig, J. Laassiri, and S. Hanaoui, ‘‘Anonymous and
lightweight secure authentication protocol for mobile agent system,’’
J. Inf. Secur. Appl., vol. 63, Dec. 2021, Art. no. 103007, doi:
10.1016/j.jisa.2021.103007.

[42] C. J. F. Cremers, ‘‘The Scyther tool: Verification, falsification, and anal-
ysis of security protocols,’’ in Computer Aided Verification, vol. 5123.
Jul. 2008, pp. 414–418, doi: 10.1007/978-3-540-70545-1_38.

[43] A. Armando, D. Basin, Y. Boichut, Y. Chevalier, L. Compagna, J. Cuéllar,
P. H. Drielsma, P. C. Héam, O. Kouchnarenko, J. Mantovani, and S.Möder-
sheim, ‘‘The AVISPA tool for the automated validation of internet security
protocols and applications,’’ in Computer Aided Verification, vol. 3576.
2005, pp. 281–285, doi: 10.1007/11513988_27.

[44] S. Ziauddin and B. Martin, ‘‘Formal analysis of ISO/IEC 9798–2 authen-
tication standard using AVISPA,’’ in Proc. 8th Asia Joint Conf. Inf. Secur.,
Seoul, South Korea, Jul. 2013, pp. 108–114, doi: 10.1109/asiajcis.2013.25.

[45] A. R. R. Shaikh and S. Devane, ‘‘Formal verification of payment protocol
using AVISPA,’’ Int. J. Infonomics, vol. 3, no. 3, pp. 326–337, Sep. 2010,
doi: 10.20533/iji.1742.4712.2010.0035.

[46] D. Basin, S. Mödersheim, and L. Vigano, ‘‘OFMC: A symbolic model
checker for security protocols,’’ Int. J. Inf. Secur., vol. 4, no. 3, pp. 181–208,
Jun. 2005.

[47] M. Turuani, ‘‘The CL-Atse protocol analyser,’’ in Term Rewriting and
Applications (Lecture Notes in Computer Science), vol. 4098, F. Pfenning,
Ed. Berlin, Germany: Springer, doi: 10.1007/11805618_21.

VOLUME 11, 2023 67677

http://dx.doi.org/10.1145/1143120.1143127
http://dx.doi.org/10.1145/3320269.3384724
http://dx.doi.org/10.1016/j.cose.2019.03.003
http://dx.doi.org/10.1007/978-1-4842-2601-8
http://dx.doi.org/10.1109/ACCESS.2021.3140091
http://dx.doi.org/10.1016/j.bcra.2022.100067
http://dx.doi.org/10.1016/j.seta.2022.102039
http://dx.doi.org/10.1016/j.seta.2022.102039
http://dx.doi.org/10.1109/ACCESS.2020.3006113
http://dx.doi.org/10.1007/s40860-021-00153-2
http://dx.doi.org/10.1145/2810103.2813726
http://dx.doi.org/10.1109/ICC.2018.8422732
http://dx.doi.org/10.2478/cait-2018-0041
http://dx.doi.org/10.1145/3338500.3360331
http://dx.doi.org/10.1109/EUROSPW51379.2020.00095
http://dx.doi.org/10.1109/eurosp48549.2020.00044
http://dx.doi.org/10.1155/2022/9983995
http://dx.doi.org/10.1016/j.jisa.2021.103007
http://dx.doi.org/10.1007/978-3-540-70545-1_38
http://dx.doi.org/10.1007/11513988_27
http://dx.doi.org/10.1109/asiajcis.2013.25
http://dx.doi.org/10.20533/iji.1742.4712.2010.0035
http://dx.doi.org/10.1007/11805618_21

B. Yousra et al.: Novel Secure and Privacy-Preserving Model for OpenID Connect Based on Blockchain

[48] A. Armando and L. Compagna, ‘‘SATMC: A SAT-based model checker
for security protocols,’’ in Logics in Artificial Intelligence (Lecture Notes
in Computer Science), vol. 3229, Berlin, Germany: Springer, J. J. Alferes
and J. Leite, Eds. 2004, doi: 10.1007/978-3-540-30227-8_68.

[49] Y. Boichut, P.-C. Ham, O. Kouchnarenko, and F. Oehl, ‘‘Improvements on
the Genet and klay technique to automatically verify security protocols,’’
in Proc. Automated Verification Infinite States Syst. (AVIS), 2004, p. 84.

[50] S. S. Ahamad and A.-S. K. Pathan, ‘‘Trusted service manager (TSM)
based privacy-preserving and secure mobile commerce framework with
formal verification,’’ Complex Adapt. Syst. Model., vol. 7, no. 1, pp. 1–18,
Aug. 2019, doi: 10.1186/s40294-019-0064-z.

BELFAIK YOUSRA received the master’s degree
in computer science with a focus on telecommuni-
cations systems and computer networks from the
Polydisciplinary Faculty, Sultan Moulay Slimane
University, Beni-Mellal, Morocco, in 2019, where
she is currently pursuing the Ph.D. degree with
a research focus on identity and access manage-
ment systems, networks security and privacy, and
blockchain.

SADQI YASSINE (Senior Member, IEEE)
received the M.Sc. and Ph.D. degrees in com-
puter science with a focus on computer security
from the Faculty of Sciences, Ibn Zohr University,
Agadir, Morocco, in 2012 and 2015, respectively.
From 2017 to 2021, he was an Assistant Professor
with Sultan Moulay Slimane University. As of
February 2021, he became an Associate Professor.
He is the African Research Center of Informa-
tion Technology Cybersecurity Vice President.

He has made contributions in the fields of Web security, authentication
protocols, network security, and cybersecurity. He has published several
peer-reviewed research articles in international journals, book chapters,
and conferences/workshops. He is a member of the ACM Professional and
OWASP. Furthermore, he has served and continues to serve on executive and
technical program committees and as a reviewer for numerous international
conferences and journals.

MALEH YASSINE (Senior Member, IEEE)
received the dual Ph.D. degree in computer sci-
ences management. He is currently an Associate
Professor of cybersecurity and IT governance with
Sultan Moulay Slimane University, Morocco. He
is the Founding Chair of the IEEE Consultant
Network Morocco and the Founding President
of the African Research Center of Information
Technology Cybersecurity. He has published over
100 papers (book chapters, international journals,

and conferences/workshops), 23 edited books, and five authored books.
He is a member of the International Association of Engineers IAENG and
the Machine Intelligence Research Labs. He received the Publons Top 1%
Reviewer Award for the years 2018 and 2019. He was the Publicity Chair
of BCCA 2019 and the General Chair of the MLBDACP 2019 Symposium
and ICI2C 2021 Conference. He is the Editor-in-Chief of the International
Journal of Information Security and Privacy and the International Journal
of Smart Security Technologies (IJSST). He serves as an Associate Editor
for IEEE ACCESS (2019 Impact Factor 4.098), the International Journal
of Digital Crime and Forensics (IJDCF), and the International Journal of
Information Security and Privacy (IJISP). He is a Series Editor of Advances
in Cybersecurity Management (CRC Taylor & Francis). He has served and
continues to serve on executive and technical program committees and as a
Reviewer for numerous international conferences and journals, such as Ad
Hoc Networks (Elsevier), IEEE Network magazine, IEEE SENSORS JOURNAL,
ICT Express, and Cluster Computing (Springer).

SAFI SAID received the B.Sc. degree from Cadi
Ayyad University, Marrakech, Morocco, in 1995,
the M.Sc. degree from Chouaib Doukkali Uni-
versity, in 1997, and the Ph.D. degree from Cadi
Ayyad University, in 2002. He was a Profes-
sor of information theory and telecommunication
systems with the National School of Applied Sci-
ences, Tangier,Morocco, from 2003 to 2005. Since
2006, he has been a Professor of applied mathe-
matics and computer science with the Polydisci-

plinary Faculty, Sultan Moulay Slimane University, Beni-Mellal, Morocco.
In 2015, Sultan Moulay Slimane University approved his promotion to the
rank of a Full Professor. His general research interests include the areas
of communications and signal processing, estimation, time-series analysis,
and system identification subjects. His current research interests include
transmitter and receiver diversity techniques for single and multiuser fading
communication channels, and wideband wireless communication systems.

TAWALBEH LO’AI (Senior Member, IEEE)
received the M.Sc. (Hons.) and Ph.D. degrees in
electrical computer engineering fromOregon State
University, in 2004 and 2002, respectively. He is
currently an Associate Professor with the Depart-
ment of Computing and Cyber Security, Texas
A&M University at San Antonio. Before that,
he was a Visiting Researcher with the University
of California at Santa Barbra. Since 2005, he has
been teaching/developing more than 25 courses in

different disciplines of computer engineering and science with a focus on
cyber security for the undergraduate/graduate programs with the New York
Institute of Technology (NYIT), DePaul University, and the Jordan Univer-
sity of Science and Technology. He has wonmany research grants and awards
with over U.S. $2 million. He has over 80 research publications in refereed
international journals and conferences.

KHALED SALAH (Senior Member, IEEE)
received the B.S. degree in computer engineering
with a minor in computer science from Iowa
State University, USA, in 1990, and the M.S.
degree in computer systems engineering and the
Ph.D. degree in computer science from the Illinois
Institute of Technology, USA, in 1994 and 2000,
respectively. He is currently a Full Professor with
the Department of Electrical and Computer Engi-
neering, Khalifa University, UnitedArab Emirates.

He has over 220 publications and three U.S. patents, has been giving
a number of international keynote speeches, invited talks, tutorials, and
research seminars on the subjects of blockchain, the Internet of Things (IoT),
fog and cloud computing, and cybersecurity. He is also leading a number
of projects on how to leverage blockchain for healthcare, 5G networks,
combating deep fake videos, supply chain management, and AI. He is a
member of the IEEE Blockchain Education Committee. He served as the
Chair of the Track Chair for IEEE GLOBECOM 2018 on Cloud Computing.
He is an Associate Editor of IEEE Blockchain Technical Briefs.

67678 VOLUME 11, 2023

http://dx.doi.org/10.1007/978-3-540-30227-8_68
http://dx.doi.org/10.1186/s40294-019-0064-z

