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ABSTRACT Colorectal polyps is a prevalent medical condition that could lead to colorectal cancer, a leading
cause of cancer-related mortality globally, if left undiagnosed. Colonoscopy remains the gold standard for
detection and diagnosis of colorectal neoplasia; however, a significant proportion of neoplastic lesions are
missed during routine examinations, particularly diminutive and flat lesions. Deep learning techniques have
been employed to improve polyp detection rates in colonoscopy images and have proven successful in
reducing the miss rate. However, accurate segmentation of small and flat polyps remains a major challenge
to existing models as they struggle to differentiate polypoid and non-polypoid regions apart. To address this
issue, we present an enhanced version of the Multi-Scale Attention Network (MA-NET) that incorporates
a modified Mix-ViT transformer as the feature extractor. The modified Mix-ViT facilitates ultra-fine-
grained visual categorization to improve the segmentation accuracy of polypoid and non-polypoid regions.
Additionally, we introduce a pre-processing layer that performs histogram equalization on input images in the
CIEL∗A∗B∗ color space to enhance their features. Our model was trained on a combined dataset comprising
Kvasir-SEG and CVC-ClinicDB and cross-validated on CVC-ColonDB and ETIS-LaribDB. The proposed
method demonstrates superior performance compared to existing methods, particularly in the detection of
small and flat polyps.

INDEX TERMS Colorectal polyps, colorectal polyps detection, colorectal polyps segmentation, color space,
colonoscopy images.

I. INTRODUCTION
Colorectal polyps are neoplastic growths that arise from
uncontrolled cellular proliferation in the colon. Current
research suggests that the development of these polyps is
multifactorial, with lifestyle, dietary habits, and genetic pre-
disposition being among the contributing factors [1], [2], [3].

Estimating the global prevalence of colorectal polyps is
challenging because of the low adherence to screening guide-
lines and the asymptomatic nature of most polyps.

Moreover, the heterogeneity and scarcity of epidemiolog-
ical data across different regions hamper the comparability
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and generalizability of the existing studies [1], [2]. While the
majority of colorectal polyps are small and asymptomatic,
if left undetected and untreated, theymay progress to colorec-
tal cancer (CRC), a leading cause of cancer-related mortality,
responsible for approximately 1 million deaths annually, with
projections indicating a 56% increase in incidence by 2040 as
predicted by the International Agency for Research on Cancer
(IARC) [4].

Colorectal polyps are precancerous lesions that can trans-
form into colorectal cancer through a series of genetic and
epigenetic events. These events affect the growth and differ-
entiation of the colonic epithelial cells, resulting in abnormal
proliferation and survival. The risk of colorectal cancer is
influenced by the type, size, number, and location of the
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polyps, as well as the degree of dysplasia or carcinoma in situ.
Adenomatous polyps and serrated polyps are the most com-
mon types of polyps that can lead to cancer [2], [3], [4].

To date, the most common method to detect and diagnose
colorectal polyps has been a multi-step procedure known as
colonoscopy. Colonoscopy is a medical procedure that allows
for the visual examination of the large intestine (colon) and
rectum. During the procedure, a long, flexible tube called a
colonoscope is inserted into the rectum. The colonoscope is
equipped with a tiny video camera at its tip, which allows for
the transmission of images to a monitor for viewing by the
physician. If necessary, polyps or other abnormal tissue can
be removed through the scope during the procedure. Addi-
tionally, tissue samples (biopsies) can be taken for further
analysis. Prior to the procedure, patients must undergo bowel
preparation to ensure that the colon is free of any residue that
may obscure the view. This typically involves following a
special diet and taking a bowel-cleansing agent [5], [6].

Colonoscopy is the most reliable method for finding col-
orectal neoplasia as it allows direct visualization and biopsy
of the entire colon and rectum, and it could detect both
polypoid and flat lesions that may be missed by other
screening modalities. A colonoscope can also remove polyps
during the procedure, which can prevent their progression
to cancer. Compared with other screening tests, such as
fecal occult blood testing, sigmoidoscopy, or computed tomo-
graphic colonography, colonoscopy has higher sensitivity and
specificity for detecting colorectal neoplasia and can reduce
the incidence and mortality of colorectal cancer [7], [8], [9].

Despite being the standard procedure for the diagnosis of
colorectal polyps, colonoscopy has an estimated miss rate
for lesions ranging from 6% to 28%. This miss rate can be
attributed to various factors such as poor bowel preparation,
inadequate visualization of certain areas of the colon, and the
presence of flat or small polyps [10], [11], [12], [13], [14].
In addition, external factors such as poor training of endo-
scopists and fatigue due to longworking hoursmay also affect
detection accuracy [15], [16].

Some of the restrictions on finding malignant tumors dur-
ing regular colonoscopy sessions include the availability and
accessibility of the procedure, which may vary depending
on the health care system and resources, the patient’s toler-
ance and adherence to the bowel preparation process, which
may affect the quality and safety of the examination, the
endoscopist’s skill and experience, which may influence the
detection and removal of lesions, and finally the possibility
of missing flat or serrated lesions that are more difficult to
detect and remove, especially in the proximal colon (the right
side of the colon) [17].

As the risk of developing colorectal cancer increases with
the number of missed polyps, there has been a growing
interest among deep learning researchers in developing col-
orectal polyp detection models. These models aim to assist
endoscopists in identifying and localizing lesions of all
sizes and shapes, with the primary objective of improving
the detection rate of small polyps that may be overlooked

during a colonoscopy session. By incorporating advanced
image analysis techniques and machine learning algorithms,
these models have the potential to significantly enhance
the accuracy and efficiency of colorectal cancer screen-
ing [18], [19], [20], [21].

Although these methods may vary in their design and
implementation, their primary objective is to accurately
localize polyps within colonoscopic images. The process
of developing a colorectal polyp detection model typically
begins with the collection of a labeled dataset of colonoscopic
images. These images then undergo pre-processing steps such
as resizing and normalization, as well as data augmentation
techniques to enhance the robustness of the model.

Once pre-processed, the data is fed into a deep learn-
ing model that has been trained to detect polyps from
either static images or real-time video feeds. The format
of the model’s output is determined by its specific objec-
tive; for example, semantic segmentation models generate
binary masks indicating the location of polyps, while object
detection models produce bounding boxes around detected
lesions [15], [16], [17].

In the context of semantic segmentation, the primary objec-
tive is to accurately classify each pixel in a given image as
either belonging to a polyp or to the background. To train a
colorectal segmentation model, a ground truth binary mask
indicating the location of the polyp is used as the train-
ing label. The model’s objective is to produce a predicted
mask that accurately represents the estimated location of the
polyp within the image. By comparing the predicted mask
to the ground truth mask, the model’s performance can be
evaluated and refined through further training. Some of the
most well-known semantic segmentation networks include
U-NET [22], U-NET++ [23], DeepLabV3 [24] and Fully
Convolutional Networks (FCN) [25].

Although deep learning methods have shown promise
in improving the detection rate of polyps in colonoscopic
images, their performance on real-life, unedited images is
far from perfect due to several challenges. These chal-
lenges include the failure to detect small and flat polyps,
the variability in the shape and color of polyps, and the
presence of external obstructions due to poor bowel prepa-
ration [15], [16], [17]. To address these issues, researchers
have focused on developing more complex segmentation
models with multiple encoders and feature extraction layers
to capture as many meaningful features as possible. While
these methods have been effective in detecting more obvious
polyps, small polyps still pose a significant challenge, with
many models failing to accurately detect them. In figure 1,
we present several examples of these challenging lesions.

In this work, we address the challenges associated with
the detection of small and flat polyps in colonoscopic
images by introducing an enhanced version of the multi-scale
attention network (MA-NET) [28]. Our enhanced MA-NET
design incorporates a modified Mix-ViT transformer [29] as
a replacement for the original convolution-based encoder.
We choose MA-NET as our preferred decoder due to its
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FIGURE 1. Several examples of challenging polyps. Samzples are taken
from the ETIS-LaribPolypDB and CVC-ColonDB.

ability to effectively capture and integrate contextual infor-
mation at multiple scales, leading to improved performance
in tasks such as image segmentation, especially on medical
images.

For the encoder component of our model, we tweak the
design of a pre-trained Mix-ViT by removing the mix token
prediction head and replacing the classification head with a
global average pooling layer to fit the nature of our problem.
We choose the Mix-ViT due to its demonstrated ability to
capture ultra-fine-grained features for visual categorization.

We hypothesize that this capability is a crucial yet
often overlooked component in the detection of small and
flat polyps in colonoscopic images. By incorporating the
Mix-ViT architecture into our encoder design, we aim to
enhance our model’s ability to accurately detect and localize
these challenging polyps.

To further enhance the visibility of features such as blood
vessels and other non-polypoid features in colonoscopy
images, we introduce an additional pre-processing layer
that applies Contrast Limited Adaptive Histogram Equal-
ization (CLAHE) to the L component of the images in the
CIEL∗A∗B∗ color space. This technique enhances the con-
trast of the images by redistributing the lightness values,
resulting in enhanced visibility of fine details and improved
image quality.

Our segmentation model is trained and validated on
a combined dataset of two publicly available datasets:
Kvasir-SEG [30] and CVC-ClinicDB [31]. To evaluate the
generalizability and performance of our model on indepen-
dent samples, we cross-validate our model on two public
datasets: ETIS-LaribPolypDB [32] and CVC-ColonDB [33].
To ensure a fair test, none of the samples from the
cross-validation datasets were included during training.

We recorded several metrics such as Intersection
over Union, Precision, Recall and F1 scores during the
cross-validation phase to better understand the performance.
We also visualized the predictedmask of ourmodel as another
indicator of its accuracy on unseen samples.

Our method outperforms existing state-of-the-art semantic
segmentation methods, particularly in the segmentation of
small and flat polyps. The main contributions of this study
are:

• We present an improved version of the multi-scale atten-
tion network (MA-NET) that uses a modified vision
transformer, namely Mix-ViT, as the backbone instead
of skip connections and convolutional neural networks.

• Wemodify a pre-trainedMix-ViT transformer by replac-
ing its classification head with a global pooling layer and
removing the mix token predictor after pre-training.

• We apply Contrast Limited Adaptive Histogram Equal-
ization (CLAHE) to the L∗ component of the CIEL∗

A∗ B∗ color space to enhance the visibility of features
such as blood vessels, non-polypoid objects and polyps
in colonoscopy images.

• We train and validate our model on samples of two
publicly available datasets: Kvasir-SEG and CVC-
ClinicDB. Moreover, we cross-validate our model
on two distinctive datasets: ETIS-LaribPolypDB and
CVC-ColonDB to confirm its generalizability and per-
formance on independent samples.

In conclusion, this study aims to address the challenge of
detecting small and flat polyps, which, to our knowledge,
has been a significant factor in the suboptimal performance
of existing colorectal polyp segmentation methodologies.
The remainder of this paper is divided into the following
sections: Related Works, Proposed Method, Experimental
Results, Discussion and Conclusion.

II. RELATED WORKS
The authors in [34] introduced Y-Net, a polyp detection
method for colonoscopy images inspired by U-Net. Y-Net
comprises two encoders and a single decoder and can be
trained on a limited number of samples. Both encoders follow
the VGG19 design [35], while the decoder is a custom-built
CNN with five deconvolutional blocks and one final convo-
lution block. The first encoder is initialized with ImageNet
weights and the second with the Xavier normal initializer.
Both use the SELU activation function instead of ReLU.
Y-Net was trained and tested on the ASU-Mayo dataset [36]
without cross-validation. The authors reported a precision of
87.4%, recall of 84.4%, and F1 score of 85.9%. However, this
method did not perform well with reflections, polyp-shaped
objects, and flat lesions.

Another model proposed in [37] introduces a polyp seg-
mentation network using a combination of 2D and 3D
convolutional layers. The 2D layers extract spatial representa-
tion while the 3D layers add a temporal dimension. Initially,
features are extracted using the 2D network before the 3D
network generates a temporally coherent segmentation mask.
An upsampling layer is then added to upscale the predicted
mask. The method was trained on a private dataset and tested
on both the SUN dataset and Kvasir-SEG, achieving scores of
86.14 for sensitivity, 85.32 for specificity, 93.45 for precision,
and 89.65 for F1.

In [38], the authors introduced a custom model for
segmenting colorectal polyps by combining a SWIN trans-
former [39] with EfficientNet [40]. The model includes a
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multi-dilation convolutional block to refine local features
extracted by EfficientNet and global features obtained by
the SWIN transformer. These features are then aggregated
using a multi-feature aggregation block before constructing
a predicted mask using an attentive block. The model was
trained on the Kvasir-SEG and CVC-ClinicDB datasets and
tested on the CVC-ColonDB, ETIS-Larib, and Endoscene
datasets. During evaluation, the authors reported a mean
dice coefficient of 0.906, an IoU of 0.842, a mean weighted
F-measure of 0.88, and a mean absolute error of 0.001.

In [41], an automatic polyp segmentation model was
proposed using the SegNet architecture [42] to segment
colonoscopy images. The samples were preprocessed by
thresholding red, green, and blue pixels to values between
15 and 50 to filter out non-polyp regions and ease the training
process. The preprocessed images were then fed to a SegNet
model for segmentation. The CVC-Clinic, CVC-Colon, and
ETIS-Larib datasets were used for training and testing, with
the study reporting an average IoU of 81.7%.

In [43], a method was presented for detecting polyps from
colonoscopy images using two pre-trained models, VGG16
and MobileNet. The authors preprocessed the input images
by removing black regions, normalizing RGB values tomatch
the RGB mean of samples in the ImageNet dataset, and
resizing all images to a constant size of 224× 224 pixels. The
images were then processed using a multi-resolution sliding
window to locate polyps before cropping the region and feed-
ing it to a probability prediction function. The Kvasir-SEG
dataset was used for training and the CVC-ClinicDB and
ETIS-Larib datasets for cross-validation. On the CVC-
ClinicDB dataset, the model achieved precision, recall, and
F1 scores of 91.9, 89.0, and 0.90 respectively. On the ETIS-
Larib dataset, the model achieved precision of 87.0, recall of
91.0, and an F1 score of 89.0.

In [44], a saliency detection network was introduced to
detect polyps from static polyp images. The authors used
Neutrosophic theory to decrease the effect of white light
reflections caused by colonoscopy light and introduced an
image-suppressing technique using a single-value Neutro-
sophic set (SVNS) to rebuild colonoscopy images without
white light reflection. Specular regions were recovered using
a dynamic window that searched for non-specular pixels
near each specular pixel, using an 8 × 8 window rotated
counter-clockwise until all specular regions were recovered.
The RGB pixels’ average value was used to paint specu-
lar pixels in the recovered image. The authors introduced a
saliency network known as NeutSS-PLS, inspired by U-Net
and DSS, for detection and segmentation. The network had
two-level short connections on both sides of the VGG andwas
trained on the EndoScene and Kvasir-SEG datasets, achiev-
ing precision and F1 scores of 92.30 and 92.40 respectively.
However, the proposed method struggled to identify polyps
near the boundary of colonoscopy images.

In [45], an automatic polyp detection and segmentation
system called shuffle-efficient channel attention network
(sECA-NET) was introduced to segment colonoscopy images

and detect polyps. A CNN was applied to extract the
feature map from an input image and a region proposal
network (RPN) was developed to predict bounding boxes
around polyps in the feature map. A region of interest align
(RoiAlign) was applied to extract features from the feature
map based on the bounding box of each detected object. Two
parallel branches then computed the extracted features for
every ROI. In the first branch, features were computed by
fully connected layers followed by softmax activation before
performing bounding box regression. The second branch con-
cerned mask segmentation, predicting the category of each
pixel in the region of interest. The proposed method was
trained on the CVC-ClinicDB, ETIS-Larib, and Kvasir-SEG
datasets and evaluated on a private cross-validation dataset.
The authors reported precision, recall, and F1 scores of
94.9%, 96.9%, and 95.9% respectively.

III. PROPOSED METHOD
A. OVERVIEW
Our proposed method comprises four stages. Initially, we col-
lect training and testing samples from publicly available
datasets.We combineKvasir-SEG andCVC-ClinicDB to cre-
ate a diverse set of training samples. These datasets provide
a range of images that can be used to train our model effec-
tively. We then use ETIS-LaribPolypDB and CVC-ColonDB
to test our model. These two distinctive datasets ensure fair
testing and allow us to verify the performance of our method
on unseen samples.

Prior to training, we pre-process our images by resizing
all the samples to a constant dimension of 256 × 256 pixels.
This ensures that all images have the same dimensions and
can be processed by our model effectively.We then normalize
our images so that the pixel values are between 0 and 1. This
step is important as it ensures that the pixel values are within
a consistent range and can be processed effectively by our
model.

Next, we pass the samples to a custom pre-processing layer
in which we first convert the images to CIEL∗A∗B∗ color
space. This color space separates the color information from
the luminance information, allowing us to apply a Contrast
Limited Adaptive Histogram Equalization (CLAHE) to the
L∗ component of the image. CLAHE is an effective method
for enhancing contrast in images and can improve the perfor-
mance of our model.

Once CLAHE has been applied, we convert the images
back to its original RGB format then we pass them to our seg-
mentation model for training. We present the various stages
of the proposed method in figure 2.

Our segmentation model is a modified MA-NET model
in which the original encoder was replaced with a modified
Mix-ViT transformer. The Mix-ViT transformer was initially
pre-trained on the ImageNet dataset for image classification.
We further fine-tune the transformer’s design by removing the
mix token predictor and multilayer perceptron layer, which
were deemed unnecessary for this study. We selected the
Mix-ViT transformer as our encoder to leverage its capability

69298 VOLUME 11, 2023



K. Elkarazle et al.: Improved Colorectal Polyp Segmentation

FIGURE 2. An overview of the proposed method. The method consists of
three main steps: 1) preprocessing and normalization; 2) image
enhancement; 3) feature extraction using the enhanced MA-NET model.

FIGURE 3. An overview of the enhanced MA-NET network. The original
convolution-based encoder was replaced by a modified Mix-ViT vision
transformer.

to effectively capture ultra-fine-grained features. After train-
ing, we cross-validate our model on the testing datasets and
observe its performance. Cross-validation allows us to assess
how well our model generalizes to new, unseen samples.
Figure 3 illustrates a high-level overview of the proposed
segmentation model.

B. DATA COLLECTION
In this study, we utilize four public datasets: two for training
and validation (Kvasir-SEG and CVC-ClinicDB) and two for
testing (ETIS-LaribPolypDB and CVC-ColonDB). The use
of public datasets mitigates potential ethical concerns asso-
ciated with using patient-collected samples. During training

TABLE 1. A summary of the training dataset.

we divide our training dataset into 80% training and 20%
validation.

The Kvasir-SEG dataset comprises 1000 colonoscopy
images and ground-truth masks, with polyps of varying
shapes, colors, and sizes. Each sample has been manually
annotated and verified by experienced gastroenterologists.
The resolution of samples ranges from 332 × 487 to 1920 ×

1072 pixels. All 1000 samples are used for training and
validation.

The CVC-ClinicDB dataset consists of 612 polyp static
frames extracted from 31 colonoscopy sequences. All images
have a fixed resolution of 384 × 288 pixels. The dataset
has been widely used to test and validate various colorectal
polyps’ segmentationmethods Table 1 summarizes the break-
down of our training dataset.

C. PRE-PROCESSING
Pre-processing is a crucial preliminary step that must be per-
formed before training any deep learning models to facilitate
the training process [46], [47]. In our study, we combine stan-
dard pre-processing steps, such as resizing and normalization,
with our novel image enhancement layer. We first resize our
images to a constant dimension of 256 × 256 pixels.

We experimented with various image dimensions and
found that 256 × 256 pixels yielded the highest values of
intersection over union (IoU) and Dice coefficient. The abla-
tion study section presents the analysis of how the image
dimensions affect the performance of our model.

Next, we normalize the pixels of our images so that every
pixel value is within the range of 0 and 1. For normalization
we use Equation 1 to normalize our samples.

x ′
=
x − µ

σ
(1)

In this equation x represents the pixel value of an image and
x ′ is the normalized image. We use ImageNet’s [48] standard
deviation values of [0.485, 0.456, 0.406] and mean values of
[0.229, 0.224, 0.225], respectively.

D. IMAGE ENHANCEMENT
After completing the primary pre-processing steps, we con-
vert our resized and normalized images from RGB to
CIEL∗A∗B∗ color space, which expresses color as three
values: L∗ for perceptual lightness and A∗ and B∗ for the
four unique colors of human vision. The conversion pro-
cess consists of several steps. Initially, the RGB values must
undergo gamma correction to be linearized, which can be
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accomplished using Equation 2.

Ic =

(
Io
255

) 1
γ

× 255 (2)

In this equation, Ic represents the gamma-corrected image, Io
is the original input image, and γ is the gamma factor, which
we set to 2.2. The linearized RGB values are then transformed
into the XYZ color space via matrix multiplication. The
specific matrix (M) used for this transformation depends on
the reference white point selected for the conversion. The
values of matrix M are derived using Equations 3-5, while
Equation 6 is used to obtain the XYZ values.Xr

Yr
Zr

 =


xr
yr
1

(1−xr−yr )
yr


Xg
Yg
Zg

 =


xg
yg
1

(1−xg−yg)
yg


Xb
Yb
Zb



=


xb
yb
1

(1−xb−yb)
yb

 (3)

In this equation, xryr ,
xg
yg
, and xb

yb
are based on the pre-calculated

CIE RGB values described in [49]. ρr
ρg
ρb

 =

Xr Xg Xb
Yr Yg Yb
Zr Zg Zb

−1 Xw
Yw
Zw

 (4)

The matrix

Xw
Yw
Zw

 is derived from the Equal Energy spec-

trum (E), which consists of tristimulus values that define
white pixels in an image [50].

(M) =

 ρrX r ρgXg ρbXb
ρrY r ρgYg ρbY b
ρrZ r ρgZg ρbZb

 (5)

X
Y
Z

 = (M)

 R′

G′

B′

 (6)

Once the XYZ values are obtained, they can be converted
into CIELAB values using a non-linear transformation. This
involves calculating the L∗ (lightness) component as a func-
tion of the Y value and the reference white point, while the a∗

(green-red) and b∗ (blue-yellow) components are calculated
as functions of all three XYZ values and the reference white
point. The conversion from XYZ to L∗A∗B∗ is defined in
Equation 7.

L∗
= 116f

(
Y
Yn

)
− 16

a∗
= 500

(
f
(
X
Xn

)
− f

(
Y
Yn

))
b∗

= 200
(
f
(
Y
Yn

)
− f

(
Z
Zn

))
(7)

FIGURE 4. Random samples before and after enhancement.

In this equation Xn, Yn, and Zn represent a specific white
achromatic reference illuminant. We use the standard illumi-
nant D65 values defined in [51]. The resulting CIEL∗A∗B∗

values represent colors in terms of perceptual attributes such
as lightness and chromaticity. Once the images have been
converted, we apply CLAHE on the L∗ component.
Contrast Limited Adaptive Histogram Equalization

(CLAHE) is a variant of Adaptive histogram equalization
(AHE) that prevents contrast over-amplification. CLAHE
operates on small regions in the image, called tiles, rather
than the entire image. The neighboring tiles are then com-
bined using bilinear interpolation to remove the artificial
boundaries. CLAHE can be applied to color images, often
to the luminance channel. The results of equalizing only the
luminance channel of an image outperform equalizing all
channels of an RGB image [52], [53], [54]. This is because the
CIEL∗A∗B∗ color space is designed to approximate human
vision. The L∗ component closely matches human perception
of lightness. In the context of colonoscopy images, applying
CLAHE on the L component of a CIEL∗A∗B∗ image can
enhance the contrast and improve the visibility of polypoid
and non-polypoid features in an image. In figure 4 we present
a comparison of our samples before and after applying
CLAHE on the L component of our image.

E. SEGMENTATION MODEL
1) MODIFIED MIX-ViT ENCODER
Convolutional Neural Networks (CNNs) have been the
de-facto model for visual data. They use convolution, a
‘‘local’’ operation bounded to a small neighborhood of an
image. On the other hand, Vision Transformers (ViT) use self-
attention, a ‘‘global’’ operation, since it draws information
from the whole image [55]. Recent work has shown that
ViT can achieve comparable or even superior performance
on image classification tasks [56], [57], [58].

This is because self-attention enables early aggregation
of global information and ViT residual connections strongly
propagate features from lower to higher layers. In the context
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FIGURE 5. An overview of the modified Mix-ViT encoder.

of colorectal polyps semantic segmentation, most polyp
segmentation methods use CNNs as their backbone. How-
ever, this leads to two key issues when exchanging informa-
tion between the encoder and decoder: 1) taking into account
the differences in contribution between different-level fea-
tures and 2) designing an effective mechanism for fusing
these features. Unlike existing CNN-based methods, some
researchers have adopted a transformer encoder, which learns
more powerful and robust representations. For instance, in a
recent study the authors introduced a model called Polyp-
PVT, which utilizes a Pyramid Vision Transformer (PVT)
to extract stronger and more robust features for polyp seg-
mentation. Their model was able to effectively reduce noise
in the features and greatly enhance its ability to express
information [59].

The Mix-ViT transformer was initially developed to
address the challenges associated with ultra-fine-grained
visual categorization tasks, which involve identifying sub-
categories within fine-grained objects at a deeper taxonomy
level. In our work, we first acquire a Mix-ViT transformer
that has already been trained on the ImageNet dataset for
classifying 1000 distinct classes.

To adapt the pre-trained transformer to colorectal polyps
segmentation, we modify it by replacing its original clas-
sification head with a global average pooling layer, which
reduces the spatial dimensions of the feature maps while
preserving their depth. We also remove the mix token pre-
diction layer, which is not necessary for feature extraction.
These modifications allow us to fine-tune the pre-trained
transformer for our specific needs while leveraging its ability
to extract useful features from images. ThemodifiedMix-ViT
encoder is presented in Figure 5.

To create the patches, we represent our input image as x ∈

RH×W×C in which H is the image’s height,W is the image’s
width and C is the number of channels and P represents the
patch size. The objective is to create N image patches which
can be achieved using Equation 8.

N =
HW
P2

(8)

The input patches undergo a linear transformation via a pro-
jection layer, resulting in the generation of patch embedding
vectors while preserving their original spatial dimensions.
The vectorized patches are then fed to the transformer
encoder. Finally, we pass the feature map to a global average
pooling layer, prior to feeding the decoder the processed
features.

FIGURE 6. The MA-NET decoder. The default convolution-based
downsampling block is replaced with the modified Mix-ViT encoder.

2) ENHANCED MA-NET DECODER
The Multi-scale Attention Network (MA-NET), introduced
in [28] has demonstrated exceptional performance in medical
image segmentation. This success has inspired us to employ
its decoder as an independent module for generating a pre-
dicted segmentation mask using the features extracted by the
modified Mix-ViT encoder.

MA-NET is designed to capture rich contextual dependen-
cies based on the attention mechanism and has been used for
various applications such as liver and tumor segmentation,
single image super-resolution, optical flow estimation and
correspondence learning.

The original design of MA-NET comprises five key com-
ponents: Residual blocks, Convolution blocks, Upsampling
blocks, Point-wise Attention Block, and Multi-scale Fusion
Attention Block. The downsampling module of the network
includes several 3 × 3 convolutional layers with a stride
of 2 and skip connections between the residual connection
blocks and the MFAB blocks. In our study, we replaced this
block with our modified Mix-ViT encoder.

The upsampling component of MA-NET is designed
with two main blocks: Position-wise Attention Block (PAB)
and Multi-scale Fusion Attention Block (MFAB). The PAB
models feature interdependencies in spatial dimensions to
capture the spatial dependencies between pixels in a global
view. In contrast, the MFAB captures channel dependencies
between any feature map through multi-scale semantic fea-
ture fusion. The fine-tuned decoder is presented in Figure 6.
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IV. EXPERIMENTAL RESULTS
A. OVERVIEW
This section presents the methodology and results of our
experiments. It includes a description of the testing datasets,
in addition sample breakdown, as well as details on the exper-
iment setup and configurations. Additionally, we discuss the
evaluation metrics used, and provide a performance analysis
and comparative analysis of our results.

B. EXPERIMENT SETUP
In this study, we conducted several experiments to evalu-
ate the performance of our proposed model. To investigate
the impact of the proposed image enhancement layer and
modified encoder on segmentation accuracy, three additional
variants of the proposed method were trained:

• One variant followed to the original design of MA-NET
and utilized the proposed image enhancement layer.

• One variant adhered to the original design of MA-NET
without the proposed image enhancement layer.

• One variant employed the proposed encoder without the
proposed image enhancement layer.

Hyperparameters and configurations such as learning rate,
number of epochs, optimizer, loss function, and input size
were kept consistent across all the three variants. The pro-
posed method was also compared with existing state-of-the-
art segmentation models to examine performance differences
in polyp segmentation. Pre-trained models were used in these
experiments, with slight modifications made to the model
output layer to adapt them to the polyp segmentation task.
The modified output layer produces predictions representing
two classes: 1) Polyp and 2) Background.

During training, we set the number of epochs to 25 and
utilize the Adam optimizer with a learning rate of 0.0001 to
optimize our model. Instead of the binary cross-entropy func-
tion, we employed the Dice loss as our loss function. All
models were trained and tested on a single machine equipped
with an RTX4000 GPU and 16GB of RAM.We implemented
our model using the PyTorch framework and utilized addi-
tional libraries such as NumPy and Sci-Kit learn.

C. TESTING DATASETS
The ETIS-LaribPolypDB dataset, comprises 196 samples
with a fixed resolution of 1225 × 996 pixels. Samples are
captured in unfiltered settings, with several images being
blurry. Due to the limited number of samples, the dataset
is primarily used for testing, although some studies have
utilized it for training. The CVC-ColonDB dataset consists
of 300 colonoscopy images with a constant dimension of
574 × 500 pixels. The dataset is derived from 15 short
colonoscopy video frames, with each frame extracted and
labeled by professionals. The dataset contains challenging
samples with polyps of various shapes and sizes. We use both
datasets to cross-validate our model and use them to perform
the comparative analysis between our model and existing
polyp segmentation methods.

FIGURE 7. Our model’s training and validation loss (left) and training and
validation IoU scores (right).

D. EVALUATION METRICS
In this section, we present the evaluation metrics used to
assess the performance of our deep learning models in the
task of semantic segmentation of colorectal polyps. These
metrics provide a quantitative measure of the accuracy and
reliability of the segmentation masks generated by each
model-color space combination. Our analysis considered sev-
eral commonly used metrics, including precision, recall, F1
score, Dice coefficient, and Intersection-Over-Union (IoU).
Precision measures the proportion of true positive predictions
among all positive predictions made by the model, while
recall measures the proportion of true positive predictions
among all actual positive instances in the data.

The F1 score is the harmonic mean of precision and recall,
providing a balanced measure of the model’s performance.
The Dice coefficient measures the similarity between two
sets, in this case, the predicted segmentation mask and the
ground truth mask. The Intersection-Over-Union (IoU) met-
ric measures the overlap between the predicted and ground
truth masks as a proportion of their union.

Equations 9 - 13 provide themathematical formulations for
these metrics.

Precision =
TP

TP+ FP
(9)

Recall =
TP

TP+ FN
(10)

F1 =
2 × Precision× Recall
Precision+ Recall

(11)

IoU =
TP

(TP+ FP+ FN )
(12)

Dice Coefficient =
2 × TP

(TP+ FP) + (TP+ FN )
(13)

where TP represents the number of true positives, FP is the
number of false positives, FN is the number of false negatives
and TN is the number of true negatives.

E. PERFORMANCE ANALYSIS
This subsection presents a performance analysis of our pro-
posed model. Table 2 summarizes the precision, recall, F1
score, IoU, and Dice score obtained by our model when tested
on both ETIS-LaribPolypDB and CVC-ColonDB. Addition-
ally, Figures 7 illustrates the losses and accuracies achieved
during the training process.
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TABLE 2. The obtained scores on both testing datasets.

FIGURE 8. Examples of our model predictions on the ETIS-LaribPolypDB.

Figure 8 presents examples of our model’s output on the
ETIS-LaribPolypDB dataset, while Figure 9 shows several
samples of our model’s predictions on the CVC-ColonDB
dataset. We have chosen to illustrate polyps that are not
easily visible to demonstrate the robustness of our method
in detecting small polyps.

F. ABLATION STUDY
To further validate the effectiveness of our proposed method
in detecting small and flat polyps, we conducted an ablation
study. This study involved removing the CLAHE equalization
layer while retaining the Mix-ViT encoder, as well as using
the original convolution-based encoder of MA-NET with and
without the custom CLAHE equalization layer. The results of
this ablation study provide insights into the contribution of
each component to the overall performance of our model and
help us understand how our proposed method is able to effec-

FIGURE 9. Examples of our model predictions on the CVC-ColonDB.

TABLE 3. The scores of the ablation study conducted on our model.

tively capture small and flat polyps. There were no changes
to the configuration and hyperparameters of the model while
conducting this study. In table 3 we present the scores we
obtained during the ablation study on each dataset.

While CLAHE can be applied to images in any color space,
we chose to apply it to the L∗ component of the CIEL∗A∗B∗

color space as this approach produced the best image quality
in our experiments. To further investigate the relationship
between our model’s performance and the application of
CLAHE to input images in different color spaces, we mod-
ified our custom pre-processing layer to equalize images
in four color spaces: RGB, HSV, HLS, and CIEL∗A∗B∗.
We then trained and tested our model on these equalized
samples. Except for the RGB images, the HSV and HLS
were converted back to RGB after the correction, similarly to
the original implementation. The results of this experiment,
presented in Table 4, provide insights into the impact of
CLAHE on our model’s performance across different color
spaces. In addition, we report the results of our method for
different image sizes on the validation subset, which consists
of 260 images, in Table 5.
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TABLE 4. The scores of the ablation study conducted on the image
enhancement layer.

TABLE 5. Comparison of segmentation accuracy for various image
dimensions.

TABLE 6. The performance of the proposed method compared to recently
proposed models.

G. COMPARATIVE ANALYSIS
In this section, we present a comparative analysis of our
proposed method and existing state-of-the-art segmentation
models. Additionally, we compare the performance of our
method with several recently proposed methods to highlight
the differences in performance. In table 6 we present the
scores of several recently proposed methods compared to
ours.

In addition to comparing our method with recently pro-
posed models, we also present a comparative analysis of its
performance with four commonly used semantic segmenta-
tion models in medical image analysis: UNET, UNET++,
DeepLabV3, and Pyramid Scene Parsing Network (PSPNET)
[65]. To ensure a fair comparison, we use the same configu-
rations and hyperparameters we used to create our original
model. In addition, we utilize pre-trained weights to miti-
gate the issue of overfitting. The comparison is presented in
figure 10. In addition, a quantitative comparison is presented
in table 7.

V. DISCUSSION
A. OVERVIEW
In this section, we provide a comprehensive analysis of our
experimental results. We compare the performance of our
proposed model with other semantic segmentation methods

FIGURE 10. Our proposed method performance (bottom row) compared
to several well-known semantic segmentation networks.

TABLE 7. Our method compared to several existing semantic
segmentation models.

and discuss the factors that may have influenced the outcomes
reported in the previous section. This discussion aims to
deepen the understanding of our findings and identify poten-
tial areas for future research. We evaluate the performance
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of our enhanced MA-NET model, analyze its strengths and
weaknesses, and provide recommendations for future work.
In addition to our main findings, we also present a detailed
analysis of the results obtained from our ablation study. This
analysis provides further justification for the modifications
we made to our model and highlights the impact of each
individual component on the overall performance.

B. RESULT INTERPRETATION
The results presented in the previous section confirm that
our proposed method effectively addresses the challenge of
detecting small and flat polyps. We hypothesize that the
success of our approach can be attributed to our emphasis
on both data and model quality, rather than relying solely on
the development of a complex model to detect challenging
lesions.

Our analysis indicates that the application of Contrast Lim-
ited Adaptive Histogram Equalization (CLAHE) to the L∗

component of the CIEL∗A∗B∗ color space representation of
the input image significantly enhances the features of both
polypoid and non-polypoid areas. As a result, blood vessels,
inner regions of the colon, and polyps become more distinct
and easier to identify.

The CIEL∗A∗B∗ color space is designed to approximate
human vision and is based on the opponent color theory.
This theory posits that the human visual system processes
color information in terms of opposing pairs: light-dark,
red-green, and yellow-blue. The CIEL∗A∗B∗ color space
separates lightness information from chromatic information,
with the L∗ component representing lightness and the a∗

and b∗ components representing the chromatic opponents
green-red and blue-yellow, respectively.

We applied Contrast Limited Adaptive Histogram Equal-
ization (CLAHE) to the L∗ component of a CIEL∗A∗B∗

colonoscopy image to improve its contrast while preserving
its chromatic information. CLAHE has helped enhancing
local contrast, making small details and textures within the
image more apparent without affecting the overall color
balance. This contributed significantly to the improved per-
formance of our model.

We observed that applying CLAHE directly to the original
RGB colonoscopy image resulted in color distortion since it
treats each color channel independently.

The distortions resulted in a significant drop in perfor-
mance as observed in the results of our ablation study.
Moreover, applying CLAHE to the value component of an
HSV image or the lightness component of an HSL image can
alter the hue and saturation of the image.

In terms of model development, we employed transfer
learning to enhance the convergence of our model and expe-
dite the training process. Transfer learning entails utilizing
pre-existing knowledge from a related task to augment the
performance of a model on a new task. In our study, we ini-
tialized the weights of our model using a Mix-ViT model that
had been pre-trained on the ImageNet dataset. This approach
enabled us to achieve satisfactory performance with a smaller

dataset of colonoscopy images and reduced the time required
for training. The significance of pre-training is observed in
results of the ablation study.

Furthermore, our experiments showed that replacing the
original convolution-based encoder of MA-NET with the
feature extraction layers of Mix-ViT improved the detection
rate of small polyps. By incorporating the feature extraction
layers of Mix-ViT into our MA-NET model, we were able
to leverage the powerful representational capabilities of this
architecture to enhance the detection rate of small and flat
polyps.

Our results and experiments indicate that each module in
our proposed model plays a critical role in effectively detect-
ing small polyps. By systematically removing and modifying
individual modules and evaluating the performance of the
resulting model, we were able to demonstrate the importance
of each component in achieving high detection accuracy.

The primary implication of our study is that the detection
of small and flat polyps, which pose a significant threat
due to their high likelihood of developing into colorectal
cancer if left undetected, can be improved by placing greater
emphasis on the quality of the training dataset and the
pre-processing steps. By carefully curating the dataset and
applying appropriate pre-processing techniques, it may be
possible to enhance the performance of semantic segmenta-
tion models in detecting these types of polyps in colonoscopy
images.

C. COMPARISON WITH PRIOR STUDIES
An examination of the results presented in Table 6 reveals that
the proposed enhanced MA-NET model outperforms several
comparable methods by a large margin, despite their more
sophisticated design. We hypothesize that the improvement
in performance is caused by several factors that are related
to both the design of the enhanced MA-NET as well as the
training strategy.

In our approach, we address the challenges posed by data
disparity and limited training samples by pre-training the
encoder before integrating it with the MA-NET decoder. This
allows us to leverage existing knowledge and improve the
performance of our model even when training data is limited.
In contrast, existing methods often focus on training entire
segmentation networks from scratch.While this approach can
be effective when sufficient training data is available, it can
be impractical in situations where publicly accessible data is
limited. By pre-training the encoder, ourmethod offers amore
feasible solution to this challenge.

In contrast to most existing work, which primarily focuses
on the segmentation model with limited attention given to the
pre-processing step, our approach emphasizes the importance
of both components. While some existing studies have intro-
duced data augmentation methods, there has been little effort
to improve or enhance the quality of the data samples them-
selves. In our work, we hypothesize that there is a relationship
between the performance of the model and the quality of the
input samples. As such, we have chosen to focus not only on
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the development of a robust segmentation model but also on
introducing an improved pre-processing step to enhance the
quality of the input data.

We chose to modify and pre-train the Mix-ViT model
for use as our encoder due to its demonstrated supe-
rior performance on ultra-fine-grained visual categorization
(Ultra-FGVC) tasks. We hypothesize that a model capa-
ble of bridging the gap between object categorization and
Ultra-FGVC tasks would be particularly effective in detecting
small and flat polyps, which often exhibit properties similar
to non-polypoid areas. By pre-training the Mix-ViT model
and integrating it into our enhanced MA-NET architecture,
we aim to leverage its strengths in Ultra-FGVC to improve the
detection of these challenging polyps. Based on the results,
this approach is superior, predominantly on challenging polyp
as compared to existing transformer-based methods.

Furthermore, we compared the performance of our pro-
posed enhanced MA-NET model with four well-established
semantic segmentation methods, including the original MA-
NET. Our goal is to provide a rigorous evaluation of our
approach and demonstrate its advantages over existing meth-
ods. The results of this comparison, presented in Tables 6,
7 and Figure 10, confirm the superior performance of our
proposed method, particularly in the detection of challeng-
ing polyps. There are several key differences between our
approach and existing segmentation models that may account
for this improved performance.

One of the key differences between our proposed enhanced
MA-NET model and the other four semantic segmentation
methods is the design of the encoder. In traditional segmen-
tation models, image features are typically extracted using
several convolutional layers. In contrast, our approach lever-
ages the attention layer of the Mix-ViT network to extract
image features. This allows us to capture more detailed
and nuanced information from the input images, which can
improve the performance of our model. Although convolu-
tional layers have demonstrated efficacy in feature extraction
from images, their capacity to extract polyp features from
colonoscopy images, particularly those captured in subop-
timal conditions, may be limited. This limitation may arise
from several factors including the complexity of visual pat-
terns associated with polyps, variability in their appearance,
and the presence of noise or other visual artifacts in the
images.

D. MODEL COMPLEXITY ANALYSIS
We evaluate the complexity and stability of our model from
different perspectives. Complexity can be measured by the
number of layers, operations and feature extraction process.

Stability is assessed by the robustness, generalization, and
convergence performance of the model on unseen data sam-
ples.

We contrast our model with most of the existing mod-
els that adopt multiple branches or encoders to capture
multi-scale features and fuse them in different ways. The
motivation behind feature fusion is to leverage both global

and local information, which theoretically would enhance the
segmentation accuracy. In contrast, we focus on simplifying
the encoder while maintaining its ability of capturing small
and flat polyps.

We adopt a single encoder architecture that reduces the
model complexity and computational overhead of feature
extraction. Instead of fusing or concatenating features from
multiple encoders or branches, our encoder directly produces
a single feature map that encompasses both global and local
information.

Our encoder is pre-trained on a large and diverse dataset of
ultra-fine-grained visual categorization tasks, which enables
the model to learn more relevant and transferable features for
the polyp segmentation task and improves the model stabil-
ity and generalization. Compared with multiple encoder or
branch architectures, our single encoder architecture achieved
superior segmentation accuracy with fewer layers, and oper-
ations.

Furthermore, by initializing our encoder with pre-trained
weights, we reduced the model’s complexity and the train-
ing time, as the model converged faster and learned fewer
parameters from scratch. This also improved the model
performance, especially on small and flat polyps, which
are challenging to segment. Furthermore, using pre-training
helped us prevent overfitting, which is a common issue in
colonoscopy images of small polyps due to the class imbal-
ance.

To further enhance the generalization and stability of our
model, we adopted the Dice loss function instead of the con-
ventional binary cross entropy (BCE). The Dice loss function
is more suitable for handling class imbalance, which arises
when the pixel count of one class is significantly lower than
the other.

Despite the superior performances of our model,
we acknowledge that the number of parameters can be further
reduced. Our model has 20M parameters, which may limit
its applicability on low-end devices for real-time predictions.
We experimented with different image sizes and found that
256 × 256 pixels yielded the best results for our model.
As shown in table 5, other sizes such as 128 × 128, 512 ×

512 and 1024 × 1024 pixels led to worse performance.
We believe that more research is required to optimize the
number of parameters while maintaining the model’s ability
to capture small polyps.

E. IMPLEMENTATION CHALLENGES
There are several implementation challenges that we have
encountered while building our proposed model and we
believe such challenges might face future researchers work-
ing on the same problem.

A significant challenge that we encountered is the varia-
tion of the field of view of the colonoscope across different
images, which poses difficulty for image segmentation. To the
best of our knowledge, there is no existing solution for this
problem in literature as this problem depends solely on the
angle of the colonoscope.
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A further challenge that stems from the dataset is the incon-
sistency of the image quality in colonoscopy. The images
range from high resolution ones with clear details to blurred,
low resolution ones with noise and artifacts. Such low-quality
images pose difficulties for accurate polyp segmentation.

In addition, another challenge that needs to be tackled,
is the occurrence of specular reflections and blood stains
that mislead the model into falsely detecting polyps. These
artifacts can result from the illumination and camera settings
of the colonoscopy device, or from the bleeding of themucosa
during the procedure. They can affect the contrast and color
of the images, making it harder for the model to distinguish
between polyps and non-polyp regions.

F. LIMITATIONS AND FUTURE RESEARCH
Despite the superior performance of our method, there are
several limitations to our study that warrant further investiga-
tion.

One major limitation is that we have not yet tested our
method on live stream colonoscopy videos to verify its
practicality on real-time datasets. This is an important con-
sideration for the clinical application of our approach, as it is
essential to ensure that our method can operate effectively on
live data in a clinical setting. Future work should therefore
focus on evaluating the performance of our method on live
stream colonoscopy videos to assess its practicality and utility
in a real-world context.

Despite cross-validating our model on two unseen, public
datasets, another limitation of our study is that our method
has not been tested on real-life colonoscopy image datasets.

As a result, the performance of our method on unseen,
real-world data remains unknown. To address this limitation,
future research should focus on evaluating the performance
of our method on real-life colonoscopy images to determine
its effectiveness in a clinical setting. This will provide valu-
able insights into the generalizability of our approach and
its potential for practical application in the diagnosis and
treatment of colon cancer. By rigorously testing our method
on real-world data, we can gain a better understanding of
its strengths and limitations and identify areas for further
improvement.

The final limitation of our study is that our model was
sometimes confused by images with strong white light
glare. This suggests that addressing the issue of white light
reflection is an important consideration for improving the
performance of our method, particularly when working with
real-life samples. Future research should therefore focus on
developing strategies for mitigating the effects of white light
glare on our model’s performance. This could involve incor-
porating additional pre-processing steps to reduce glare or
developing more robust algorithms that are less sensitive to
variations in lighting conditions.

The study demonstrated that the proposed method outper-
formed similar polyp detection models in detecting small and
flat polyps. This suggests that the method effectively learns
the complex and subtle features of small, flat polyps and

generates accurate and consistent masks. Additionally, the
proposed image enhancement layer, which applies contrast
limited adaptive histogram equalization (CLAHE) to the L∗

component of the CIEL∗A∗B∗ color space, enhanced the
performance of the segmentation model by improving the
contrast and visibility of polypoid and non-polypoid regions.

These findings imply that the proposed method can
advance early detection of colorectal cancer by improv-
ing colorectal polyp detection. However, further studies are
required to validate the generalizability and robustness of the
method on larger and more diverse datasets and to assess its
clinical impact and cost-effectiveness in real-world settings.
Moreover, further studies are necessary to better understand
the data aspect of the problem. Most existing work has pri-
marily focused on introducing new and complex architectures
without considering data quality. This can be addressed by
exploring the potential of generative models, such as stable
diffusion or generative adversarial networks, to create more
samples, enhance existing samples or apply custom augmen-
tation.

VI. CONCLUSION
Colorectal polyps come in various shapes, forms, and colors.
A major challenge faced by deep learning researchers has
been the misidentification of small and flat polyps. In this
paper, we propose an enhanced version of the multi-scale
attention network (MA-NET) to segment colorectal polyps
from colonoscopy images. We enhance the architecture by
replacing the original encoder, based on convolutional layers,
with a modifiedMix-ViT transformer. Additionally, we intro-
duce a new preprocessing layer that enhances input images by
applying Contrast Limited Adaptive Histogram Equalization
(CLAHE) to the L∗ component of images in the CIEL∗A∗B∗

color space. This preprocessing step improves the features of
input images, making non-polypoid regions more obvious to
themodel during training. Ourmodel is trained on a combina-
tion of two public datasets: Kvasir-SEG and CVC-ClinicDB
and tested on two different datasets: ETIS-LaribPolypDB and
CVC-ColonDB.Ourmethod has proven effectivewhen tested
on several unfiltered colonoscopy images.
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