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ABSTRACT Tensor completion is the problem of filling-in missing parts of multidimensional data using
the values of the reference elements. Recently, Multiway Delay-embedding Transform (MDT), which
considers a low-dimensional space in a delay-embedded space with high expressive capability, has attracted
attention as a tensor completion method. Although MDT has a high complementary performance, its
computational cost is considerably high. Therefore, we propose a new model called smooth convolutional
tensor factorization (SCTF) for tensor completion based on a delay-embedded space. The proposed method
is small in computational complexity because of its concise model of rank-1 decomposition in the delay-
embedded space, and because it does not directly perform optimization in the delay-embedded space.
In addition, a smooth constraint term is assigned to the factor tensors as a prior data structure in the
optimization to improve the completion accuracy further. In our experiments, we completed clipped and
random missing image data, and confirmed that the proposed method achieved high completion accuracy
without high computational cost.

INDEX TERMS Tensor completion, convolution, tensor factorization, delay-embedded space.

I. INTRODUCTION
Several real-world signals such as image and video data are
multidimensional, and tensors are mathematical models that
represent such signals [2], [8], [14], [20], [24], [27]. Such
data, modeled as tensors, are often corrupted bymeasurement
errors and missing observations. Tensor completion is the
task of filling-in the missing values of the tensor data using
the values of the reference elements [24], [37], [48], [52].
Because tensor completion is an ill-posed problem, we con-
sider the prior structure in the target tensor to narrow down the
solution set. The completion value should be appropriate as
per the properties of the analyzed data, and the prior structure
includes smoothness [15], [48], [53], nonnegativity [17], [39],
[43], sparsity [23], low-rank [14], [24], etc.

Recently, low-rank tensor completion (LRTC) has attracted
attention. Nuclear norm minimization is a popular low-rank
model, which is a convex relaxation of rank minimization
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[14], [27], [31]. In some studies, this method has been
applied to image and video completion [13], [24], [28].
Other important low-rank models are tensor decomposi-
tions, with CP decomposition and Tucker decomposition [4],
[16], [40] as representative models for image comple-
tion [1], [43], [46], [48], [51]. Low-rank tensor models
are often incorporated simultaneously with other prior
structures. For example, non-negative tensor factorization
(NTF) [6], [7] has been applied to various fields, such
as sparse coding of images [35], traffic analysis [12], and
EEG analysis [20]. Other prior structures include stud-
ies incorporating graph structures and sparse regularization
to achieve a super-resolution in multispectral images [44],
[49]. In the image completion subject of our study, meth-
ods that incorporate smoothness achieved highly accurate
completion [15], [47], [48], [53].

Recently, tensor completion for considering low-rank
structures in delay-embedded spaces has attracted atten-
tion [34], [46]. A delay-embedded space is a high-dimensional
space that represents time delay. In particular, the embedding
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FIGURE 1. Comparison between the existing MDT-based and proposed convolution-based methods. (a) The existing method computes the optimization
on the delay-embedded space. (b) Whereas, the proposed method computes the optimization in the original space, but implicitly considers the
delay-emabedded space.

of tensor data is called Multiway Delay-embedding Trans-
form (MDT), which is mathematically equivalent to multi-
level Hankelization. MDT has been widely applied to the
tensor completion of images and videos [25], [33], [34], [36],
[37], [42], [45], [46]. MDT-Tucker [45], the original model
of tensor completion using MDT, consists of the following
steps:

1) Hankelization of the observed tensor by MDT.
2) Completion of the Hankelized tensor using Tucker

decomposition.
3) Inverse MDT of the completed tensor.

This method considers a delay-embedded space with a
high expressive capability and exhibits higher completion
accuracy than existing methods [5], [24], [47], [48], [53].
However, MDT-Tucker has the disadvantages of considerable
time requirement and space computational complexity. For
example, for an N th-order tensor of average size T , if the
delay window size is τ , the space complexity is O(τNTN )
and the time complexity isO(τN+1TN ); thus, the complexity
increases exponentially with order.

In this study, we propose a novel smooth convolutional ten-
sor factorization (SCTF) model, which decomposes a tensor
into two smooth factor tensors by convolution instead of a
product. Figure 1 shows a schematic of the algorithm. This
model implicitly implements tensor decomposition in the
delay-embedded space, whereas optimization is performed
in the original space. The model is based on the relationship
between the inverse MDT of the rank-1 model and the cyclic
convolution of the factor tensors. In addition, because it is
a rank 1 model, the SCTF is simpler than the MDT-Tucker
model, which considers the Tucker decomposition model.
These properties are expected to reduce computational com-
plexity. In addition, a smoothness constraint was imposed
on the factor tensors to further narrow the solution set. Our
contributions can be summarized as follows:
• We have mathematically proven that tensor decomposi-
tion based on inverse MDT has sufficient representation
ability in rank-1 decomposition.

• Based on the relationship of inverse MDT of rank 1
decomposition and cyclic convolution of factor ten-
sors and the introduction of smooth prior structure into
factor tensors, we proposed a new tensor completion
model named smooth convolutional tensor factorization
(SCTF).

• We derived a solution method of the proposed
SCTF with the Majorization-Minimization (MM)
algorithm [18], [30], which is expected to provide a
stable optimization in which the cost function decreases
monotonically. Moreover, we exploit the equivalence of
cyclic convolution in the time domain and Hadamard
product in the frequency domain to reduce computation
time.

The remainder of this paper is organized as follows: related
works in Section II, a review of MDT in Section III, the pro-
posed method in Section IV, experiments using the proposed
method in Section V, and conclusions in Section VI.

A. MATHEMATICAL NOTATION
We follow the basic mathematical notation in [46]; that is,
we use ⊛ for Hadamard product in this paper. In addition,
we consider N matrices Un ∈ RIn×Rn (n = 1, . . . ,N ) and an
N -th order tensor X ∈ RR1×···×RN . The all-mode product is
denoted as

X × {U} := X ×1 U1 · · · ×N UN . (1)

II. RELATED WORKS
t-SVD [50] is a convolutional tensor decomposition method
as well as the proposed method. It can achieve accurate
tensor recovery based on group theory. t-SVD considers a
new SVD for tensors by using some convolution, and the rank
in t-SVD (tubal rank) is defined as the number of non-zero
singular values. Since it is difficult to minimize the tubal
rank directly, its convex relaxation is usually employed. The
convex relaxation of tubal rank is given by the sum of sin-
gular values based on t-SVD, and it is called as the tensor
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FIGURE 2. The figure shows the delay-embedded of signals generated
from the Lorenz system. The embedded signal is smooth and
low-dimensional in the delay-embedded space.

nuclear norm (TNN). Low-rank approximation in the t-SVD
is substituted for a problem of minimizing TNN, which has
the advantage of incorporating a global structure. TNN [50]
is a typical model for tensor completion problems based on
t-SVD, and PSTNN [19] is a further developed model.
PSTNN suppresses the excessively low rank of the estimated
tensor by considering partial sums of only small singular
values in the tensor nuclear norm. RTF [9] and UTF [10]
have also been proposed as models that avoid the high com-
putational cost of these t-SVD models. RTF considers a
factorization model of a low-rank tensor of small size and a
dictionary (orthogonal) tensor. Since t-SVD is applied only to
low-rank tensors of small size, the computational cost is lower
than that of other t-SVDmodels. On the other hand, UTF uses
the fact that the TNN is transformed to the minimum sum of
the Frobenius norms of the two low-rank tensors so that the
algorithm does not directly compute t-SVD in its calculation.
UTF achieves very fast inference despite t-SVDmodel. How-
ever, these methods differ from the proposed method because
it uses only the third-order tensor, and the convolution oper-
ation is performed only in the channel direction. Also, unlike
the proposed model, these models do not have a smoothness
term.

CNNM [22], [21] is a mathematical model of nuclear
norm minimization of convolutional tensors applied to
image completion and time series prediction. This research
shows the equivalence of nuclear norm minimization of
the convolution tensor and sparse approximation in Fourier
space. However, the relationship between inverse MDT
and cyclic convolution, and smoothness constraints is not
discussed.

III. REVIEW OF MDT
This section summarizes the Multiway Delay-embedding
Transform (MDT). Note that there are two types of
MDT: noncyclic MDT [46] and cyclic MDT [45]. In this
study, we consider a cyclic MDT. First, we discuss the
Delay-embedding Transform (DT) for one-dimensional data
(vectors), which is then extended to multidimensional data.
Finally, we describe the drawbacks of MDT and a method,
Fast-MDT-Tucker [45], for avoiding those.

A. DELAY-EMBEDDING TRANSFORM (DT)
1) OVERVIEW OF DT
A delay-embedding Transform (DT) is the transformation
of data into a high-dimensional space representing a time
delay. In physics, DT has been studied by reconstructing
dynamic attractors from time-series data in a delay-embedded
space [32]. Mathematically, the DT converts a vector into
a Hankel matrix (Hankelization) [3]. When embedding
an observed signal from the original space into a high-
dimensional space, it is assumed that the signal is represented
by a low-rank and smooth manifold in the delay-embedded
space [26], [29], [41]. Figure 2 shows the results of DT of
the signal generated by the Lorenz system, indicating that
the transformed signal is smooth and low-dimensional in the
delay-embedded space. Based on this assumption, a low-
rank approximation of the Hankel matrix is used in the data
analysis [3], [11].

2) MATHEMATICAL OPERATION OF DT
Following [45], the DT for an observation vector x =
(x1, . . . , xT )T ∈ RT with a delay window size τ is defined
as

X := Hτ (x) =


x1 x2 · · · xτ−1 xτ
x2 x3 · · · xτ xτ+1
...

...
. . .

...
...

xT−1 xT . . . xτ−3 xτ−2
xT x1 . . . xτ−2 xτ−1


∈ RT×τ , (2)

where the DT operation is denoted as Hτ . Because X is a
Hankel matrix, DT is also called Hankelization. Each row
of X is identical to the local window of vector x. Notably,
this study assumes that the signal is cyclic. Figure 3a shows
a concrete example of a DT operation.
The DT can be considered a linear operation. By using the

duplication matrix S ∈ RT τ×T , we obtain

S(i, j)=

{
1 j = (((i− 1)modT )+ ⌊(i− 1)/T ⌋) modT+1
0 otherwise

.

(3)

DT can be given by

Hτ (x) = fold(T ,τ )(Sx), (4)

where fold(V ,v): RVv
→ RV×v is a folding operator, that is

reshaping from a vector to a matrix.
The pseudo-inverse of the DT can be expressed as the

average of the anti-diagonal entries. Considering a matrix
X ∈ RT×τ , the inverse DT operationH†

τ can be given by

H†
τ (X) = S†vec(X), (5)

where S† := (STS)−1ST is aMoore-Penrose pseudoinverse of
S, and vec(·) represents an operation of vectorization.We note
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FIGURE 3. Matrix computation of DT operation and inverse DT operation. In particular, the computation of
the pseudo-inverse matrix in the inverse DT corresponds to the average of anti-diagonal elements of the
matrix.

that (STS)−1 = 1
τ
I . The tth element of the inverse DT is given

by

[H†
τ (X)](t) = [S†vec(X)](t)

=
1
τ

τ∑
k=1

X ((t − k mod T )+ 1, k). (6)

Figure 3 illustrates the DT and inverse DT matrix
computations.

B. MULTIWAY DELAY-EMBEDDING TRANSFORM (MDT)
1) OVERVIEW OF MDT
A Multiway Delay-embedding transform (MDT) is an
embedding transform for tensor data of two or more orders.
Tensor decomposition based on the MDT has various appli-
cations, particularly for tensor completion. A representative
model is MDT-Tucker, which considers the Tucker decom-
position model of the Hankel tensor and has been applied
to image completion [46] and time-series data [36]. Another
model, the HT-RPCA, was proposed in [42]. Unlike general
RPCA, HT-RPCA solves the rank minimization of the ten-
sor Hankelized by MDT, instead of the rank minimization
of the matrix. This method enables anomaly detection by
considering the time series. Furthermore, the TT and TR
decomposition models of the Hankel tensor have been pro-
posed and applied to image completion and time-series data,
[33] [34].

2) MATHEMATICAL OPERATION OF MDT
The DT can be naturally extended to an N -th order tensor
X ∈ RT1×···×TN of size T = (T1, . . . ,TN ) ∈ RN . Let us
consider N duplication matrices Sn ∈ {0, 1}Tnτn×Tn (n =
1, . . . ,N ) with a window size τ = (τ1, . . . , τN ) ∈ RN

(see Equations (3)). The MDT is defined using an all-mode
product and folding as follows:

Hτ (X ) := fold(T ,τ )(X × {S}), (7)

where fold(V ,v) : RV1v1×···×VN vN → RV1×v1×···×VN×vN is the
folding operator from an N -th order tensor to a 2N -th order
tensor. Conversely, the inverse MDT is defined as

H†
τ (X ) := unfold(T ,τ )(X )× {S†}, (8)

where unfold(V ,v) : RV1×v1×···×VN×vN → RV1v1×···×VN vN is
an unfolding operator from the 2N -th order tensor of an N -th
order tensor.

C. FAST-MDT-TUCKER
The methods introduced in Section III-B1 have the disad-
vantage of considerable time requirement and space com-
putational complexity because of the Hankelization in each
mode of the tensor. Fast-MDT-Tucker [45] was proposed to
improve the high computational complexity of MDT-Tucker.
This method focuses on the redundant structure of the Hankel
matrix and improves the time complexity to O(NTN logNT )
and the space complexity to O(TN ) using two techniques:
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1) Omission of duplicate computations.
2) Equivalence of cyclic convolution in the time domain

and Hadamard product in the frequency domain.
In 2), the Fast-MDT-Tucker exploits the relationship between
the inverse MDT and cyclic convolution. Fast-MDT-Tucker
provides a fast and accurate completion; however, only
low-rank priors are available.

The proposed method is also an algorithm based on the
relationship between the inverse MDT and cyclic convolu-
tion and similarly avoids the issues of MDT. Note that the
low-rank model of the proposed method is not a Tucker
decomposition but a rank-1 decomposition. In addition, the
proposed method imposes a smoothness constraint on the
factor tensors.

IV. PROPOSED METHOD
The proposed method solves the optimization problem by
assuming that the observation tensor can be represented by
a cyclic convolution of two smooth factors of the same
size (See Figure 1). We describe the key theory behind
the proposed method in Section IV-A, the smoothness con-
straints in Section IV-B, and the formulation and algorithm in
Section IV-C.

A. KEY THEORY OF PROPOSED METHOD
1) RELATIONSHIP BETWEEN THE INVERSE DT AND CYCLIC
CONVOLUTION
Any rank-Rmatrix X ∈ RT×τ has a singular value decompo-
sition that can be expressed as

X = U6VT
=

R∑
r=1

σrurvTr , (9)

where U = [u1, . . . ,uR] ∈ RT×R and V = [v1, . . . , vR] ∈
Rτ×R are orthonormal matrices and 6 = diag(σ1, . . . , σR) ∈
RR×R is a diagonal matrix. Because the inverse DT is a linear
operation,H†

τ (X) can be separated into rank-1 bases:

H†
τ (X) =

R∑
r=1

σrH†
τ (urv

T
r ). (10)

From Equations (6) and (10), the tth element of the inverse
DT for a single basis urvTr is given by

[H†
τ (urv

T
r )](t) =

1
τ

τ∑
k=1

ur ((t − k mod T )+ 1)vr (k).

(11)

Now, let us consider the matrix P = (Iτ O)T ∈ RT×τ and set
v ∈ Rτ to be the same vector as the dimension of u ∈ RT ,
i.e., zero padding operation is given by

ṽ := Pv = [v(1), v(2), · · · v(τ ), 0, · · · , 0︸ ︷︷ ︸
T−τ

]T ∈ RT . (12)

Note that the sizes of u and ṽ are equal and the elements
of ṽ are zero after the size of the delay window τ . From

Equations (11) and (12), the inverse DT of the rank-1 basis
uvT is given by

[H†
τ (urv

T
r )](t) =

1
τ

T∑
k=1

ur ((t − k mod T )+ 1)ṽr (k)

=
1
τ
[ur ∗ ṽr ](t), (13)

where ∗ denotes a cyclic convolution operation. From
Equation (13), the inverse DT of the rank-1 basis can be
formulated in terms of a cyclic convolution. Eventually, from
Equations (10) and (13), the inverse DT of X is

H†
τ (X) =

1
τ

R∑
r=1

σrur ∗ ṽr . (14)

2) SUFFICIENT REPRESENTATION ABILITY EVEN WITH A
RANK-1 MATRIX
We now discuss the rank-1 representation of X . From
Equation (14), the rank X denotes the number of convolu-
tional bases. The degrees of freedom of each convolutional
basis determine the representational ability of the model.
In this study, we consider X to be rank-1 and show that it
has sufficient representation ability for vector reconstruction.
Rank-1 matrix model X = uvT ∈ RT×τ can generate any
x ∈ RT . Let us put

u =
[
x

]
, v =

[
τ

0τ−1

]
, (15)

where 0τ−1 is a (τ − 1)-dimensional vector of zeros and we
have

H†
τ (uv

T) = H†
τ

([
τx 0T ,τ−1

])
= x. (16)

This suggests that the inverse DT of a matrix, even rank-1,
is over-parameterized and does not work as a model.
Therefore, u and v must impose constraints to narrow the
solution.

3) EXTENTION TO MDT
The properties of DT discussed in Sections IV-A1 and IV-A2
can be applied to the MDT. First, we show the relationship
between the inverse MDT and N -dimensional cyclic con-
volution. Let us consider factor tensors A ∈ RT1×···×Tn ,
B ∈ Rτ1×···×τn , and we define a := vec(A) ∈ R

∏
n Tn ,

b := vec(B) ∈ R
∏
n τn . We assume X ∈ RT1×τ1×···×TN×τN is

given by

bunfold(T ,τ )(X ) = vec(A)vec(B)T

= abT ∈ R
∏
n Tn×

∏
n τn , (17)

where bunfold(V ,v) : RV1×v1×···×VN×vN → R
∏
n Vn×

∏
n vn

is the unfolding operator from an 2N -th order tensor to the
block matrix. We also define bfold(V ,v) : R

∏
n Vn×

∏
n vn →

RV1×v1×···×VN×vN as the inverse transform of bunfold(V ,v).
Using the zero padding matrix Pn = (Iτn O)

T
∈

{0, 1}Tn×τn (n = 1, . . . ,N ), we define a tensor B̃ = B ×
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FIGURE 4. Cyclic convolution of a tensor X with only one element fold(v)
corresponds to the Equation (20). This operation is identically derived
from the tensor X .

{P} ∈ RT1×···×Tn of the same size as A. The inverse MDT of
X = bfold(τ ,T )(abT) is derived by[
H†

τ (bfold(τ ,T )(abT))
]
(t1, . . . , tN )

=
1∏
n τn

τ1−1∑
k1=0

· · ·

τN−1∑
kN=0

A(t1 − k1 mod T1, . . . , tN − kN mod TN )B(k1, . . . , kN )

=
1∏
n τn

T1−1∑
k1=0

· · ·

TN−1∑
kN=0

A(t1 − k1 mod T1, . . . , tN − kN mod TN )B̃(k1, . . . , kN )

=
1∏
n τn

[
A ∗ B̃

]
(t1, . . . , tN ). (18)

Thus, the inverse MDT is represented by an N -dimensional
cyclic convolution.

Furthermore, we show that the tensor which is folded from
rank-1 matrix has sufficient representation ability, as dis-
cussed in Subsection IV-A2. Rank-1 tensor model of X :=
bunfold(T ,τ )(X ) = abT ∈ R

∏
n Tn×

∏
n τn can generate any

X ∈ RT1×···×Tn . Let us

a =
[
vec(X )

]
, b =

[ ∏
n τn

0∏
n τn−1

]
, (19)

where 0∏
n τn−1 is an (

∏
n τn−1)-dimensional vector of zeros,

and then we have[
H†

τ (bfold(τ ,T )(abT))
]
(t1, . . . , tN ) = X . (20)

Because this operation is equivalent to the cyclic convolution
of a tensor X with only one element, the tensor X is derived
identically (See Figure 4).
As discussed in Section IV-A2, the inverse MDT of an

unconstrained tensor, even rank-1, is over-parameterized and
does not work as a model. In this study, additional constraints
were imposed on A and B (see Section IV-B).

B. SMOOTHNESS CONSTRAINTS
Because the convolution of factor tensors can represent any
tensor (even rank 1 models), it is necessary to impose con-
straints to narrow down the candidate solutions. In this study,
smoothness is used as a constraint. The reasons for introduc-
ing smoothness as a constraint are as follows.

• As shown in Figure 2, the embedded data is represented
by a smooth manifold on the delay embedded space.

• The data mainly targeted in our study are images, and
there are many reports that smooth constraints are effec-
tive in image completion [48], [15], [53], [47].

Note that we do not introduce smoothness for the recon-
structed tensor but the factor tensors. Unlike the model which
smoothens the reconstructed tensor, the proposed model
enables completion without excessive smoothing. We also
set the scale adjustment terms for both A and B in the
optimization equation to avoid smoothing by increasing only
one factor of the tensors.

C. OPTIMIZATION FORMULAS AND ALGORITHM
1) OPTIMIZATION FORMULAS
In this paper, we propose a new tensor completion model.
We assume that the observed tensorY ∈ RT1×···×TN is incom-
plete and that some entries have no values. The projection
tensor O ∈ {0, 1}T1×···×TN passes the observed entries and
makes the missing entries equal to zero. The entries are given
by

O(t1, . . . , tN ) =

{
1 Y(t1, . . . , tN ) is observed
0 otherwise.

(21)

The problem involves obtaining the complete tensor A ∗ B.
In this study, we impose a smoothness constraint on A and
B. The optimization problem is then given by

min
A,B

∥∥∥O ⊛ (Y −A ∗ B̃)
∥∥∥2
F

+

∑
n

λA,n∥Ln ∗A∥2F +
∑
n

λB,n∥Ln ∗ B̃∥2F

+ ηA∥A∥2F + ηB∥B̃∥2F
s.t. B̃ = B × {P}, (22)

where

Ln := foldT (lN ⊗ · · · ⊗ l1) ∈ RT1×···×TN

i =1, . . . ,N

l i =

{
[1,−1, 0, . . . , 0] (i = n)
[1, 0, . . . , 0] (i ̸= n)

∈ RTi

is a differential filter, and A ∈ RT1×···×TN , B ∈ Rτ1×···×τN

are factor tensors and foldV : RV1V2···VN → RV1×V2×···×VN

is a folding operator from a vector to the N -th order tensor.
Equation (22) evaluates the reconstruction loss in the first
term. The second and third terms are smooth penalties for
A and B, and the fourth and fifth terms adjust the scales of
A and B. The equality constraint is for zero padding, based
on Equation (12). Note that when τ = 1, Equation (22) is
equivalent to QV regularization. The relaxation of optimiza-
tion problem (22) for an unconstrained optimization problem
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FIGURE 5. Concept of MM Algorithm.

including a penalty term yields the following equation:

min
A,B

L(A, B) := ∥O ⊛ (Y −A ∗B)∥2F

+ γ ∥Iτ ⊛ B∥2F
+

∑
n

λA,n∥Ln ∗A∥2F +
∑
n

λB,n∥Ln ∗B∥2F

+ ηA∥A∥2F + ηB∥B∥2F , (23)

where Iτ = foldT (iτ1 ⊗ . . .⊗ iτN ) ∈ RT1×···×TN ,
iτn := [0, · · · , 0︸ ︷︷ ︸

τn

, 1, · · · , 1︸ ︷︷ ︸
Tn−τn

] ∈ RTn . iτn serves as a penalty for

B and simulates zero padding {P}. Note that we also redefine
the size of B as T1 × · · · × TN .

2) ALGORITHM FOR SOLVING OPTIMIZATION
In this study, we solved the optimization problem (23) using
the majorization-minimization (MM) algorithm [18], [30].
TheMMalgorithm is an iterative method involving two steps.

1) Constructs a auxiliary function h(A, B|A(k), B(k)) for
L(A, B) at A(k), B(k). Note,

∀A, B L(A, B) ≤ h(A, B|A(k), B(k))

L(A(k), B(k)) = h(A(k), B(k)
|A(k), B(k)).

2) Update as in

A(k+1)
← argmin

A
h(A, B(k)

|A(k), B(k)). (24)

3) Update as in

B(k+1)
← argmin

B
h(A(k+1), B|A(k+1), B(k)). (25)

A conceptual diagram of the algorithm is shown in Figure 5.
The MM algorithm was used because of convergence
due to its monotonic convergence and ease of analytical
computation.

The auxiliary function h is defined as follows:

L(A, B) ≤ h(A, B|A(k), B(k))

:= ∥O ⊛ (Y −A ∗B)∥2F + γ ∥Iτ ⊛ B∥2F

+

∥∥∥O ⊛ (A(k)
∗B(k)

−A ∗B)
∥∥∥2
F

+ γ ∥Iτ ⊛ (B −B(k))∥2F

Algorithm 1MM Algorithm in the Proposed Method
Require: Y , O, Iτ , γ , λA, λB, ηA, ηB, maxiter
1: Â← FFT(A)
2: B̂← FFT(B)
3: for i = 1 to maxiter do
4: Update Z by (27)
5: Ẑ ← FFT(Z)
6: Update W by (28)
7: Ŵ ← FFT(W)
8: Update Â by (31)
9: Update B̂ by (32)
10: A← IFFT(Â)
11: B← IFFT(B̂)
12: Calculate L(A, B).
13: if convergence of L then break
14: end if
15: end for

+

∑
n

λA,n∥Ln ∗A∥2F +
∑
n

λB,n∥Ln ∗B∥2F

+ ηA∥A∥2F + ηB∥B∥2F
= ∥Z −A ∗B∥2F + γ ∥W −B∥2F
+

∑
n

λA,n∥Ln ∗A∥2F +
∑
n

λB,n∥Ln ∗B∥2F

+ ηA∥A∥2F + ηB∥B∥2F , (26)

where

Z = O ⊛ Y +O ⊛
(
A(k)
∗B(k)

)
, (27)

and

W = Iτ ⊛ B(k). (28)

Furthermore, we exploit the property that the cyclic con-
volution of the time domain is a Hadamard product in the
frequency domain to reduce the time complexity of the opti-
mization problem. Because the Frobenius norm is invariant
to the Fourier transform, the auxiliary function h is redefined
as

h(A, B|A(k), B(k)) = ĥ(Â, B̂|Â(k)
, B̂(k)

)

:=

∥∥∥Ẑ − Â ⊛ B̂
∥∥∥2
F
+ γ ∥Ŵ − B̂∥2F

+

∑
n

λA,n∥L̂n ⊛ Â∥2F

+

∑
n

λB,n∥L̂n ⊛ B̂∥2F

+ ηA∥Â∥2F + ηB∥B̂∥2F , (29)

where L̂n, Â, B̂, Ẑ, Ŵ are the Fourier transform of
Ln, A, B, Z, W .
The final auxiliary function is ĥ, which is minimized using

Equations (24) and (25). To minimize ĥ, we derive Â and
B̂ such that

∂ ĥ

∂Â
= 0,

∂ ĥ

∂B̂
= 0. (30)

67532 VOLUME 11, 2023



H. Takayama, T. Yokota: New Model for Tensor Completion: SCTF

FIGURE 6. Example of declipping experiment: (a) original signal of the sine function, (b) clipped signal with clipping level = 0.2, and (c) these
reconstructed signals by using QV regularization, cubic spline interpolation, and SCTF.

FIGURE 7. Example of declipping experiment: (a) original signal of wavelet function, (b) clipped signal with clipping level = 0.2, and (c) these
reconstructed signals by using QV regularization, cubic spline interpolation, and SCTF.

FIGURE 8. Values of SNR in declipping experiments with various clipping
levels.

Note that (30) is substituted by alternating the optimization
with (24) and (25) because they are not satisfied simulta-
neously. Thus, at every optimization step, although the cost
function L decreases monotonically, the auxiliary function h
is not always optimal. After solving Equation (30), we obtain

Â =
{
Ẑ∗ ⊛ B̂

}
⊘

{
B̂2
+

∑
n

λA,nL̂
2
n + ηA

}
, (31)

B̂ =
{
Ẑ∗ ⊛ Â+ γŴ

}
⊘

{
Â2
+

∑
n

λB,nL̂
2
n + ηB + γ

}
, (32)

where Ẑ∗ is the complex conjugate of Ẑ . In summary,
Equations (27) and (28) correspond to Step 1 of the MM
algorithm, and Equations (31) and (32) correspond to Step 2.
Algorithm 1 summarizes the proposed method.

D. COMPUTATIONAL COMPLEXITY
The algorithm consists of updated Equations (27), (28), (31),
and (32). The time complexity of (28), (31), and (32) is
O(TN ), and that of (27) isO(NTN logT ). Since (27) is derived
from the cyclic convolution by A ∗ B = IFFT(FFT(A) ⊛
FFT(B)), the time complexity O(NTN logT ) of the FFT is
dominant. Consequently, the overall time complexity of the
update equation is O(NTN logT ).

E. RELATION TO OUR EXISTING PAPER
This paper is an extended version based on our paper [38].
Therefore, the concept of the proposed data comple-
tion model is almost identical. However, existing methods
discuss only vector data (one-dimensional data) and do
not target tensor data (multidimensional data). The pro-
posed method differs significantly from existing methods
in extending the model design and algorithms to multi-
ple dimensions. Furthermore, in addition to the 1D signal
completion of the existing method, this paper also experi-
ments with image completion for RGB and MRI images (see

VOLUME 11, 2023 67533



H. Takayama, T. Yokota: New Model for Tensor Completion: SCTF

FIGURE 9. Results of recoverd cliped image using QV (a), Fast-MDT-Tucker (b) and SCTF (c).

FIGURE 10. Cross-sectional view of the recoverd cliped image at
height 157.

Sections V-B1 and V-B2) and hyper-parameter sensitivities
experiments (see Section V-C2).

V. EXPERIMENT
A. COMPLETION OF CLIPPED DATA
This section presents the evaluation of the proposed method
(SCTF) for reconstructing clipped data (declipping) as a type
of completion. Clipping is an operation that uses a certain
clipping level c > 0 to replace entries above c and below −c
with c and−c. The clipping operation on the entry of a tensor
is given by

X (t1, t2, · · · , tN ) = min(c,max(−c,X0(t1, · · · , tN ))).

(33)

The value range of the clipped data was [−c, c].
The indices of the clipped entries were recorded and treated

asmissing values for reconstruction. Thus, the set of observed
entries can be expressed as

O(t1, . . . , tN ) =

{
1 −c < X (t1, . . . , tN ) < c
0 otherwise.

(34)

TABLE 1. Comparison of the peak signal-to-noise ratio (PSNR), the
structural similarity (SSIM), and the computing time (sec) of recovery
clipped images using TV, Fast-MDT-Tucker, and proposed method.

1) CLIPPED SIGNAL COMPLETION (1ST ORDER tensor)
In this experiment, we evaluated SCTF using signal com-
pletion. The signals to be completed were the sine and
wavelet functions with a clip level of 0.2, and both had a
maximum amplitude of 1. Examples of clipping are pre-
sented in Figures 6 and 7. The original signals are shown in
Figures 6a and 7a, and the signals after clipping are shown
in Figures 6b and 7b. We compared SCTF with QV regular-
ization and spline interpolation. In SCTF, we set τ1 = 32,
γ = 1.0× 108, and λA,1 = λB,1 = ηA = ηB = 0.1.

Figures 6c and 7c show the signals reconstructed using
QV regularization, spline interpolation, and SCTF. The signal
completed by SCTF had a maximum amplitude of approxi-
mately 1, which was the best among the three methods. The
spline method reconstructs the waveform signals; however,
its amplitude is smaller than that of the original signal. How-
ever, the QV method failed to restore the signal.

Figure 8 shows the signal-to-noise ratio (SNR) values of
the declipping experiment for various clipping levels. The
clipping levels were 0.8, 0.6, 0.4, and 0.2, and the parameters
(λ, τ ) were adjusted for all levels. SCTF achieved signif-
icantly higher values of SNR than QV regularization and
spline interpolation.

2) COMPLETION OF CLIPPED DATA (2ND ORDER tensor)
In this experiment, we evaluated SCTF by completing a
clipped image of 2D-sin. The maximum value of the image
(amplitude of 2D-sin) was 255, and the clip threshold c =
230. The original image is shown in Figure 9a, and the image
after clipping is shown in Figure 9b.We compared SCTFwith
the QV model and Fast-MDT-Tucker [45]. The QV model
is the model without convolution in Equation (22), and is
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FIGURE 11. Results of recoverd RGB images completion using TVLR (a), SPCQV (b), Fast-MDT-Tucker (c), BCPF (d), UTF (e), TNN (f), PSTNN (g), and SCTF
(h). The image types are listed in order from the top row: ‘‘pappers’’, ‘‘house’’, ‘‘airplane’’, ‘‘parrots’’, ‘‘mandrill’’, and ‘‘lena’’.

TABLE 2. Comparison of the peak signal-to-noise ratio (PSNR), the mean absolute error (MAE), the structural similarity (SSIM) and the computing time
(sec) of recovery RGB images. Missing ratio is 85%.

formulated as

Ẑ ← argmin
Z
∥O ⊛ (Y −Z)∥2F +

∑
n

λn∥Ln ∗Z∥2F ,

and Ẑ denotes the estimated completion tensor; In SCTF,
we set τ1 = τ2 = 151, γ = 1.0 × 108, λA,1 = λA,2 =

λB,1 = λB,1 = 200, and ηA = ηB = 400.
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FIGURE 12. Results of recoverd MRI image completion using TVLR (a), SPCQV (b), Fast-MDT-Tucker (c), BCPF (d), UTF (e), TNN (f), PSTNN (g), and
SCTF (h). The time slice t is 50. The 1st column is the image with 70% missing, the 2nd row is the image with 95% missing.

TABLE 3. Comparison of the peak signal-to-noise ratio (PSNR), the mean absolute error (MAE), the structural similarity (SSIM) and the computing time
(sec) of recovery MRI images. Missing ratio are 70% and 95%. Note that SSIM is averaged over time.

FIGURE 13. Optimization behavior: This figure shows 50 curves for
50 different initial values. The completion problem deals with the
completion of clipped 2D-sin.

Figures 9 and 10 show the images reconstructed using
the QV model, Fast-MDT-Tucker, and the proposed SCTF.
In addition, Table 1 shows the numerical evaluation of the
completion accuracy. The completion image by SCTF has a
maximum amplitude close to 255 and shows an improvement
in the oscillations that occurred in Fast-MDT-Tucker, indi-
cating the effect of the smoothing term. In fact, SCTF had the
best value in PSNR. However, SCTF had a flat shape that dif-
fered from that of sine at a maximum amplitude of 255. This
affects the numerical evaluation of the completion accuracy,
and SCTF is worse in SSIM than in Fast-MDT-Tucker. On the

other hand, the QV model fails to recover 2D-sin because it
flatly completes the missing parts.

B. COMPLETION OF RANDOM MISSING DATA
This section presents the results of the completion of random
missing data.

1) COMPLETION OF RGB IMAGES
In this experiment, we evaluated SCTF using RGB images.
Six images were tested, with a missing rate of 85%.
Figures 11a and 11b show the original image and the
image with missing data, respectively. We compared SCTF
with TVLR [47], SPCQV [48], Fast-MDT-Tucker [45],
BCPF [51], UTF [10], TNN [50], and PSTNN [19]. In SCTF,
we set τ1 = τ2 = τ3 = 9, γ = 1.0 × 108, λA,1 = λA,2 =

λB,1 = λB,2 = 50, λA,3 = λB,3 = 0, and ηA = ηB = 50.
Figure 11 shows the experimental results. SCTF improves

the image blur in TVLR, SPCQV, and BCPF and the jaggies
in Fast-MDT-Tucker, UTF, TNN, and PSTNN. This may be
because SCTF is based on the idea of both smoothness and
MDT. Table 2 summarizes the recovery performance (PSNR
and SSIM) and runtime. SCTF had the highest PSNR for five
images and SSIM for four images. It is also slower than Fast-
MDT-Tucker and UTF but has a faster computation time than
SPCQV, which is the second most accurate method. In other
words, SCTF is completedwith high accuracy and at amodest
computational cost.

2) COMPLETION OF MRI IMAGES
In this experiment, we evaluated SCTF using MRI images.
We prepared MRI images with sizes of (100 × 91 × 91)
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FIGURE 14. Effects of hyper-parameters in declipping sine function. Reconstruction quality was evaluated by the PSNR for various settings
of hyper-parameters τ, λ, η (Average of 5 trials for each item.)

with 70% and 95% of the random voxel missing.
Figures 12a and 12b show the original image and the
image with missing data, respectively. We compare SCTF
with TVLR [47], SPCQV [48], Fast-MDT-Tucker [45],
BCPF [51], UTF [10], TNN [50], and PSTNN [19]. In SCTF,
we set τ1 = τ2 = τ3 = 4, γ = 1.0 × 108, λA,1 = λA,2 =

λB,1 = λB,2 = 50, λA,3 = λB,3 = 0, and ηA = ηB = 1000.
Figure 12 shows the experimental results. SCTF showed

successful completion in both the 70% and 95% missing
cases. In the 95% case, TVLR, Fast-MDT-Tucker, BCPF, and
UTF fail to recover, and SPCQV smoothes the image exces-
sively. In addition, TNN and PSTNN do not restore smoothly
compared to SCTF. Table 3 summarizes the recovery perfor-
mance (PSNR and SSIM) and runtime. We can confirm that
SCTF has the best completion accuracy compared to the other
methods; it takes longer to execute than Fast-MDT-Tucker
and UTF but more than half the time of SPCQV.

C. ANALYSIS OF ALGORITHM
1) CONVERGENCE OF ALGORITHM
Monotonic convergence is expected because the proposed
algorithm uses the MM algorithm. Figure 13 shows that
the objective function converges monotonically and that the
algorithm works correctly.

2) HYPER-PARAMETER SENSITIVITIES
We investigated the effects of hyper-parameters of SCTF
in the completion. SCTF has three hyperparameters:
the delay window size τ1, . . . , τN , smoothing level
λA,1, . . . , λA,N , λB,1, . . . , λB,N and scale adjustment ηA, ηB
(see Equations (23)). We redefine each of the three parameter
types as τ := τ1 = . . . = τN , λ := λA,1 = . . . = λA,N =

λB,1 = . . . = λB,N , and η := ηA = ηB.
The experimental setup was the same as that in

Section V-A2; we recovered the clipped 2D-sin image.
Three hyper-parameters were varied in the range τ ∈

{1, 9, 25, 81, 151, 315} and λ ∈ {0, 200, 400, 600, 800, 1000}
and η ∈ {0, 200, 400, 600 , 800, 1000}. A declipping

experiment was performed for all the combinations to cal-
culate the recovery accuracy.

Figure 14 shows the experiment’s five-time average of the
PSNR. Increasing τ improves the accuracy, whereas making
it too large worsens the accuracy. For example, when τ =

1, the algorithm matches the QV regularization and recovers
smoothly; however, when the delay window is smaller than
the clip range, such as when τ = 9 or τ = 25, it cannot
recover at all. Therefore, it is important to set τ appropriately.

VI. CONCLUSION
In this study, we proposed a new model and algorithm
for tensor completion using a convolution of smooth-factor
tensors. Because the proposed method corresponds to a
rank-1 decomposition in the delay-embedded space, it can
achieve high completion accuracy in a short computation
time. In the optimization formulation, we extended the exist-
ing mathematical model based on the inverse MDT by
adding a penalty term for the factor tensor corresponding
to the delay-embedding width. In addition, we set smooth-
ing constraints for the factor to narrow down the candidate
solutions. As for the algorithm for solving the optimization,
we employed the MM algorithm with the expectation of
monotonic convergence. Our experiments mainly completed
clipped and random missing image data and confirmed that
the proposed method achieves high completion accuracy with
low computational cost. In the experiment, we also con-
firmed the effect of the completion accuracy on the variation
in the delay-embedding width and monotone convergence
of the algorithm.
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