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ABSTRACT In recent years, virtual reality technology has become the dominant means of human-computer
interaction, with computer graphics rendering technology being a crucial component in realizing virtual
reality experiences. Rendering technology is an interdisciplinary field that encompasses various disciplines,
including computer science, mathematics, and physics. Consequently, it faces challenges when it comes
to designing graphics rendering processors and graphics extension instruction sets based on the RISC-
V architecture. This paper utilizes the LLVM compiler to design support for RISC-V RV32X graphics
extension instructions, encompassing both assembly-level and compilation-level support. It compiles the
graphics rendering program in conjunction with the compilation tool chain. Feature extraction of the graphics
rendering program is performed using script and feature analysis tools. The microarchitecture independent
characteristics of the graphics rendering programs on the RISC-V architecture, X86 architecture, and ARM
architecture are compared and analyzed at both the instruction level and memory level. The experimental
results demonstrate that the RISC-V ray tracing test program exhibits higher instruction-level parallelism
compared to the X86 ray tracing program, but lower than the ARM ray tracing program. Moreover, in terms
of instruction mix, the proportion of arithmetic instructions in the RISC-V ray tracing test program is higher
than that in the X86 ray tracing program but lower than that in the ARM ray tracing program. The proportion
of memory access instructions in the RISC-V ray tracing test program is higher than that in the X86 ray
tracing program, while lower than that in the ARM ray tracing program. Additionally, the RISC-V ray tracing
test program exhibits relatively short memory reuse distance, enabling efficient data reuse in registers and
reducing the need for frequent memory access.

INDEX TERMS LLVM, RISC-V, RV32X, ray tracing, graphics rendering.

I. INTRODUCTION
In recent years, the concept of the Metaverse has gained
increasing attention from the public. But what exactly is the
Metaverse? Some describe it as the virtual world portrayed
in the movie ‘‘Ready Player One,’’ where individuals can
freely live and interact through virtual avatars [1]. In real-
ity, the Metaverse refers to a social platform that combines
Virtual Reality (VR) technology with specialized hardware
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devices, offering highly immersive experiences. VR tech-
nology, a modern and high-tech method, utilizes computer
technology as its core. By employing VR headsets or multiple
projection environments, users can immerse themselves in
realistic images, sounds, and other sensations that simulate
real presence within a virtual environment [2], [3]. They
can interact with virtual objects and features, leveraging
high-quality VR technology to navigate and explore the vir-
tual world. Such seamless and immersive interaction relies
on powerful computing support from the graphics rendering
pipeline.
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Over the past decade, 3D graphics have become stan-
dard features in processor designs, such as those from Intel
and ARM, and their graphics processing capabilities have
reached new heights. The RISC-V instruction set archi-
tecture (ISA) is known for its open-source, scalable, and
modular features [4], [5]. In recent years, CPU and GPU
designs have focused on RISC-V graphics extensions, includ-
ing implementing RISC-V graphics extension interfaces in
OpenCL and simulating Vortex GPU on an FPGA using the
RISC-V graphics ISA extension [6], [7]. By incorporating
graphics rendering instruction extensions into chip designs,
the fragment rendering process can be designed as a fixed
pipeline, enabling chips to achieve high performance with
low power consumption [8]. While standard, compressed,
and vector instruction extensions have received comprehen-
sive toolchain support from the RISC-V community, users
need to implement custom toolchain support for non-standard
RISC-V custom instruction set extensions [9], [10].

The next generation of graphics rendering technology
introduces programmable rendering pipelines and parallel
computing architectures [11], [12], [13]. These powerful
parallel graphics computing capabilities enable efficient and
rapid processing of highly realistic game graphics effects.
However, modern processing technologies have yet to be
fully exploited, resulting in issues such as screen choppiness,
stutters, and dropped frames during game graphics rendering
processes. The RISC-V ISA possesses characteristics such
as concise instruction formats, clear decoding and decoding
units, small chip sizes, and fast running speeds [14], [15]. This
paper presents a new RISC-V graphical extension instruc-
tion set, which is designed to enhance the performance and
efficiency of computer graphics processing. It analyzes the
structural characteristics of the RISC-V ray tracing program
at the instruction and memory levels and compares them
with the same ray tracing program running on ARM and
X86 processors. The paper combines feature analysis of ray
tracing programs on the RISC-V architecture and designs
a set of RISC-V RV32X graphical extension instructions
in LLVM, utilizing the compiled executable file of the ray
tracing program for feature analysis.

II. INTRODUCTION TO GRAPHICS RENDERING
When users experience graphics animation, they are actu-
ally enjoying a series of static images that switch at a high
speed, exceeding the range of human visual perception.
As a result, these images appear to be continuous when
people watch animations [16], [17]. The smoothness of the
perceived images is determined by the rendering process,
which involves generating two-dimensional images on the
screen from three-dimensional objects, considering factors
such as the spatial positions of objects in the scene, the
virtual camera viewpoint, lighting models, light sources, tex-
tures, and more [18]. Currently, the main rendering methods
include ray tracing rendering [19] and rasterization rendering
[20], [21].

FIGURE 1. Graphics rendering Pipeline.

FIGURE 2. Ray tracing rendering effect diagram.

A. GRAPHICS RENDERING PIPELINE
The graphics rendering process consists of four stages. The
first stage is the application stage, where input data such as
observed objects, the environment, observer attributes, cam-
era position, and angle are added to the graphics rendering.
For instance, when drawing a triangle, the 3D coordinates
and color attributes of its three vertices can serve as input
data for graphics rendering, representing the triangle [21].
The second stage is geometric processing, which involves
converting the triangle from camera space to screen space
and clipping triangles that are outside the camera’s field of
view. This operation transforms the triangle from 3D space
to 2D space. The third stage is rasterization, which automat-
ically calculates pixel information for triangle meshes and
each edge, and interpolates pixel information for the trian-
gle meshes based on their coverage, ensuring gradual pixel
changes across the entire triangle [22], [23], [24]. The fourth
stage is pixel processing, where additional attributes of the
triangle, such as lighting, shadows, and color, are combined
to calculate the final color of each pixel. Finally, the color
buffer outputs all pixel information to the screen.

B. RAY TRACING ALGORITHM
Ray tracing is a technique that enhances the realism of
computer graphics by decomposing the rendering of a scene
into multiple rays originating from the camera and inter-
acting with the scene. Each ray traverses the scene in
parallel, intersecting with surfaces and gathering informa-
tion about materials, textures, and more at the intersection
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FIGURE 3. LLVM-based RISC-V RV32X graphics extension support and
graphics program feature analysis framework design diagram.

point. Lighting calculations are performed based on the gath-
ered information about light sources. This article presents
a benchmark program for ray tracing, which renders an
image featuring 100 randomly generated small spheres and
three large spheres. In this program, materials and geometric
objects are rendered separately, allowing geometric objects to
possess various textures such as sub-surface scattering, insu-
lation, metal, and more. This greatly enhances the flexibility
and realism of ray tracing. The large sphere in the distance
of the rendered image is rendered with a diffuse sub-surface
scattering material, showcasing the object’s inherent color
after scene rendering. The middle sphere has a transparent
material, reflecting and refracting a portion of the light as it
passes through. The large sphere in the foreground reflects a
portion of the light, revealing the surrounding small spheres,
and refracts a portion of the light, displaying its own color.

The ray tracing algorithm imbues each ray with informa-
tion about neighboring rays, resulting in images that closely
resemble the real world. This article gradually implements
a ray tracing program by incrementally adding rendering
features. The clang compiler, together with LLVM’s RISC-
V backend, will be utilized to compile various ray tracing
feature programs. Additionally, a scripting language will be
employed to analyze the relationships between ray tracing
program features on RISC-V, ARM, and X86 architectures.

III. LLVM RV32X GRAPHICS EXTENSION
The latest version of LLVM now supports the IMA FDQCVP
instruction subset in the RISC-V architecture. In this chapter,
we will add support for RISC-V RV32X graphics extension
instructions and describe the specific functions of graphics
rendering instructions in the rendering pipeline.

The diagram depicts the framework design for supporting
RISC-V RV32X graphic extension and analyzing graphic
program features using LLVM. The framework comprises
three main parts: The first part involves implementing a ray
tracing benchmark, which includes typical algorithms for
rendering spheres, surface normals, anti-aliasing, material
rendering, and metal reflection. The second part involves
implementing the RISC-V RV32X graphic extension using

FIGURE 4. Description of RV32X graphics extension information.

LLVM and the g++ compiler on the X86 architecture. The
third part focuses on analyzing graphic program features,
including instruction-level parallelism and instruction mix at
the instruction level, and register dependency distance and
memory reuse distance at the memory level.

RISC-V RV32X graphic extension presents certain chal-
lenges for compiler design and implementation. Firstly,
unlike the RISC-VRV32GCV instruction subset, the RISC-V
LLVM compiler lacks official documentation for graphic
extension support and is currently still under discussion.
Secondly, RISC-V RV32X graphic instructions need to be
designed based on the characteristics of graphic rendering
programs. Graphic rendering programs mainly include two
categories: ray tracing programs and rasterization programs.
As rasterization programs need to be implemented through
the rasterization stage of theGPU rendering pipeline, this arti-
cle chooses to write ray tracing programs as the benchmark
test program for RV32X. Lastly, the RISC-V RV32X graphic
extension instruction set needs to add some GPU rendering
pipeline operation instructions to facilitate data processing
in the rendering pipeline data, L1 cache, and L2 cache.
Additionally, a bigger challenge is that future RISC-V Fused
CPU-GPU processors can be compatible with Vulkan and
subsequently support other graphic APIs such as OpenGL
and DirectX. The complete code for the RISC-V RV32X
graphic extension support, including the implementation of
seven ray tracing benchmarks, has been open-sourced in this
article’s code repository: https://gitlab.com/williamwp/riscv-
rv32x-llvm.git.

A. RISC-V RV32X FEATURE DEFINITION
LLVM is a comprehensive compilation framework that
includes front-end, intermediate code, and back-end integra-
tion, which can support multiple instruction set architectures.
LLVM’s support for the RISC-V architecture includes the
definition of instruction set features, register information,
instruction information, calling conventions, calling models,
and more. Using the TableGen language, LLVM helps users
define large-scale architectural descriptions, reducing devel-
opment difficulty and improving efficiency. Depending on
the specific architecture developed by the user, LLVM con-
verts the .td file written in the TableGen language into C++

source files [26], [27], [28]. The instruction information of the
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RV32X graphic extension mainly describes the register infor-
mation and instruction information of the backend using the
TableGen language. The RISC-V RV32X graphic extension
instruction set defines a set of image processing instructions
that can be efficiently used for 3D imaging and media pro-
cessing. The RISC-V RV32X graphic extension instruction
set integrates CPU and GPU, including pixel processing
subsets, graphics pipeline processing subsets, image texture
processing subsets, and image vertex shading processing sub-
sets. The pixel processing subset performs operations such as
image width and height processing, Z value detection, raster-
ization, and frame buffer image transformation processing.
The graphics pipeline processing subset performs image pro-
cessing operations of different sizes in the graphics rendering
process. The image texture processing subset performs 2D or
3D image texture processing, texture mapping, drawing, and
other operations. The image vertex shading processing subset
handles pixel data clearing and marking operations between
the vertex shader, L1 cache, and L2 cache.

This article describes the features of the RV32X graphic
extension instructions in the RISCV.td file using the Table-
Gen language. In the definition of the graphic extension
instruction features, the FeatureStdExtX feature inherits from
SubtargetFeature and defines its name, attribute values, and
text description through template parameters. Additionally,
an assertion named HasStdExtX is defined, which sets the
condition for instruction selection and matching with assem-
bly instructions. The support for RV32X extension features
has enabled the RISC-V architecture to enter the field of 3D
graphic processing and multimedia applications.

Code Example 1: Definition of the Graphic Extension
Instructions Features

def FeatureStdExtX
: SubtargetFeature<‘‘x’’, ‘‘HasStdExtX’’,
‘‘true’’, ‘‘’X’ (Graphics Operations)’’>;

def HasStdExtX :
Predicate<‘‘Subtarget->hasStdExtX()’’>,
AssemblerPredicate<(all_of FeatureStdExtX),
‘‘ ‘X’ (GraphicsOperations)’’>;

B. RV32X REGISTER SUPPORT AND INSTRUCTION TYPES
The RISC-V RV32X graphics extension instructions are
designed to work in tandem with vector extension instruc-
tions, enabling the processor to efficiently process pixel
operations, includingmultiply-accumulate functions. In addi-
tion to utilizing the 32 general-purpose registers (x0-x31)
and 32 floating-point registers (f0-f31), the RV32X exten-
sion also introduces 32 vector registers (v0-v31) to store
data. This eliminates the need for additional general-purpose
registers. To enable configuration and recording of runtime
states, RISC-V RV32X introduces six newControl and Status
Registers (CSRs), which are internal to the CPU core and
use a 12-bit address encoding space. The RISCVSystem-
Operands.td file utilizes the TableGen language to describe

FIGURE 5. VERTEX_FETCH, GET_BUFFER,GET_LOD and SAMPLE_C
instruction encoding.

these new CSRs. In the description of the status register infor-
mation, the RV32X graphics extension CSRs are defined.
The GCSR register inherits from the SysReg parent class
and is primarily used to control graphics operation modes
and record exception status. The GHCR register is a graphics
hardware operation register that mainly operates on the frame
buffer components during pixel operations. The frame buffer
is a hardware component used to store image rendering data,
with each pixel represented by data ranging from 4 to 63 bits
to denote brightness and color. GFLUSH is another graph-
ics hardware operation register that is mainly used to clear
the graphics rendering pipeline to ensure smooth rendering.
Finally, GZBUFFER is a graphics hardware operation regis-
ter primarily used to clear all depth information in the depth
buffer. The depth buffer stores position information for each
pixel, enabling the representation of front-back occlusion
relationships between pixels.

Code Example 2: Description of Status Register Information
def GCSR : SysReg<‘‘gcsr’’, 0 × 7.0>;
def GHCR : SysReg<‘‘ghcr’’, 0 × 7.1>;
def GFLUSH : SysReg<‘‘gflush’’, 0 × 7.2>;
def GCINS : SysReg<‘‘gcins’’, 0 × 7.3>;
def GTCINS : SysReg<‘‘gtcins’’, 0 × 7.4>;
def GZBUFFER : SysReg<‘‘gzbuffer’’, 0 × 7.5>;

The definition and corresponding support for SysReg have
been implemented in the current LLVM RISC-V backend
framework. Therefore, users only need to add the correspond-
ing TableGen description. When using the assembler, you
can use the register’s name as a symbolic operand for the
instruction.

The LLVM-based RISC-V RV32X support provides the
instruction encoding format for several instructions: VER-
TEX_FETCH for vertex data extraction, GET_BUFFER for
cache data extraction, GET_LOD for XY-axis pixel config-
uration, and SAMPLE_C for texture sample processing. The
assembly syntax for these instructions is as follows:

1) vertex_fetch rs1
2) get_buffer rs1
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FIGURE 6. RVInst, RVInstVertex and RVInstTexture instruction format.

3) get_lod rs1
4) sample_c rs1
This paper observes that these four instructions share the

same operands, with the only difference being their distinct
20-24-bit encodings.

This article defines instruction information using Table-
Gen, which allows for individual instruction definition aswell
as class template definition. This approach centralizes the
definition of instructions with similar operands and avoids
redundant instruction descriptions. In addition, the opcodes
for instructions 0-6 are defined as 0001011, which is a
custom-0 primary encoding reserved by RISC-V for defining
subsets of instructions. In the RISCVInstrFormats.td file,
the RVInst class is defined to represent the 32-bit instruc-
tion format. The article also introduces the RVInstVertex
template class and RVInstTexture template class. RVIn-
stVertex represents image vertex-related instructions such as
VERTEX_FETCH and GET_BUFFER, while RVInstTex-
ture represents rendering pipeline-related instructions such
as LOOKFROM for camera position mapping, LOOKAT for
camera viewpoint mapping, and CLIP for screen clipping.

This article introduces a new RISCVInstrInfoX.td file to
define specific extension instructions. In the class template
directive information description, the RVInstVertex class is
defined, including instruction output and input operands,
instruction encoding strings, and the 20-24 bit instruction
encoding. Within the same template class, each instruction
can be defined using the ‘‘def’’ statement and template
class inheritance in the TableGen language, which is then
converted into LLVM-compatible C++ source code. Addi-
tionally, individual instructions can also be defined directly
by inheriting from the Instruction class. Firstly, the 32-bit
instruction format, source and destination register encoding
format, and whether it belongs to the RISC-V or other archi-
tecture namespace are defined for each instruction. Finally,
the assembly string format is also defined.

C. RV32X TEST VERIFICATIONS
After supporting RV32X graphics extension instructions, this
article writes test cases to verify the support of RV32X graph-
ics extension instructions. According to the existing LLVM

Code Example 3: Class Template Tirective Information
Description
Class RVInstVertex<bits<5> funct5, RISCVOpcode
opcode, dag outs, dag ins, string opcodestr, string argstr>
: RVInst<outs, ins, opcodestr, argstr, [],

InstFormatOther> {
bits<5> rs1;
let Inst{31-25} = 0b0000001;
let Inst{24-20} = funct5;
let Inst{19-15} = rs1;
let Inst{14-12} = 0b000;
let Inst{11-7} = 0b00000;
let Opcode = opcode.Value;
}

test framework, this article adds rv32x-invalid.s and rv32x-
valid.s assembly files in the llvm /test/MC/RISCV directory.

Code Example 4: RV32X Test Case
# RUN: llvm-mc %s -triple=riscv32 -mattr= +x -riscv-
no-aliases -show-encoding \

# RUN: | FileCheck -check-prefixes=CHECK-
ASM,CHECK-ASM-AND-OBJ %s
# CHECK-ASM-AND-OBJ: get_buffer a1
# CHECK-ASM: encoding: [0× 0b, 0× 80.0×35, 0× 02]
get_buffer a1
# CHECK-ASM-AND-OBJ: vertex_fetch a1
# CHECK-ASM: encoding: [0× 0b, 0× 80.0xb5, 0× 02]
vertex_fetch a1

RV32X test case provides assembly tests for the vertex
data extraction instruction VERTEX_FETCH and the buffer
data extraction instruction GET_BUFFER, with the first two
lines of test commands starting with RUN and the attribute
mattr=+x indicating the added support for RV32X graphics
extension. This article uses the llvm-lit tool to test assembly
files in a specified directory, and the LLVM assembler will
check the accuracy of the assembly instructions in com-
bination with the command-line detection tool FileCheck.
RV32X test case pass is the assembly instruction test case
for rv32x-invalid.s and rv32x-valid.s, where rv32x-valid.s
includes 56 new RISC-V RV32X graphics extension custom
instructions. Running llvm-lit tests on both assembly files at
the same time reveals that the encoding of these two assembly
files is correct.

Code Example 5: RV32X Test Case Pass
$./build/bin/llvm-lit -v llvm/test/MC/RISCV/rv32x∗
– Testing: 2 tests, 2 workers –
PASS: LLVM :: MC/RISCV/rv32x-valid.s (1 of 2)
PASS: LLVM :: MC/RISCV/rv32x-invalid.s (2 of 2)
Testing Time: 0.13s
Expected Passes: 2
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At the same time, this article adds assembly support for the
RV32X graphics line extension instruction control and status
register in machine-csr-names.s. Example code 6 provides
assembly instruction support for the GCSR register, where
the instruction encoding of the GCSR register is determined
by the LLVM assembler. Additionally, corresponding register
aliases are added in machine-csr-names.s. Among them, csrrs
represents the post-read control status register. For example,
‘csrrs t1, gcsr, zero’ writes the value of the graphics hard-
ware operation register into the temporary register t1. In the
RISC-V application program, t1 is the binary interface name,
and its prototype is the general Register x6. As a temporary
register, t1 primarily serves to pass function parameters and
retain temporary call values.

Code Example 6: Register Test Case
# RV32X Machine Extension CSRs
# CHECK-INST: csrrs t1, gcsr, zero # gcsr # name
# CHECK-ENC: encoding: [0×73.0×23,0×00.0×7c]
# CHECK-INST-ALIAS: csrr t1, gcsr # uimm12
# CHECK-INST: csrrs t2, gcsr, zero
# CHECK-ENC: encoding: [0×f3, 0×23.0×00,0×7c]
# CHECK-INST-ALIAS: csrr t2, gcsr
csrrs t1, gcsr, zero # name
csrrs t2, 0×7.0, zero # uimm12

In addition, this article uses inline assembly to define the
SAMPLE texture operation instruction in the C language file,
uses clang, selects riscv64-unknown-elf for target, selects
64gvx for march, and selects lp64 for mabi to compile
and generate the target file, and then verify the correctness
through the llvm-objdump disassembly tool.

Code Example 7: SAMPLE Instruction Test Case
#include <stdio.h>
int main(){
size_t a,b,c;
a = 1;
b = 2;
asm volatile
(
‘‘sample %[z], %[x], %[y]\n\t’’
: [z] ‘‘=r’’ (c)
: [x] ‘‘r’’ (a), [y] ‘‘r’’ (b)

);
if ( c == 0 ){
return -1;

}
return 0;

}

IV. CHARACTERISTIC ANALYSIS OF RISC-V
RAY TRACING PROGRAM
In this chapter, this article provides 7 ray tracing C language
programs. LLVMandClang are used, with the ‘march’ option

TABLE 1. Ray rracing programs and algorithm description.

set to ‘rv64gc’, to compile and link the RISC-V library
functions for these programs. Additionally, GCC and the X86
architecture library are used to compile the same 7 programs.

A. INSTRUCTION LEVEL ANALYSIS
Instruction-level analysis mainly includes two characteris-
tics: instruction-level parallelism (ILP) and instruction mix.
In this article, the ILP of ray tracing programs on RISC-V
and X86 architectures is analyzed using the seven ray tracing
benchmark programs as examples [29]. We compare the ILP
results of the seven ray tracing programs on X86, ARM, and
RISC-V architectures.

The MICA [30] feature mining tool is used to extract ILP
features of the seven ray tracing programs. MICA assumes
the ILP of perfect cache, perfect branch prediction, and other
factors. For each instruction, it is added to the tail of the
instruction window. If the window is full, the clock time
needs to be increased, and then the instruction ready at the
head of the instruction window is submitted. The output is
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FIGURE 7. Instruction-level parallelism comparison of ray tracing program.

the inherent ILP value for various instruction window sizes,
where ILP32, ILP64, ILP128, ILP256, ILP512, and ILP1024
represent the number of instructions that the processor exe-
cutes in parallel when the instruction window size is set to
32, 64, 128, 256, 512, and 1024 instructions, respectively.
ILP represents the execution of multiple instructions simul-
taneously, and a higher value indicates a higher degree of
parallelism.

We compare the instruction mixes of riscv-antialiasing,
x86-antialiasing, and arm-antialiasing, respectively. This
paper analyzes the instruction mixes of ray tracing pro-
grams for RISC-V, x86, and ARM architectures using the
antialiasing program as an example. Instruction mix refers
to the proportion of each type of instruction in the target
architecture.

This paper extracts the number of times each type of
instruction is executed and categorizes the instructions into
nine types: arithmetic, control-flow, mem-read, mem-write,
m-extension, shift, floating-point, atom-extension, and other,
based on the RISC-V instruction set manual. Other instruc-
tions include control and status register instructions such as
csrrs, csrrw, csrrsi, which are used to send requests to the
runtime environment, instructions for system calls such as
ecall, and instructions for synchronizing memory and I/O
such as fence.

FIGURE 8. RISC-V ray tracing program instruction mix.

At the part of X86 ray tracing instruction mix, we find the
following conclusions: (1) the mix of arithmetic instructions
has the highest proportion, reaching 37.5%; (2) the top three
instruction types ranked by mix percentage are arithmetic
instructions, control-flow instructions, andmem-read instruc-
tions; (3) the mix proportions of mem-read and mem-write
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FIGURE 9. X86 ray tracing program instruction mix.

FIGURE 10. ARM ray tracing program instruction mix.

instructions are 18.72% and 15.57%, respectively. For the
part of x86-antialiasing instruction mix, we use Intel’s feature
profiling tool PIN in combination with the microarchitecture
feature mining tool MICA [31] to classify instructions based
on the X86 instruction set manual. The article classified
instructions into 11 types: mem-read, sse, mem-write, nop,
stack, control-flow, floating-point, shift, string, and other.
By observing the proportion of instruction mix, we find the
following conclusions: (1) mem-read instructions have the
highest instruction mix percentage, accounting for 38.72%,
which is twice that of the mem-read instructions in the riscv-
raytracing program; (2) the top three types of instructions
with the highest percentage of instruction mix are mem-
read, floating-point, and mem-write instructions; and (3) the
percentages of mem-read and mem-write instructions are
38.72% and 14.12%, respectively, which is significantly dif-
ferent from the x86-antialiasing program.

Regarding the part of arm-antialiasing instruction mix,
arithmetic instructions have the highest percentage, reach-
ing 55.83%. In comparison, the percentages of arithmetic

instructions in the riscv-antialiasing and x86-antialiasing pro-
grams are 37.50% and 6.50%, respectively. Specifically, the
proportion of arithmetic instructions in the arm-antialiasing
program is 1.5 times that in the riscv-antialiasing program and
8.6 times that in the x86-antialiasing program. This is because
data processing instructions are the largest family of instruc-
tions in the ARM architecture, including data movement,
arithmetic, logical, comparison, and multiplication instruc-
tions. The ARM architecture can process one operand of
data processing instructions through a barrel shifter. These
instructions only operate on registers, and the instructions
in this architecture do not directly operate on memory. The
ARM architecture is a load/store architecture that only allows
the CPU to interact with memory through load and store
instructions, and all computational parts of the CPU are per-
formed entirely in registers. All operands used in the CPU’s
computation are passed through registers, and the calculated
results are all kept in registers. Therefore, if two pieces of
data in memory need to be added and the result stored in
memory, the registers in the ARM architecture need to load
the data frommemory into registers through load instructions,
perform the calculation, and then store the result in memory
through store instructions. Since the ray tracing program
needs to perform a large number of calculations for ray trac-
ing, background shading, texture filling, and ray intersection
operations, arithmetic instructions in the ARM architecture
are constantly used for calculation operations, which are
then stored in memory as intermediate results and later read
from memory for further calculation. Therefore, arithmetic
instructions have the highest percentage of instruction mix in
the ARM architecture, accounting for more than half of the
total instruction mix percentage.

RISC-V is based on a load and store architecture,
where data in memory can only be read and loaded. The
riscv-antialiasing program operates by reading data from
memory through a pipeline for processing and writing back
the processed data to memory. Since computer images are
composed of pixels, each pixel can be encoded as an
(r, g, b) vector. In this article, a user-defined vec3 struc-
ture is used to store the color values of each pixel, and
the complete pixel data is stored in the P6 image encod-
ing format. Finally, the article outputs a PPM ray tracing
rendering image in the user-defined P6 encoding format.
Therefore, the mem-read instruction for reading from mem-
ory and the mem-write instruction for writing to memory
are almost equally prevalent in the riscv-antialiasing pro-
gram, with a slightly higher prevalence of the mem-read
instruction.

Arithmetic instructions in RISC-V can only operate on
registers, which results in a relatively high proportion of
arithmetic instructions in the instruction mix. RISC-V has a
normalized encoding, which, when used to compile graphics
ray tracing programs, can better utilize the small code size
of RISC-V, allowing the running code to be conveniently
stored in CPU caches. This greatly helps improve processor
performance.
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FIGURE 11. Register dependent distance.

B. MEMORY LEVEL ANALYSIS
Memory-level analysis focuses on register dependency dis-
tance and memory reuse distance. Taking the antialiasing
ray tracing program as an example, this article analyzes
the register dependency distance of RISC-V and x86
architectures [32]. Register dependency distance refers to
the number of dynamic instructions generated between
writing data into a register and reading the same data
from the register. The x-axis represents reg_depend_1,
reg_depend_2, reg_depend_4, reg_depend_8, reg_depend_
16, reg_depend_32, and reg_depend_64, which respectively
indicate the percentage of dynamic instructions generated
between writing and reading multiple registers to the total
number of instructions.

Through observation, the following findings were made:
(1) When the register dependency distance is reg_depend_1,
the percentages of RISC-V, x86, and ARM antialiasing ray
tracing programs are the smallest, at 6.3%, 6.2%, and 7.8%
respectively. (2) When the register dependency distance is
reg_depend_64, the percentages of RISC-V, x86, and ARM
antialiasing ray tracing programs are the largest, at 20.1%,
21.6%, and 20.4% respectively. (3) With the increase in
register dependency distance, the percentage of register
dependency distance also increases. The register dependency
distance of antialiasing ray tracing programs is similar for
RISC-V, X86, and ARM architectures. RISC-V architec-
ture adopts a Reduced Instruction Set Computing (RISC)
architecture, which primarily involves operations between
registers during instruction execution, with less frequent
access to memory. This reduces memory access latency and
power consumption. Additionally, RISC-V architecture has
more registers, enabling the processor to utilize local regis-
ters more efficiently during instruction execution, reducing
register transfers and further decreasing the register depen-
dency distance. Therefore, the register dependency distance
of RISC-V architecture is relatively short, which contributes
to its performance and power consumption advantages.

We can utilize gem5’s statistical feature to gather data
on register accesses [33]. By configuring gem5 to collect
information about registers, such as tracking the number of
read and write operations for each register and observing
the distribution of these operations throughout the program’s

FIGURE 12. RISC-V register usage ordering.

execution, we can analyze the collected statistics to determine
the number of registers used by a specific program during its
execution. The four registers sp, a5, a0, and zero are most
frequently used in the ray tracing program. The sp register,
serving as the stack pointer register, plays a critical role in
the ray tracing program. Ray tracing algorithms often involve
recursion or complex function call hierarchies, requiring the
storage of temporary variables and the context of function
calls on the stack. The sp register is used to point to the top of
the current stack frame, ensuring proper memory allocation
and deallocation, as well as the storage of local variables and
parameters during function calls.

The a5 register, as one of the parameter passing registers,
plays an important role in the ray tracing program. Ray
tracing algorithmsmay require the passing ofmultiple param-
eters, such as the starting coordinates of rays or direction
vectors. By storing these parameters in the a5 register, they
can be efficiently and quickly passed to functions, avoiding
frequent memory read/write operations. The a0 register, also
serving as a parameter passing register, is commonly used
for parameter passing in function calls within the ray tracing
program. Multiple parameters may need to be passed in ray
tracing algorithms, such as the starting coordinates of rays or
direction vectors. By storing these parameters in the a0 regis-
ter, they can be efficiently and quickly passed to functions,
avoiding frequent memory read/write operations. The zero
register, always set to zero in the RISC-V architecture, is com-
monly used in the ray tracing program to store constants or
as a source operand for arithmetic operations. Ray tracing
algorithms often involve numerous mathematical computa-
tions, including matrix multiplication and vector operations.
By using the zero register to store constants or as operands,
instruction operations can be simplified, leading to improved
computational efficiency.

We compare the total number of instructions in x86 and
RISC-V ray tracing programs. The ‘‘Ratio’’ represents the
ratio of the total instructions in the RISC-V ray tracing pro-
gram to that in the x86 ray tracing program. As the features
of the ray tracing program increase, such as sphere render-
ing, surface normals, antialiasing, material texture, and metal
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TABLE 2. Comparison of the total number of instructions for x86 and
RISC-V ray tracing programs.

TABLE 3. Comparison of the total number of instructions for arm and
RISC-V ray tracing programs.

reflection, the total instruction count of the corresponding
program also increases. Consequently, the ratio of the total
instruction count of the RISC-V ray tracing program to that
of the x86 ray tracing program also increases. For example,
in the metal-reflection ray tracing program, the total instruc-
tion count of the RISC-V program is 108 times that of the x86
program.

We also compare the total number of instructions for ARM
and RISC-V ray tracing programs. The ‘‘Ratio’’ column
represents the ratio of the total number of instructions for
RISC-V and ARM ray tracing programs. For example, in the
case of the metal-reflection ray tracing program, the total
number of instructions for RISC-V is 5.9 times that of ARM.
Compared to the X86 instruction set, the ARM instruction set
is more concise and has fewer comparison-type instructions.

Since the ARM architecture follows a load/store structure,
the CPU first performs a load operation to retrieve data from
memory into registers. After processing the data through
registers, it writes the resulting data back to memory. The
ordering of instruction set operations in the ARMarchitecture
makes CPU operations more efficient. Compared to the com-
plexity of instruction set operations in the X86 architecture,

FIGURE 13. Memory reuse distance based on Kiviat graph.

the ARM architecture requires fewer instruction operations
for ray tracing programs.

The figure above represents the memory reuse distance
based on the Kiviat graph [34]. The unit of measurement is a
64-byte cache block. m1, m2, . . . ,m8 represent the ratios of
memory reuse distances from 0-4 to the total reuse distance,
from 4-16 to the total reuse distance, from 16-64 bytes to
the total reuse distance, . . . , from 16k-64k to the total reuse
distance. The values of these 8 indicators range between 0 and
1. For example, m1 is greater than 0 and less than or equal
to 4, m2 is greater than 4 and less than or equal to 16, and
so on. The range of values is exclusive on the left side and
inclusive on the right side.

The memory reuse distance refers to the number of other
different memory blocks that a program accesses during its
second access to the same memory block [35]. That is, when
the processor runs the program, it accesses the same 64-byte
cache block, and then accesses other 64-byte cache blocks.
When the processor accesses this 64-byte cache block again,
it may access two other 64-byte cache blocks, or three other
64-byte cache blocks during this time. So. In this paper, the
processor accesses 1 64-byte cache block, 2 64-byte cache
blocks, 3 64-byte cache blocks and 4 64-byte cache blocks
during this period as memory reuse distance 0-4, m1 is a
percentage value of the memory reuse distance 0-4 in the total
reuse distance.

This paper employs the MICA performance analysis tool
to mine performance features, and uses qemu-arm and qemu-
riscv simulators to enable ARM and RISC-V ray tracing
programs to run on an X86 processor, while extracting
microarchitecture independent features of the ARM and
RISC-V programs. We depicts the memory reuse distance
of X86, ARM, and RISC-V ray tracing programs using the
Kiviat chart. Upon observing the memory reuse distance,
the following observations can be made: (1) X86 ray tracing
programs have a memory reuse distance between 0 and 4
64-byte cache blocks, accounting for over 50% of the total
memory reuse distance. The x86-rendering-rays program has
the smallest m1, with a value of 51%, while the x86-surface
normals program has the largest, with a value of 69.6%. (2)
The memory reuse distance between 0 and 16 64-byte cache
blocks in X86 ray tracing programs accounts for over 70%
of the total memory reuse distance. The x86-surface normals

67294 VOLUME 11, 2023



P. Wang, Z.-B. Yu: LLVM RISC-V RV32X Graphics Extension Support and Characteristics Analysis

FIGURE 14. Memory reuse distance of ray tracing program based on
Kiviat graph.

program has an even higher percentage, reaching 89.5%. (3)
ARM ray tracing programs have a relatively large proportion
of memory reuse distance between 0 and 4 64-byte cache

blocks and between 16 and 64 64-byte cache blocks, reaching
30% to 40%. However, the memory reuse distance between
4 and 16 64-byte cache blocks has a proportion of around
20%, indicating a high proportion at both ends and a low
proportion in the middle interval.

Compared with the ray tracing program of the ARM archi-
tecture and the X86 architecture, the ARM instruction set is
stored in 4 bytes. Such a construction method is conducive to
the fast operation of the pipeline, and its memory allocation
is more orderly. at the same time. Two addresses are saved in
instruction addressing. In the ARM instruction set, it is said
that the range that the b instruction can jump is 32M before
and after. Every instruction in the ARM instruction set can be
executed conditionally, and these features enable ray tracing
programs to be implemented in a convenient manner. Com-
pared with the ray tracing program of the X86 architecture,
the ray tracing program of the RISC-V architecture is mainly
concentrated in the memory reuse distance between 0 and 64
64-byte cache blocks, especially the memory reuse distance
between 16 and 64 64-byte cache blocks accounts for about
26%, which allows the processor to improve the cache hit rate
according to the distribution of the memory reuse distance.
Thememory reuse efficiency of the ray tracing program of the
RISC-V architecture is higher. The RISC-V architecture tries
to avoid accessing memory when executing instructions, but
makes more use of operations between registers to complete
computing tasks. This design can keep the program’smemory
reuse distance short, because it canmaximize the reuse of data
in registers instead of frequently reading data from memory.

RISC-V’s vector extension, X86’s AVX/SSE and ARM’s
NEON extension have little effect on the microarchitecture
independent features of their respective ray tracing programs.
The calculations in ray tracing typically involve complex
geometric operations and lighting models, which can have
high data dependencies. For example, when computing the
intersection points between rays and objects, each ray’s path
is different, and their calculation results cannot be directly
shared. This data dependencymakes it challenging to perform
vectorized operations and merge the computations of multi-
ple rays for parallel processing. Ray tracing often requires
branching and conditional checks, such as determining if a
ray intersects an object or calculating shadows. Vectorization
techniques face challenges when dealing with branching and
conditional checks, because vectorization typically requires
processing multiple data elements simultaneously within
a single instruction. However, branching and conditional
checks can cause different rays to follow different paths,
making unified vectorized operations difficult. If the memory
access pattern is irregular or exhibits data dependencies, the
effectiveness of vectorized operations can be limited. Ray
paths in ray tracing are typically irregular, and the compu-
tation process requires accessing scene data with a random
distribution, making effective vectorization challenging.

In ray tracing, computations involve geometric operations
and lighting models, as well as branching and condi-
tional judgments. Each ray follows a unique path, and the
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calculations for intersections, material properties, and light-
ing effects are independent and cannot be directly shared or
parallelized. Here are some specific examples in ray trac-
ing, Ray tracing requires determining the intersection point
between rays and objects in the scene. This involves perform-
ing intersection tests with objects such as spheres, triangles,
or complex geometries. Since each ray takes a different
path and may intersect different objects, making it chal-
lenging to combine multiple ray computations for parallel
processing. Since different rays may pass through differ-
ent objects, branches and conditional judgments are needed
to handle the diverse paths of the rays, making it difficult
to merge shadow calculations for parallel processing. Ray
tracing involves calculating material properties such as sur-
face normals, reflectivity, and refraction. These calculations
depend on the intersection point of the ray with the object
and specific geometric information of the object. Since each
ray follows a unique path and interacts with different objects,
individual calculations for material properties are required,
leading to branching and conditional judgments that prevent
unified parallel processing.Therefore, RISC-V ray tracing
programs cannot take advantage of RISC-V vector extensions
and RISC-V P extensions to improve performance.

In addition, this paper also presents experimental analy-
sis of other mainstream rendering algorithms in computer
graphics, including progressive photon mapping, ray cast-
ing, volume rendering, path tracing, particle systems, and
fractal rendering. The results demonstrate that these render-
ing programs exhibit similar microarchitecture independent
characteristics as the ray tracing rendering programs. Firstly,
compared to X86 rendering programs, the RISC-V render-
ing programs exhibit higher instruction level parallelism, but
lower than the ARM rendering programs. Secondly, in terms
of instruction mix, the proportion of arithmetic instructions in
the RISC-V rendering programs is higher than that in the X86
rendering programs, but lower than that in theARM rendering
programs. Additionally, the proportion of memory access
instructions in the RISC-V rendering programs is higher than
that in the X86 rendering programs, while lower than that in
the ARM rendering programs. Lastly, the RISC-V rendering
programs demonstrate relatively short memory reuse dis-
tance, enabling efficient data reuse in registers and reducing
the need for frequent memory access.

V. CONCLUSION AND OUTLOOK
This article presents an introduction to graphics render-
ing and ray tracing graphics programs, and describes the
implementation of RISC-V RV32X graphics instruction set
extension support using the LLVM-based RISC-V frame-
work. Furthermore, the article uses RISC-V simulators,
feature collection tools, and script analysis programs to per-
form instruction-level and memory-level analysis of graphics
programs across RISC-V, X86, and ARM architectures. The
instruction-level parallelism and instruction mix identified
in instruction-level analysis provide valuable insights for
the design of floating-point and integer arithmetic units

in RISC-V processors. Additionally, the register depen-
dency distance and memory reuse distance obtained through
memory-level analysis can help predict cache miss rates in
the RISC-V processor cache.

The next research objective is to design a RISC-V GPU
simulator, including the GPU rendering pipeline, GPU cache
unit, thread scheduling unit, and integer and floating-point
calculation units. The GPU rendering pipeline design will
involve the vertex shader in the application stage, the shader
in the assembly stage, triangle traversal in the rasterization
stage, and frame buffer processing in the image process-
ing stage. By writing CPU and GPU graphics rendering
programs and exploring program-level features and memory-
level features, this article aims to provide useful references
and guidance for the reasonable design of corresponding
RISC-V GPU simulator units.
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