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ABSTRACT The accurate, quantitative, and objective prediction of the brain age for premature infants will
contribute to the exploration of brain maturity and catch-up growth. Traditional approaches rely heavily on
a pediatrician’s clinical experience, which makes the whole process time-consuming and labor-intensive.
To solve this problem, we propose a deep learning-based brain age prediction model for preterm infants via
neonatal MRI for this purpose, and it is called as BAPNET for short. First of all, we collected a specific
dataset including MR images of 281 preterm infants. Then, a pretraining model (DeepBrainNet) is applied
as the main backbone, and transfer learning is utilized to enhance the baseline model by making knowledge
transfer from the ImageNet dataset. The proposal can be viewed as a specific prediction model by absorbing
knowledge enhancement from peripheral visual features. On a test set of 70 preterm infants held out from
the original dataset, 2D-BPANET achieved results with an mean square error (MAE) of 1.15 and the 95% -
95% content tolerance interval for a difference (prediction and ground truth) of [-3.82, 3.39], whereas 3D-
BPANET achieved better results with an MAE of 1.8 and a difference of [0.51, 3.09]. Meanwhile, we leverage
heatmaps to verify the consistency between hindbrain regions and cortical fold regions outputted by our
model and the latest studies of brain development in preterm infants. In conclusion, BPANET demonstrates
that deep learning can estimate brain maturity in preterm infants and provides a reference standard for preterm
infant brain development, which could be applied as a promising tool.

INDEX TERMS Deep learning, medical image processing, prediction model, MRI, medicine and biology.

I. INTRODUCTION

Preterm infants are newborns weighing 1000-2499g at less
than 37 weeks of gestation [1]. With the advancement of
reproductive medicine and perinatal medicine, as well as the
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introduction of neonatal intensive care units, the prevalence of
preterm birth has increased in recent years. Related research
shows that approximately 10.6% of live births were born
preterm and require special care [2], [3]. Preterm infants are
susceptible to brain damage such as intracranial hemorrhage,
hypoxia, and ischemia due to neurodevelopmental impair-
ment (NDI), which could lead to delay and impairment in
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FIGURE 1. Gestational age/brain age distribution (cases per weeks).

brain development. It may cause neurological disorders such
as epilepsy and cerebral palsy [4]. Therefore, real-time mon-
itoring for the brain development status of preterm infants,
detection of lagging brain development, and early interven-
tion are extremely important to stimulate brain development
and improve the survival quality of preterm infants.

In hospital neonatal units, the mainstream method for
determining brain age in preterm and neonatal infants is
still based on the total maturation scores (TMS) scoring
system, which is a simple scoring system for MR images
that determines the TMS score by assessing four parameters
of brain maturation: myelin formation, cortical folding, glial
cell migration, and germinal matrix distribution [5]. Some
studies used intracranial structures to determine brain age,
such as the width measurement of the superior frontal gyrus
in newborns, and others used Magnetic Resonance Imag-
ing (MRI) to measure the volume of each brain structure,
such as the volume calculation of the ventricular system,
cerebellum, basal ganglia, corpus callosum, amygdala, and
hippocampus, and the distribution observation of gray matter
and white matter, as well as quantifying cortical [6], [7], [8],
[9]. However, it is difficult to guarantee accuracy because
of the individual differences in preterm infants and the high
requirement, subjectivity, as well as time consumption of the
aforementioned methods.

Artificial intelligence (AI) is a critical tool in the
ongoing personalization and development of precision
medicine [10]. Recently, there has been a huge rise in medical
imaging-related machine learning research, which can aid
clinicians in diagnosis and prognosis [11], [12], [13]. Many
researchers utilized machine learning methods such as Sup-
port Vector Machine (SVM) to predict brain age using feature
representations of brain white matter, gray matter, cortex, and
sulcal gyrus [14], [15], [16], [17].

However, feature extraction and selection need a signifi-
cant amount of prior knowledge. With the development of
computer vision technology, scholars have made significant
progress in automatically extracting visual characteristics
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for brain age prediction with convolutional neural networks
(CNN) [18], [19], [20], [21]. There are a large number of
studies focusing on adult and elderly brain age prediction
but none of them can be used for preterm infants due to the
scarcity and uniqueness of preterm infants’ data. Notably,
a study found that the CNN model may predict motor out-
comes in preterm newborns using brain diffusion MRI [22],
which shed light on the possibility of developing a prediction
model with CNN for brain age in preterm infants. Until now,
there has been no relevant literature for preterm infant brain
age forecasting with deep learning based on MRI in Google
Scholar and PubMed.

In this paper, we collected 281 MR images from preterm
to develop the first deep learning-based automated model
named BAPNET. At first, we preprocessed images by SPM12
and extended our initial dataset by data augmentation. For
the 2D approach, we applied transfer learning starting from
an already existing model (DeepBrainNet) trained on 2D
slices. For the 3D approach, we applied transfer learning
from ImageNet to pretrain 3D CNN models, and the database
of preterms was then exploited for optimization. The 2D-
BAPNET and 3D-BAPNET models devised in this study
are applicable to 2D images/slices and volumes. They were
evaluated on test sets held out from the original dataset. The
Grad-CAM [23] visualization technique was finally used to
highlight the highly contributing regions.

In this paper, we collected 281 MR images from preterm
to develop the first deep learning-based automated model
named BAPNET. At first, we preprocessed images by SPM12
and extended our initial dataset by data augmentation. For
the 2D approach, we applied transfer learning starting from
an already existing model (DeepBrainNet) trained on 2D
slices. For the 3D approach, we applied transfer learning
from ImageNet to pretrain 3D CNN models, and the database
of preterms was then exploited for optimization. The 2D-
BAPNET and 3D-BAPNET models devised in this study
are applicable to 2D images/slices and volumes. They were
evaluated on test sets held out from the original dataset. The
Grad-CAM [23] visualization technique was finally used to
highlight the highly contributing regions.

Il. MATERIALS AND METHODS

A. DATA ACQUISITION AND QUALITY CONTROL

This research utilized T1-weighted images of 281 preterm
infants without intracranial injury recruited with informed
consent at Zhongnan Hospital of Wuhan University, Wuhan,
China, from May 2017 to October 2020. They aged between
27 and 37 weeks and averaged 33.4 weeks of age (Fig. 1).
The parameters of the equipment are as follows, FoV (Field
of View) read: 180mm, FoV phase: 100%, TR (repetition
time): 440ms, TE (echo time): 2.68ms. A team of special-
ists with more than five years of experience conducted all
examinations prior to the research. The examination was
performed within one week of the preterm infant’s birth,
and the gestational age was corrected to guarantee that the
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gestational age and brain age are equal. The reference stan-
dard gestational age (brain age) was estimated from the last
menstruation date and the MRI measurements performed
by the pregnant mother’s referring obstetrician. All preterm
infants with underlying brain disorders, psychiatric disorders,
neurological disorders, and structural brain abnormalities
were excluded. In addition, we excluded (n = 79) from
the initial list of 360 cases without satisfactory images and
complete clinical data. Thus, our dataset contained 281 T1-
weighted images. The MRI datasets was divided into two
separate sections: a training set used to optimize the model
parameters and tune the model hyperparameters, and a test
set used to evaluate the performance of the model relative to
the reference standard. The division of the training and test
sets is randomized, and we finally obtain a training set (for
training and tuning) of 211 cases and a test set (for testing) of
70 cases.

B. MRI PREPROCESSING

The preprocessing of the T1-weighted images was imple-
mented on MATLAB with applications of the Statistical
Parametric Mapping program (SPM12). The images of the
training set and test set need to be handled according to the
following preprocessing steps.

1) DATA CONVERSION

The original Digital Imaging and Communications in
Medicine (DICOM) file format of the T1-weighted images
needs to be converted into the three-dimensional Neuroimag-
ing Informatics Technology Initiative (NIfTI-1) file format.
Since SPM8 uses NIfTI-1 as the image format, this con-
version will be convenient for SPM8 to implement the
subsequent image preprocessing.

2) RESETTING THE MR IMAGE ORIENTATION AND
CORRECTING THE POSITION OF THE AC-PC LINE

There are three views using SPM12 to read images including
coronal, axial, and sagittal. First, adjust the roll value (rotate
around the y-axis) so that the crosshair passes through the
center of the coronal plane, and then adjust the yaw value
(rotate around the z-axis) so that the crosshair passes through
the center of the axial plane. Finally, in the sagittal plane,
find the clearest point of the corpus callosum (point AC) and
adjust the pitch value (rotate around the x-axis) to position
the crosshair to point AC.

3) SPATIAL NORMALIZATION

Due to the variety of shapes and volumes of preterm infants’
brains, the T1-weighted images should be normalized and
resampled to Montreal Neurological Institute (MNI) space,
and the XYZ values are used to describe a particular coordi-
nate position.

All of the images were resized to a uniform size (79 x
95x79) after data preprocessing and were trained in the 3D-
BAPNET network built by this research. To acquire 2D data,
we extracted 2D slices from the axial plane and 40 slices
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beginning at index 23 and ending at index 63, respectively,
because the middle part of the image contains the most
information. It is worth noting that the location and number
of slices, which were commonly employed for brain devel-
opment assessment, are determined by the senior physician.
Finally, the original 281 cases of 3D data samples were
changed into 9721 segmented 2D slices according to the 2D
extraction technique. During the training process, each 2D
slice was an independent sample. To obtain the final age
prediction for a test sample, each of 40 slices of the test scan
was input to the trained model independently and the median
prediction was calculated as the predicted brain age [24]. The
comparison chart of pre-processing is shown in Fig. 2.

C. DATA AUGMENTATION

In medical imaging tasks, data augmentation has various
advantages like training data distribution enrichment, the
model’s generalization ability improvement, and overfitting
removal in training process. In our experiments, we employed
four common methods of data augmentation to enhance the
2D training dataset including: (a) distortion, (b) zoom in and
zoom out, (c) tilt, (d) crop.

D. DEVELOPED 2D-BAPNET

The deep brain network (DeepBrainNet) was built using a
large (n = 11729) set of MRI scans from a highly diversified
cohort spanning different studies, scanners, ages, and geo-
graphic locations around the world [21]. The DeepBrainNet
model was built using the Inception-Resnet-v2 framework,
which combines skip connections and inception modules.
It used 2D slices as input and brain age as a label to learn
brain images from 3 to 95 years of age, learning the process
of brain growth and aging, which is suitable as a pre-training
model for brain age prediction in preterm infants. We applied
transfer learning starting from an already existing model
(DeepBrainNet) trained on 2D slices from preterm infant
datasets. For comparison, we used the same datasets to train
DenseNet-169 and ResNet-101, which are often used for
brain age prediction tasks. Adam Optimizer was used to
optimization during training, the initial learning rate was set
to le-4, the weight decay rate was le-7, the batchsize was set
to 40, the epoch was set to 200.

E. DEVELOPED 3D-BAPNET

Since 3D-CNN can be capable of learning the information
of the whole 3D image, we also developed the 3D-BAPNET
to predict the brain age of preterm neonates. For obtaining
the best strategy to train 3D-BAPNET, three state-of-the-art
CNN architectures (DensNet-169, ResNet-101, and ResNet-
152) were investigated in this study. Weights pre-trained for
ImageNet classification were employed to initialize the CNN
architectures.

(1) Residual module (ResNet)

y=o0(F(x,W)+x) ey
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Cerebrospinal fluid
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Gray matter

(d) Axia (example 1)

(b) 3D input (79x95%79)

(c) 2D input (79x95)

Cortical fold

(e) Axia (example 2)

FIGURE 2. Example of data pre-processing: (a) The NIfTI-1 file format of the T1-weighted images. (b) Processed image
for 3D-CNN input. (c) Slices for 2D-CNN input. (d) Axia (example 1). (e) Axia (example 2).

y represents the output of residual blocks; o (-) represents
the activation function; F(-) represents the residual function;
x represents the input and W represents the weights in the
residual block.

(2) Dense connection mechanism (DenseNet)

x=H, ([xo.x1, ... x1]) ©)
t represents the number of convolutional layers;
x, represents the output of layer ¢, and H, rep-

resents a nonlinear transformation, which is channel
merging.

All the functionality, experiments, and analysis were
implemented used Python (NumPy 1.16, for array manip-
ulation; opencv-python 4.1.0 and Pillow 6.0 for image
operations; and scikit-learn 0.19.1 for performance quantifi-
cation) and Google Tensorflow (for the implementation of the
deep learning architecture). The overview of the brain age
prediction process is shown in Fig. 3. The detailed structure
of the model is presented in Supplementary Material and Data
Availability.

F. STATISTICAL ANALYSIS AND EXPERIMENTAL
FRAMEWORK

The deep learning models were developed with TensorFlow,
Keras and Python. The original patient data were divided into
a training set and a test set in the experiments. TensorFlow,
Scikit-learn, and Python were used for statistical analysis.
The performance of the BAPNET was evaluated by calculat-
ing the MAE, RMSE, and r on the test set. We also calculated
the 95% - 95% content tolerance interval and 95% prediction
interval for a difference between BAPNET and the ground
truth (true value).
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IIl. RESULTS

A. DATASET CHARACTERISTICS

To develop a deep learning model for predicting the brain age
of preterm neonates using routine clinical brain MR images,
we enrolled 281 preterm infants aged 28 to 37 weeks (Fig. 1
shows the distribution of participants). This was a retrospec-
tive study in which each subject received an MRI scan of
the head after birth. The holdout method was employed to
randomly divide the 281 MR images into two parts, one part
with 211 MR images used for training and tuning, and the
other part containing 70 images as a test datasets.

B. PERFORMANCE OF THE 2D-BAPNET

The 2D-BAPNET achieved MAE of 1.15 weeks, RMSE of
1.57 weeks, R of 0.72 in the test set. The MAE of the
ResNet101 and DenseNet169 were 1.22 and 1.51, respec-
tively, while the RMSE could only reach 1.60 and 1.96,
indicating that transfer of brain knowledge has benefits to
predict brain age. MSE, R, and other metrics are shown in
Table 1. Compared to the reference standard, 2D-BAPNET
was considered to achieve high accuracy in predicting the
brain age of preterm infants aged 28-37 weeks.

Preterm infants were divided into three groups based on
their gestational week of birth including early preterm infants
(28-32 weeks), moderately preterm infants (32-34 weeks),
and late preterm infants (34-37 weeks). Preterm infants
require appropriate treatment protocols at different stages.
It is necessary to divide the age into three age groups based
on gestational weeks and separately evaluate the prediction
results of the three groups. The MAE of Group A, B, and
C were 2.60, 0.53, and 1.64, respectively. Table 2 shows
the assessment results from 2D-BAPNET. We also observed
that most predictions for moderately preterm infants and late
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FIGURE 3. Overview of the brain age prediction process. (a) Preprocessing. (b) Training and tuning. (c) Testing. (d) Predict.

TABLE 1. Model performance in predicting the brain age of preterm
infants.

MAE MSE RMSE r

3D-BAPNET 1.80 3.56 1.89 0.96

.3D DenseNet169 2.46 6.21 2.49 0.98
architecture

ResNet152 2.10 4.62 2.15 0.97

2D-BAPNET 1.15 2.47 1.57 0.72

2D ResNet101 122 255 160 071
architecture

DenseNet169 1.51 3.85 1.96 0.16

preterm infants are closer to the true values compared with
others in Fig. 4.

To further assess the reliability of the predicted results,
we drew the residual plot (Bland-Altman plot). The residual
plot shows the relationship between the mean and the differ-
ence between the predicted and actual value, which is shown
in Fig. 5. We also plot the tolerance interval for the difference,
which is shown in Fig. 6. The 95%-95% content tolerance
interval and 95% prediction interval for a difference in all
groups is [-3.82, 3.39] and [-3.37, 2.93].

C. PERFORMANCE OF THE 3D-BAPNET

In 3D-CNN, ResNet101 achieved the optimal performance
with MAE of 1.80 weeks, RMSE of 1.88 weeks, R of 0.96 in
the test set, which was named as 3D-BAPNET. The MAE
of the ResNetl152 and DenseNet 169 were 2.10 and 2.46,
respectively, while the RMSE could only reach 2.15 and 2.50.
To further assess the superiority of our model, we also plotted
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the residuals (Bland-Altman plot), as shown in Fig. 5 (B).
The 95%-95% content tolerance interval and 95% prediction
interval for a difference in all groups is 0.51-3.09, 0.67-2.93,
respectively. We were able to find that BAPNET-3D provides
upper predictions than the true values for all values.

D. THE RELIABILITY OF 3D-BAPNET

In comparison of the 2D-BAPNET and 3D-BAPNET model,
the MAE of 1.15 for 2D-BAPNET are lower than 1.80 for
3D-BAPNET. However, the R of 0.9 for 3D-BAPNET is
significantly higher than 0.7 for 2D-BAPNET, and it can
be seen that the RMSE/MAE in the 2D-BAPNET are larger
than that in the 3D-BAPNET. As shown in Fig. 5 and
Table 2, the performance of 2D-BAPNET for predicting early
preterm group is obviously insufficient (MAE = 2.60), which
is also the reason why RMSE is significantly greater than
MAE. To deeply analyze the prediction performance of 2D-
BAPNET and 3D-BAPNET, we plotted the Bland-Altman
plots. In general, 3D-BAPNET has a smaller 95%-95% con-
tent tolerance interval and 95% prediction interval, and has
a stable distribution of differences in predicted values for
each group. There is a trend in the 2D-BAPNET, it system-
atically provides over-estimation predictions for low values
and under-estimation for high values, 3D-BAPNET looks
better. It is worth mentioning that the predicted values in the
2D-BAPNET were concentrated in the interval [32, 35] and
had the worst predictions in the early group, while the 3D-
BAPNET achieved the best predictions in the early group.

E. HEATMAPS HIGHLIGHT THE REGIONS OF HINDBRAIN
AND CORTICAL FOLD

To visualize the regions contributing to the BAPNET, we gen-
erated a heatmap that superimposed a visualization layer at
the end of the CNN [23]. We found that heatmaps highlighted
the regions of the hindbrain and cortical fold. To verify the
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FIGURE 4. Scatterplots and regression lines showing the correlation between predictions from the model (Predict) and the reference standard (True).
(a) 2D-BAPNET. (b) 2D ResNet101. (c) 2D DenseNet169. (d) 3D ResNet152 (e) 3D DensNet169 (f) 3D-BAPNET. Red: Early preterm infants; Blue:
moderately preterm infants; Green: late preterm infants. Six experiments were conducted to compare the regression performances of different

models. The color represents the regression performance of different groups of premature infants.
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FIGURE 5. Bland-Altman plots compare brain age predictions between the 2D-BAPNET or 3D-BAPNET and the reference standard.
The black solid line represent the mean difference, and the green solid line and blue solid line represents the 95% prediction
interval and the 95%-95% content tolerance interval, respectively. “Y” represents the true value and “x” represents the predicted
value. table 2 records the value of the 95% prediction interval and the 95% - 95% content tolerance interval. Take b (a) as an
example, the 95% prediction interval is [0.67, 2.93], which means that one is 95% confident that the next infant will be measured
with a difference between 0.67 and 2.93 between the predictive value and ground truth. And the 95%-95% tolerance interval is
[0.51, 3.09], which means that one is 95% confident that at least 95% of the future differences between the predictive values and
true values are expected to lie between 0.51 and 3.09. (a) 2D-BAPNET. (b) 3D-BAPNET. (a) all groups. (b) early preterm groups.

(c) moderately preterm group. (d) late preterm groups.
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FIGURE 6. Example of heat maps from BAPNET and comparison with the
study of Kara et al. [25]. The heat map illustrates the importance of local
areas within the image for prediction. The importance value is scaled
between 1.58 and 1.80, where a higher number indicates that the area is
of higher importance. (A) Heat map from BAPNET. (B) Specific growth
maps for individual brains in preterm infant from Kara et al.

accuracy of the model’s heat map, we compared it with a
recent study that proposed a unique method to estimate local
growth from sequential cortical reconstructions in preterm
infants [25]. Examples of heat maps are shown in Fig. 6.

IV. DISCUSSION
In this study, deep learning was used to predict the brain age
of preterm infants. To the best of our knowledge, this is the
first study to focus on the use of CNN for predicting the brain
age of preterm infants. Extensive experiments demonstrate
that our deep learning neural networks-based model could
predict the brain age of preterm infants accurately. In our
internal test datasets consisting of brain images of preterm
infants, the 3D-BAPNET is more reliable in predicting the
brain age of preterm infants in all groups, the MAE and
RMSE were 1.80 and 1.88, respectively. Although the MAE
of 2D-BAPNET was only 1.15, the model is less stable
because the MAE of early group is high as 2.60. Generally
speaking, our BAPNET model shows practicality for using
Al technologies to automatically estimate the brain age of
preterm infants, with important implications for neonatal care
and assessment of brain maturation in preterm infants.

As the above references report, Toews et al. constructed
a brain age prediction model for infants between 8 and
590 days, with a final MAE of 72 days [26]. Hong et al.
constructed a 3DCNN model using MRI of infants and chil-
dren up to 5 years of age, and the MAE of the predicted
outcome was 67.6 days [27]. Hu et al. built a deep learning
model for infants aged 14-797 days with a model MAE of
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TABLE 2. The performance of BAPNET in predicting the brain age of
preterm infants in different groups.

Mean

Mean Difference Difference

RMS

MAE MSE E (95%-95% Content (95%

Tolerance Interval) Prediction

Interval)

1.80 1.80

All groups 1.80 3.56 1.89 (0.51,3.09) (0.67,2.93)
1.28 1.28

3 Early group 1.28 1.81 1.35 (:0.04, 2.60) (0.30,2.25)
D Moderately 1.88 455 1.96 1.88 1.88

group : . : (0.58,3.18) (0.78, 2.98)
2.10 2.10

Late group 2.10 4.55 2.13 (0.86,3.33) (1.19,3.01)
-0.22 -0.22

All groups 1.15 2.47 1.57 (-3.82, 3.39) (:3.37,2.93)
-2.60 -2.60

) Early group 2.60 7.88 2.81 (-5.95, 0.76) (-5.08,-0.11)

D

Moderately -0.01 -0.01

group 0.53 0.55 0.74 (-1.81,1.83) (-1.54, 1.52)
1.65 1.65

Late group 1.65 3.00 1.73 (-0.10, 3.39) (037,2.93)

Note: Early group = Early preterm infants, Moderately group = Moderately
preterm infants, Late group = Late preterm infants.

32.1 days [28]. However, since the brain development of
preterm infants differs from that of infants and toddlers, the
results of related studies can only be used as a reference.
We used DeepBrainNet’s pre-training parameters for transfer
learning and obtained 2D-BAPNET. This is the first 2D-CNN
model for assessing brain maturity in preterm infants, which
was trained on the preterm infant data set for the brain age pre-
diction task, and achieved the best results compared to other
2D networks. In particular, we developed three 3D-CNN
models (ResNet and DenseNet), all used transfer learning.
These models were initialized with network weights of the
ImageNet [29], and further trained and tested for the same
data set with 2D-BAPNET.

We also created heat maps by the Grad-CAM technique
to visualize the regions that contributed the most to the pre-
diction of the model [23]. As shown in Fig. 6, BAPNET
highlights the hindbrain region, especially the cortical folding
region. In some slices, model attention is focused on the
volume and shape of the entire brain. The latest research
shows that the human brain exhibits complex folding patterns
that emerge during the third trimester of fetal development.
In addition, the structural data suggest that growth might
vary in both space (by region on the cortical surface) and
time. We compared the heat map with a study that visualized
cortical folding in preterm infants [25]. The results show that
the regions of interest of BAPNET largely match with related
studies, which implies that our model can also visualize the
focal regions of brain development in preterm infants.

In this research domain, potential applications of BAPNET
may include: (1) Study of brain development in preterm
infants, with special reference to the temporal and spatial dis-
tribution of cortical folding; (2) Analysis of catch-up growth
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in preterm infants; and (3) Research on brain disorders in
infants and children, with special reference to brain degen-
eration. In the clinical domain, potential applications in the
future could include: (1) It can be packaged as an easy-to-
deploy brain analysis software for clinical in brain maturation
assessment of preterm infants; (2) Deployed as a rapid, low-
cost treatment tool to primary care institutions for graded
care; (3) Large-scale diagnosis in backward areas.

Although the present study has proven the potential of
BAPNET in predicting the brain age of preterm infants, this
is the first step in the application of artificial intelligence
technology to brain maturity assessment in preterm infants.
Our model has several limitations which we wish to address
in the near future: (1) Due to the uniqueness of the data on
preterm infants and the difficulty of MRI image acquisition,
only 281 MRI images from a single-center were included
in our study. This is the reason for the poor stability of the
2DBAPNET model. In the future, we hope to conduct multi-
center research. (2) Due to the unique dataset of preterm
infants, it is not possible to rely on the existing brain atlas for
segmentation of white matter, gray matter, and cerebrospinal
fluid, which is why only T1-MRI was used in our study
instead of multimodality data. (3) In this experiment, all
preterm infants with underlying brain disorders, psychiatric
disorders, neurological disorders, and structural brain abnor-
malities were excluded. In the subsequent research, we will
focus on the improvement of data quantity and quality, as well
as the improvement of the model performance.

V. CONCLUSION

To obtain a low-cost, non-invasive, robust, and deployable
approach for accurate, quantitative, and objective prediction
of the brain age for premature infants, we developed the first
brain age prediction model for preterm infants, BPANET,
to assess brain development and highlight the most signifi-
cant locations of growth and development of preterm infants.
It demonstrated that deep learning could precisely predict
brain age from T1-weighted images of preterm infants.
Prediction of brain age with deep learning has significant
implications for the care and treatment of preterm infants.
Our BAPNET model has the potential to be scalable into
a quantitative tool for brain maturity estimation in preterm
infants and is expected to be an objective reference for the
catch-up growth of preterm infants.
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