
Received 16 June 2023, accepted 28 June 2023, date of publication 3 July 2023, date of current version 7 July 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3291401

A MDPs-Based Dynamic Path Planning in
Unknown Environments for Hopping Locomotion
KOSUKE SAKAMOTO , (Member, IEEE), AND YASUHARU KUNII, (Member, IEEE)
Department of Electrical, Electronic, and Communication Engineering, Chuo University, Bunkyo, Tokyo 112-8551, Japan

Corresponding author: Kosuke Sakamoto (ksakamoto605@g.chuo-u.ac.jp)

This work was supported in part by the Chuo University Joint Research Grant.

ABSTRACT Hopping robots, or ‘‘hoppers’’, are promising explorers capable of navigating rough terrain
such as disaster areas and celestial environments. For example, rovers exploring planetary surfaces need
to minimise the risk of failure and maximise the acquisition of information about their environment.
Hopping locomotion in such environments is inherently uncertain because the details of the environment
are largely unknown. As a result, path planning algorithms must account for these uncertainties in order
to effectively traverse these environments. This study presents a novel hopping path planning algorithm
for uncertain environments. The proposed algorithm uses Markov Decision Processes (MDPs) to compute
motion uncertainties and subsequently generates optimal actions for all states according to the terrain
conditions and mission requirements. In addition, the proposed algorithm incorporates a perception method
using hopping locomotion features, which enables dynamic path generation. The proposed algorithm is
evaluated through simulations in three different environments, which demonstrate that the hopper can achieve
its goals with a 98% success rate on hard ground and heterogeneous terrain, and over 80% success rate
on sandy terrain, using the proposed algorithm. Furthermore, the robustness of the proposed algorithm is
validated through comparison with a greedy algorithm using the same payoff function, which shows that the
proposed algorithm achieves 20 times higher success rate and 38.7% lower average number of steps than the
greedy algorithm in the best case scenario.

INDEX TERMS Motion and path planning, optimization and optimal control, space robotics.

I. INTRODUCTION
A variety of locomotion mechanisms for field robots have
been developed for activities in various challenging terrains.
In particular, hopping locomotion is one of the most
promising mechanisms. In fact, numerous hopping robots,
called hoppers, have been designed for playing an active
role in disaster areas [1], celestial bodies [2], [3], [4], [5],
and so on. For example, the MINERVA-II robot, which
was developed by JAXA/ISAS, is one of the successful
hoppers. The hopper could traverse and take the surface of the
asteroid ‘‘Ryugu’’ in September 2019 (shown in Fig.1) [6].
JAXA is also planning the SLIMmission, a lunar exploration
program that will deploy a hopper rover [7]. Furthermore, the
Moonshot project is conducting research on lunar exploration

The associate editor coordinating the review of this manuscript and
approving it for publication was Hongli Dong.

using hoppers and the development of a lunar base [8].
However, there are many challenges to the success of in a
planetary surface exploration mission by a hopper/hoppers.

One of the challenges is to cope with control uncertainty
of the path or motion planning problems. The details of
the planetary environments are unknown until the robot
arrives and explores on site. In addition, the Moon or Mars
are covered with dry sand, called regolith. Sand decreases
hopping performance due to slippage and may cause the
hopper to get stuck [10]. In other words, control uncertainty
makes it difficult for robots to follow a path accurately
on unstructured terrain. Therefore, motion planning must
take such uncertainty into account for safe and efficient
navigation. In addition, a spatial motion of hopping must
be considered in a 3D environment, which indicates that
the hopping motion is more complex than a motion in
a 2D environment. As a result, control uncertainty may

66694

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME 11, 2023

https://orcid.org/0000-0002-8781-516X


K. Sakamoto, Y. Kunii: MDPs-Based Dynamic Path Planning in Unknown Environments for Hopping Locomotion

FIGURE 1. MINERVA II robot and taken the photo. Left: the image of
MINERVA II on asteroids. Right: the photo of ‘‘Ryugu’’ [9].

be larger than that of wheeled vehicles. Furthermore, the
computational cost is higher in a 3D environment than that
in a 2D environment. In unknown environments, there is no
guarantee that the robot will reach the goal, because the robot
cannot generate paths to the goal. What’s more, we don’t
know whether the direction in which the robot is moving
is safe or traversable. In the worst case, the robot may get
stuck or deadlocked. Therefore, the robot needs to generate
actions or paths that are traversable, reduce uncertainty, have
sufficient safety, and avoid deadlocks. Conventional path
planning algorithms have been improved to generate paths
in unknown environments or uncertainty for wheeled robots.
However, these algorithms combine two or three methods,
operate in partially known environments, or assume that
the wheels are well controlled. These assumptions make
it difficult to apply the conventional methods to hopping
robots for locomotion in completely unknown environments.
Therefore, a path planning method is required that enables a
hopping robot to account for the uncertainty of its motion in
completely unknown environments.

To address the above challenges, this paper proposes and
evaluates a dynamic hopping path planning algorithm for
traversing unknown environments. The contributions of this
paper are listed below:
• We propose an MDP-based hopping path planning
algorithm that maximises the payoff and minimises the
control uncertainty to reach the goal.

• We design the payoff function, which can change
depending on the mission requirements or environmen-
tal conditions.

Our proposedmethod is based onMarkov Decision Processes
(MDPs), which generate the best actions for all observable
states. The motion uncertainty is formulated as a probability
and the payoffs at each state are defined in the MDPs,
then the MDPs use the probabilities and the payoffs to
compute the expected values. The generated best actions
maximise the expectation values through MDPs. In this
paper, we achieve dynamic path planning by modifying the
actions generated by MDPs by expanding the observation
area while moving in unknown environments. We design
a novel payoff function for a hopping robot operating in
unknown environments. The proposed payoff function can
quantitatively define uncertainty, thus enabling adaptation to
different uncertain environments regardless of the terrain.

TABLE 1. The symbols and notation used in this paper.

The proposed algorithm is tested in three environments
and its performance is evaluated. This paper extends our
previous work, which only considered known environments
and restricted the payoff function [11]. This work showed
that the proposed algorithm is able to generate paths on
unstructured terrain. On the other hand, some deadlocks
were observed on sandy surfaces. Accordingly, in this paper,
the payoff function is modified to avoid deadlocks and
reach the goal on sandy terrain. In addition, to evaluate
the performance of the proposed algorithm in unknown
environments, we simulate whether the robot can reach
the goal or not by alternating between observation and
locomotion. Furthermore, we validate the robustness of
the proposed algorithm by comparing it with the greedy
algorithm using the same payoff function. The performance
of these algorithms is evaluated in terms of the goal-reaching
rate. This paper also presents a ‘‘treasure hunting’’ on hard
ground, which evaluates howmany interesting objects (called
‘‘treasures’’) the robot collects while reaching the goal.

The contents of this paper are described as follows:
Section II reviews related works on the topic. Section III
introduces the proposed algorithm for hopping path planning
on rough terrain, and the methods used are shown. Section IV
presents the simulation results to evaluate the proposed
algorithm. Finally, conclusions of this paper and future works
are shown in Sec.V. Table 1 denotes the symbols and notation
used in this paper.

II. RELATED WORKS
Path planning, or motion planning in unknown environ-
ments, has been an important technology in robotics. The
‘‘unknown’’ or ‘‘uncertain’’ environment typically means an
environment that is not observed or has dynamic obstacles.
One of the most widely used algorithms for partially known
or dynamic environments is D [12], which is a heuristic
graph search method based on A replanner. D* has been
widely applied and extended to robot motion planning, such
as D* Lite [13] or Field D [14]. These methods re-plan an
initial path based on dynamic environmental information.
For example, Mars exploration rovers used Field D to
act in natural environments [15]. Jihee Han extended A*
to generate a path in unknown environments [16]. The
proposed algorithm sets grid points around obstacles in only

VOLUME 11, 2023 66695



K. Sakamoto, Y. Kunii: MDPs-Based Dynamic Path Planning in Unknown Environments for Hopping Locomotion

the observed area. Although the computational cost of the
proposed method is lower than A*, the quality of the paths
is almost the same.

Sampling-based methods have also been extended to
path planning in unknown environments. Chance-constraint
RRT [17] combines the RRT algorithm with the uncertainty
of collision as a constraint. The objective function expresses
the risk of collision as a probability and the cost of the path
length, which allows a trade-off between the shortest path
and the least risky path. Lukas et al. applied RRT* to online
informative path planning in unknown environments [18].
The proposed method expands a single tree continuously to
maximize an objective function, which avoids local minima.
Cai et al. proposed a sampling-based method that generates
a collision-free path in a dynamic environment considering
localization uncertainty [19]. The method biases the sample
towards the information-rich region to reduce the uncertainty
and collision risk. GMR-RRT* applied human navigation
behaviour through Gaussian Mixture Regression (GMR) to
the sampling process of RRT [20].

Another mainstream trend is the combination of global and
local planning methods. A global path planning algorithm
generates an optimal path (e.g., the shortest path) by
minimizing an objective function. A local path planning
algorithm calculates a control input to avoid dynamic
obstacles while following a global path. The algorithms
mentioned above, such as A*, D*, or RRT*, are global
path planners. DWA is one of the most famous and widely
used local planners [21]. The combination of a global path
planner and DWA is a practical solution. On the other
hand, the performance of DWA depends on the parameter
setting of its cost function. Therefore, recent studies have
proposed optimization method-based local planners instead
of DWA: Reference [22] uses the Voronoi planner to find
a collision-free path and a potential field to calculate
the control input. Reference [23] generates a global path
using PSO and a local path using A*. Reference [24]
applies PSO to re-calculate a local path generated by D*.
Reference [25] creates a map by random walk at first, then
generates optimized waypoints from the start to the goal
using PSO. Reference [26] employs the interval type-2 fuzzy
logic system (IT2FLS) as a local planner, with parameters
optimized by an artificial bee colony (ABC) algorithm.

Recently, reinforcement learning-based algorithms have
been widely proposed to improve planning algorithms in
unknown environments. Using reinforcement learning (RL),
an agent (a robot) learns the best control policy, that
maximizes a value function depending on the environment.
Hockman and Pavone propose a hopping trajectory planning
method on asteroids [27]. They optimized a single hopping
trajectory in irregular gravity fields and derived optimal con-
trol policies by RL. Reference [28] optimized the parameters
of DWA using Q-learning to improve navigation in unknown
environments. They modified the evaluation function of
DWA and decided the weight coefficients of the evaluation

function by Q-learning. The parameter sets performed better
than the empirical parameter set. Sombolestan et al. generate
the control policy using RL in an unknown environment [29]
to find the shortest path without a map in an unknown
environment, such as a disaster area. Some studies apply
deep reinforcement learning using images from a robot [30],
[31], [32]. Reference [33] applied DRL to collision avoidance
in unknown environments for multi-robot exploration. They
used the 24 laser rangefinder states, two previous velocity
states, and two robot position states as inputs instead of
images. A drawback of RL-based methods is that the
performance of the algorithms depends on the learning
environment. In other words, there is no guarantee that the
algorithm performs well in environments different from the
learning environment.

The Markov Decision Processes (MDPs) based algo-
rithms calculate the best set of actions, called the control
policy π(x), under motion uncertainty. The uncertainty is
expressed as a stochastic transition process. The control
policy generated by MDPs maximizes an expected value
V = 6xπ(x) × r , and hence it is important to design the
payoff function r . Nardi et al. [34] formulated the navigation
problem in an urban environment as Augmented MDPs.
In addition to the motion uncertainty, they incorporated the
robot’s position uncertainty into the problem. Therefore,
their approach generates paths that can trade off between
travel distance and safety. Peynot et al. used a Gaussian
process regression model to learn the statistical transitions
of actions from experience [35], [36]. They then applied
MDPs to the outcome and demonstrated safe path planning
under control uncertainty. Feyzabadi and Carpin proposed
a risk-aware planning method using constrained Markov
decision processes (CMDPs) [37]. Themethod treatsmultiple
objectives as constraints to generate the path throughCMDPs.
To cope with the complexity of CMDPs, they proposed
a hierarchical method that produces suboptimal paths but
reduces calculation costs.

The artificial potential field (APF) was applied to path
planning by [38]. The method produces a low potential field
around the goal or targets, which generates an attractive force,
as well as a high potential field around obstacles, which
establishes a repulsive force. The method has been widely
used due to its robustness and simplemathematicalmodel that
is easy to implement. Recent studies have used APF-based
models, such as a combination of membrane computing and
APF [39], [40], or Q-learning and APF [41]. These studies
produced the best parameters of APF using optimization
methods to generate a safe and feasible path in obstacle-rich
environments. Reference [42] proposed a new attraction field
and repulsive field function to avoid local minima.

Several path planning methods use terrain information
to improve driving performance on rough terrain. For
instance, [43] and [44] employ slope information to predict
slip on soft ground and incorporate it into the cost function of
path planning; [45] proposes a path planningmethod that uses

66696 VOLUME 11, 2023



K. Sakamoto, Y. Kunii: MDPs-Based Dynamic Path Planning in Unknown Environments for Hopping Locomotion

terrain slope to account for kino-dynamic constraints; [46]
replicates the terrain on which the robot operates in a
physics engine and generates a path. The robot follows the
path generated by D*Lite in the simulation. The path is
re-generated by setting the terrain that the robot could not
traverse as an impassable point, and the process is repeated
until the robot reaches the goal.

This paper usesMDPs to solve the hopping path generation
problem in unknown environments. The reasons are as
follows:
• MDPs can generate robust paths against motion
uncertainty.

• MDPs work well despite differences between
environments.

• The payoff function of MDPs is easy to extend.
MDPs calculate the best actions in all observed states, so that
a robot does not need to re-generate a path if the robot
deviates from the estimated landing point. The maximum
value is expressed as the Bellman equation, which ensures
the optimality of the policy. Therefore, MDPs can generate
the best actions in various environments. One of the crucial
aspects of the proposed algorithm is the parallel exploration
towards a goal in an unknown environment, which allows
reaching the goal while updating the map. Since we define
the unknown environment as the unobserved area, ourmethod
allows generating the best action in the observed area and
reaching the goal while reducing the unobserved area, even
in environments where conventional methods, such as the D*
algorithm, cannot generate a route to the goal using a high-
level planner. In addition, the payoff function enables the
inclusion of some constraints based on the mobility platform
as penalty terms. These features are the unique advantages
of MDPs that the sampling-based method, APF, RL method,
or any optimization methods don’t have.

III. PROBLEM DESCRIPTION
This section explains the details of the proposed algorithm,
the assumptions, and the conditions of the simulation.
As described above, this study employs MDPs to calculate
uncertainties and generate paths. The path is generated
by connecting the actions. MDPs produce the best action
in all observed states, which allows a hopper to continue
locomotion without replanning new actions when it fails
to follow the action. MDPs require that motion uncertainty
must be expressed as a stochastic transition. Although motion
uncertainty is caused by several factors, such as hardware
error, software error, or terrain interaction, this paper doesn’t
specify the causes and the details of the uncertainty. Since this
paper focuses on the performance of the proposed algorithm,
the probability of transition is given as a constant value.
MDPs pre-calculate the best action in all possible states;
however, this study limits the number of possible states due
to calculation costs. This study does not focus on attitude or
trajectory control while hopping.

In addition, this paper evaluates the generated paths and the
success rate of reaching the goal, and doesn’t focus on a single

hopping trajectory. Regarding the optimization of a single
trajectory, [47] proposed an optimization method considering
contact uncertainty due to the terrain.

In this paper, we design the payoff function to generate
the policy by MDPs. The proposed payoff function consists
of safety, information gain, and the direction of the goal.
We can design the payoff function by changing the priorities
of these terms depending on the mission, the condition of the
environment, and so on. The proposed algorithm is tested in
simulations. The virtual environment has three cases: hard
ground, partially sandy environment, and sandy terrain. The
differences in the generated paths are compared between
these environments or the priority of the payoff function, and
the proposed algorithm is evaluated by the reaching rate to
the goal.

A. ASSUMPTIONS
Although this method performs path planning on a 2D
grid map, it is characterized as 2.5D path planning because
it uses DEM (Digital Elevation Map) elevation data to
accommodate for the collision check of hopping trajectories.
The hopping trajectory is assumed to be a parabolic motion,
which eliminates the need for full 3D calculations using
the elevation data. In other words, the elevation h(x, y) and
the parabolic trajectory z = −C1(x − C2) + C3 at the
point x = (x, y) are used for collision check, where C1 =(
(xL−xH)vz

2g

)
, C2 =

xL−xH
2 , and C3 =

vz
2g . Here, we define the

hopping point xH, the landing point xL, the initial hopping
velocity vz, and a gravitational acceleration g. Based on this
assumption, this study defines the proposed method as a 2.5D
path planning algorithm. The robot only knows the direction
of the goal in advance, and the details of the environment
are unknown. Paths are generated only in known areas,
which are expanded step by step by the robot’s locomotion.
In this paper, ‘‘information gain’’ is defined as the details
of the environment acquired through observation. Therefore,
the purpose of this paper is for the robot to move towards
the goal by repeatedly observing and moving. The motion
uncertainties are caused by the roughness of the terrain,
the material of the surface, and so on. These uncertainties
generally decrease the performance of the hopper. This study
is based on the following assumptions:
• Do not specify what causes the uncertainty P and the
degree of the uncertainty quantitatively.

• The uncertainty P is expressed as the dispersion of the
landing point (x, y) probabilistically, i.e., 0 ≤ P(x, y) ≤
1 ∧

∑
x
∑

y P(x, y) = 1.

The details of the probabilistic uncertainty are described in
Section IV-B. Figure 2 shows the schematic image of hopping
with uncertainty. The hopper attempts to land in front of the
obstacle, and the estimated trajectory is expressed as a red
dashed line. The uncertainty area indicates the dispersion of
the landing point. This study doesn’t consider the uncertainty
from perceptions. Therefore, the position and attitude of the
hopper are already known in all possible states.

VOLUME 11, 2023 66697



K. Sakamoto, Y. Kunii: MDPs-Based Dynamic Path Planning in Unknown Environments for Hopping Locomotion

FIGURE 2. The image of the hopping with uncertainty.

B. CONDITIONS OF THE ROBOT
This paper simplified hopper conditions in order to evaluate
the proposed algorithm in the simulations as a first step. The
hopper is treated as a mass point. The hopper can hop in
four horizontal directions (north, south, east, and west) and
the hopping trajectory is calculated as a parabolic motion.
The trajectory is calculated from the initial velocity v0. The
mechanical loss is zero, and hence the initial kinetic energy
Ek = 1/2mv20 is equal to the potential energy Ep = 1/2kx20 ,
i. e., Ek = Ep. The hopper is equipped with power sources
that generate the hopping force, and appropriate sensors
to perceive the environments, such as stereo cameras. The
hopping force is a conservative force, such as a spring.

C. MODELING
Markov decision processes (MDPs) use the probability of the
state x ′ from the selected action u under the state x. The action
model p(x ′|x, u) is determined previously. Using this model,
MDPs determine the control policy π (x) that maximizese the
expected payoff r(x, u). At step T , the policy πT (x) is given
by:

πT (x) = argmax
u

[
r(x, u)+

∫
VT−1(x ′)p(x ′|u, x)dx ′

]
(1)

where VT (x) denotes the value function which is expressed
as follows:

VT (x) = γ max
u

[
r(x, u)+

∫
VT−1(x ′)p(x ′|u, x)dx ′

]
(2)

where γ denotes the discount factor. Taking the limit
T →∞, Eq. (2) is called as Bellman equation. Bellman
equation means that all value function converge to the
maximum value V (x). Therefore, the optimal policy π (x) can
be obtained by Eq. (1). This paper uses γ = 0.99.

In order to calculate the optimal value function numeri-
cally, this study employs Value iteration method. Algorithm 1
shows the procedure of the value iteration.

Where N denotes the number of the states.

Algorithm 1 Value Iteration
for i = 1→ N do
V (xi)← rmin

end for
while until V (xi) converge do
for i = 1→ N do
V (xi)← γ maxu

[
r(xi, u)+

∑N
j=1 V (xj)p(xj|u, xi)

]
end for

end while
return V

FIGURE 3. The artificial terrain. The higher places are colored green, and
the lower places are colored brown. The size of each cell is 1 m × 1 m.
The start (blue point) is (1, 2) and the goal (red point) is (18, 18). The
environment is same as our previous work [11].

D. EVALUATION FUNCTION
The way of designing the payoff function r(x, u) is one of
the important technique of MDPs. The payoff functions are
designed by considering the above assumptions and motion
features. The design concept of the payoff function of this
study is to maximaze the infomation gain and safety, and
minimize the length of the path. The proposed payoff function
is expressed as:

r(x, u) = w1S(x, u)+ w2I (x, u)+ w3D(x, u) (3)

where S(x, u), I (x, u) and D(x, u) denote the safety cost,
the information gain, and the penalty term in regard to
action, respectively. The w1,w2, and w3 are the weight
coefficients.

The safety of the locomotion depends on the interaction
between the robot and the environments, i. e., the safety
cost is proportional to the roughness of the surface. On the
other hand, hopping robots can ride on relatively flat rocks,
or get over steps. These features indicate that hoppers can
traverse more challenging regions than what wheeled rovers
traverse. Therefore, the function of the safety cost is defined
as follows:

S(xp) = −
∣∣∇h(xp, yp)∣∣− T (xp) (4)

66698 VOLUME 11, 2023



K. Sakamoto, Y. Kunii: MDPs-Based Dynamic Path Planning in Unknown Environments for Hopping Locomotion

FIGURE 4. The simulation results of the proposed algorithm: (a) - (c) the safety-critical case ((w1, w2) = (1, 0)), (d) - (f) S(x, u) and I(x, u) have the same
level of effect ((w1, w2) = (0.5, 0.5)), and (g) - (h) the information gain-critical case ((w1, w2) = (0, 1)) on hard ground. The blue, purple, red, and black
arrows denote the moving direction to north, south, east, and west, respectively. The green lines indicate the correct paths on which the hopper moved,
and red lines indicate the incorrect paths. t and p denote the number of steps and the hopper position, respectively; Left figures: the initial state; Middle
figures: the halfway state; Right figures: the finish.

where h(xp, yp) and T (xp) denote the height of the terrain
at a point (xp, yp), and the risk of motion based on the
soil condition, respectively. The roughness of terrain on a
point xp = (xp, yp)T is formulated as the tilt at that point.
Given the findings from our prior hopping experiments [10],
the hopping performance on sandy soil was found to be
inferior to that on hard ground. Furthermore, a phenomenon
of becoming stuck may transpire on sandy terrain. Thus,

a penalty term T (xp) with a positive value is imposed when
the robot is on sand, otherwise it is set to zero.

The information gain means how large area the robot can
perceive around them. In order to traverses an unknown
environment, robots needs to perceive the environment
around them and map it. This study assumes that a hopper
can observe the environments around the hopper by riding on
a high place, such as a rock or a step. This paper describes the

VOLUME 11, 2023 66699



K. Sakamoto, Y. Kunii: MDPs-Based Dynamic Path Planning in Unknown Environments for Hopping Locomotion

FIGURE 5. The simulation results of the greedy algorithm: (a) - (c) the safety-critical case ((w1, w2) = (1, 0)), (d) - (f) S(x, u) and I(x, u) have the same
level of effect ((w1, w2) = (0.5, 0.5)), and (g) - (h) the information gain-critical case ((w1, w2) = (0, 1)) on hard ground. The green lines express the
actual routes which the hopper traverses, and red lines show the useless actions. t and p denote the number of steps and the hopper position,
respectively; Left figures: the initial state; Middle figures: the halfway state; Right figures: the finish.

information gain as:

I (xp) = h(xp, yp) (5)

D(x, u) is a penalty term in order to avoid robots failing
to reach the goal. The value of the penalty decreases in
proportion to the distance from the goal.

D(xp,u) = −
∥xg − xp∥
∥xp∥

(6)

where xg denotes the vector to the goal.

We use min-max normalization to equalize the effect
of S(xp) and I (xp), but do not apply the normalization to
D(xp,u), because the range is −1 ≤ D(xp,u) ≤ 0.

IV. SIMULATION STUDY
This section presents the simulation study to evaluate the
proposed algorithm described in Section III. We verify
whether the robot can reach the goal by alternately repeating
observations of the environment and locomotion in the
simulations. The robot recognizes the surrounding envi-
ronment. The sensing area is proportional to the height

66700 VOLUME 11, 2023



K. Sakamoto, Y. Kunii: MDPs-Based Dynamic Path Planning in Unknown Environments for Hopping Locomotion

TABLE 2. The action list of the hopper.

of the position. The simulation environments are three
kind surface: hard ground, sandy terrain, and partially
sandy terrain. We evaluate the proposed path planning by
changing the weight coefficient w1 and w2 in Eq. 3. We set
w3 = 10, because D(xp,u) is treated as a penalty term.
The value is determined empirically. The observation area
is a circle of 2 ×

(
h(xp, yp)+ 1

)
[m] radius from the

robot.

A. THE ENVIRONMENT OF THE SIMULATION
Fig. 3shows the virtual rough terrain used in the simulation.
The elevation of the surface is indicated with a colorbar. This
terrain is modeled as a digital elevation map (DEM), of size
20 m × 20 m. Each state is a 1 m × 1 m cell. There are five
elevated regions (i.e., positive values) and three depressed
regions (i.e., negative values). The start point is (xp, yp) =
(1, 2), and the goal point is (xp, yp) = (18, 18), respectively.
The payoff at the goal is 100.

The best actions are calculated by MDPs in all possible
states, and hence the path is generated by connecting the
actions. The selected actions used in the simulations are
shown in Table 2. This simulation assumes that the hopping
distance d ′ = 1.0 m and h′ = 0.25 m are constant at the
hopping angle η = 45 [deg].

B. RESULTS AND DISCUSSION
The simulation terrains are three cases: hard ground,
heterogeneous terrain (partly sandy soil), and sandy envi-
ronment calculated by a desktop PC with Intel Core-i9,
8 cores, 3.7 GHz. All simulation scenarios were subjected
to 100 repetitions, and the frequency of the robot achieving
the objective, as well as the mean and standard deviation
of the number of steps taken, were evaluated. The upper
limit of steps is 150, and if the robot is unable to reach the
objective within 150 steps, it is deemed to be in a ‘‘deadlock’’
state and the simulation is terminated. Similarly, if the
robot exits the designated map, the simulation is considered
a failure. The proposed algorithm works in an unknown
environment with motion uncertainty, whereas the related
works cannot. Thus, we compare the proposed algorithm
with the greedy algorithm under identical conditions and
using the same payoff function. The greedy algorithm
chooses the action that leads to the highest reward within
the adjacent traversable area. Furthermore, we employ
the t-test, a parametric statistical test, to demonstrate the
statistical significance between the proposed algorithm
and the greedy algorithm. The values of the weight
coefficients are selected by the results of our previous
work [11].

TABLE 3. The number of successes and the average steps ± s.d. of the
proposed algorithm on hard ground.

FIGURE 6. The the artificial terrain of the heterogeneous terrain. The
sandy region is shown as translucent grey. The other conditions are the
same as Sec. IV-B1.

1) SIMULATIONS ON HARD GROUND
This work tries the three simulations by changing the
weight coefficient in eq.(3) on hard ground: (w1,w2) =
(1, 0), (0.5, 0.5), (0, 1). The uncertainties of the hopping
locomotion are defined as below:

• Selected action: 90
(
1− θfront

(π/6)

)
%

• Staying: 90 θfront
(π/6)%

• Turn left: 5
(
1− θright

(π/6)

)
%

• Turn right: 5
(
1− θleft

(π/6)

)
%

where θdirection denotes the slope angle to a direction of the
selected action (front, left, and right). These probabilities
are determined by hand-tuning. This simulation assumes the
maximum angle of slope is 30 degrees, which the hopper can
traverse, and the uncertainties are in inverse proportion to a
slope angle. This is the reason why θdirection divided by (π/6).
In addition, the probability define 1 − θfront

(π/6) := 0 in the case
of θdirection ≥ π/6 in order the probability not to be negative
values, and θleft = −θright.
The simulation results of the proposed algorithm are

shown in Fig. 4. The arrows indicate the best action at each
state: blue, purple, red, and black arrows denote the moving
direction to north, south, east, and west, respectively. The
state of the hopper is represented by the yellow dot. The actual
route traveled by the hopper is shown in green and red lines:
green lines show the same path as the MDPs calculation,
and the red lines show the different path. The average
computing time until reaching the goal is about 44.3±9.1 sec.
per once, i.e., it takes approximately 0.6 seconds per step.
Table 3 shows the number of successes and the average steps

VOLUME 11, 2023 66701



K. Sakamoto, Y. Kunii: MDPs-Based Dynamic Path Planning in Unknown Environments for Hopping Locomotion

FIGURE 7. The simulation results of the proposed algorithm: (a) - (c) the safety-critical case ((w1, w2) = (1, 0)), (d) - (f) S(x, u) and I(x, u) have the same
level of effect ((w1, w2) = (0.5, 0.5)), and (g) - (h) the information gain-critical case ((w1, w2) = (0, 1)) on heterogeneous terrain; Left figures: the initial
state; Middle figures: the halfway state; Right figures: the finish.

with standard deviation. The result shows that the proposed
algorithm performed high success rates.

As shown in Figs. 4a to 4c, and Figs. 4d to 4f the hopper
tends to moves on relatively flat terrain in the safety-critical
case ((w1,w2) = (1, 0)), the intermediate case ((w1,w2) =
(0.5, 0.5)). In the information gain-critical case, unlike in the
above two cases, the hopper tends to traverse places as high
as possible to get the information. This case has no penalties
due to the slope of the terrain, so even if they go off the
path, they head straight for the goal. Despite these differences,

the number of successes, and the number of steps are almost
the same in all cases. This result implies that the proposed
algorithm generated the paths which are different routes, but
the almost same distance in a homogeneous environment.

The results of the greedy algorithm are shown in Fig 5 and
Table. 4. The green lines and red arrows denote the traveled
paths and useless reciprocating motions, respectively. The
average computing time until reaching the goal is about
(6.5±0.2)×10−3 sec. per once. The computing time is about
680 times faster than the proposed algorithm. Comparing

66702 VOLUME 11, 2023



K. Sakamoto, Y. Kunii: MDPs-Based Dynamic Path Planning in Unknown Environments for Hopping Locomotion

FIGURE 8. The simulation results of the greedy algorithm: (a) - (c) the safety-critical case ((w1, w2) = (1, 0)), (d) - (f) S(x, u) and I(x, u) have the same
level of effect ((w1, w2) = (0.5, 0.5)), and (g) - (h) the information gain-critical case ((w1, w2) = (0, 1)) on heterogeneous terrain. t and p denote the
number of steps and the hopper position, respectively; Left figures: the initial state; Middle figures: the halfway state; Right figures: the finish. In the
safety-critical case, the robot is in a deadlock and cannot reach the goal.

TABLE 4. The number of successes and the average steps ± s.d. of the
greedy algorithm on hard ground.

these results with the results of the proposed algorithm, the
generated paths and steps are almost the same, however, the
computing time is one thousandth smaller than the proposed
algorithm despite the value of the weight coefficients. This

is because the greedy algorithm only chooses the largest
payoff direction, but the proposed algorithm calculates the
value iterations. On the other hand, in the information gain-
critical case, the robot traversed the edge of the sunken
place where the proposed algorithm doesn’t generate the
path. Table 5 shows the t-test between the greedy algorithm
and the proposed algorithm. The null hypothesis for this
test is that the proposed algorithm and the greedy algorithm
generate the same results, and the null hypothesis is common
hypothesis in this paper. The t-values of the safety-critical
case and the information gain-critical case are larger than the

VOLUME 11, 2023 66703



K. Sakamoto, Y. Kunii: MDPs-Based Dynamic Path Planning in Unknown Environments for Hopping Locomotion

TABLE 5. The t-test results between the greedy algorithm and the
proposed algorithm on hard ground.

FIGURE 9. The artificial terrain of the sandy terrain. The sandy region is
shown as translucent grey. The other conditions are the same as
Sec. IV-B1.

TABLE 6. The number of successes and the average steps ± s.d. of the
proposed algorithm on heterogeneous terrain.

95% CI value, which rejects the null hypothesis. This result
shows that the proposed algorithm generates the better path
than the greedy algorithm in this case. The both algorithms
perform almost the same efficiency, but the greedy algorithm
is better than the proposed algorithm in terms of calculation
cost. The computational time of the proposed algorithm
is approximately 0.6 seconds per each action by 3.7 GHz
CPU. The time can be calculated to be approximately
1.5 seconds using 1.5 GHz CPU, such as a Raspberry Pi 4.
The computational time is enough fast to be implemented in
a real application.

2) SIMULATIONS ON HETEROGENEOUS TERRAIN
In this case, a part of this terrain (5 ≤ x ≤ 11, 3 ≤ y ≤ 11)
is sandy surface. We assume the hopping distance and height
decrease on sand: the hopping distance d ′ = 0.5m and height
h′ = 0.125 m at the hopping angle η = 45 deg. Furthermore,
slip is easier to occur on sandy surface than on hard ground.
This is why the safety cost Eq. (4) includes the penalty T (x) =
−5. Therefore, the motion uncertainties on sandy terrain are
defined as follows:
• Selected action: 70

(
1− θfront

(π/6)

)
%

• Staying: 70 θfront
(π/6) + 10%

• Turn left: 10
(
1− θright

(π/6)

)
%

• Turn right: 10
(
1− θleft

(π/6)

)
%

There is a risk of stuck in sand regardless of the slope angle,
which is expressed as the 10% possibility in the staying
action. The probabilities on hard ground and the weight coef-
ficients are the same as the section IV-B1. The environment
is shown in Fig. 6.

The results of the proposed algorithm are shown in Fig. 7.
The sandy places are illustrated as translucent grey. The
average computing time until reaching the goal is about
42.1 ± 7.3 sec. per once. Table 6 shows the number of
successes and the average steps with standard deviation.
The success rates are 100% in two cases, which shows the
proposed algorithm works well in this situation.

In all the cases, the number of successes and the number
of steps are similar and higher than Section IV-B1. Figure 7
shows that the generated paths are similar in all the cases,
which trend differs from the results in Sec. IV-B1. This
is because the hopper has moved upward from the initial
state in order to avoid the sandy area. The hopper has
traversed relatively flat terrain in the safety-critical case
((w1,w2) = (1, 0)), and places as high as possible in the
other cases, especially in the information gain-critical case
((w1,w2) = (0, 1)). These trends are the similar to the results
of Section IV-B1. The number of steps of the safety-critical
case is only slightly larger than the results of Section IV-B1.
As shown in Fig.7b, the reason is that when the hopper moves
toward the sandy area unintentionally, the robot takes extra
steps in order to go away from the area.

The results of the greedy algorithm are shown in Fig 8 and
Table. 7. The average computing time until reaching the goal
is about (6.8±0.3)×10−3 [sec] per once. In the safety-critical
case ((w1,w2) = (1, 0)), the success rate is exceedingly
low, and even if the robot can reach the goal, it takes more
steps than in the other cases. The reason why the success
rate is low is that the robot is in a deadlock, as shown in
Fig.8c. On the other hand, such a deadlock has not appeared
in the results of the proposed algorithm, which indicates the
effectiveness of the proposed algorithm. In the other cases, the
success rate is almost the same, but the steps are larger than
the proposed algorithm. The robot traversed near the sandy
places and sometimes moved to the sandy places, which
increases steps and uncertainty. The computational time is
almost same as the Sec. IV-B1. Table 8 shows the t-test result
of this results between the proposed algorithm and the greedy
algorithm. The result also rejects the null hypothesis which
is defined in the Sec. IV-B1. These results show that the
proposed algorithm demonstrates better performance in an
environment that has a sandy area than the greedy algorithm.

3) SIMULATIONS ON SANDY TERRAIN
This section evaluates the performance of the two algorithms
on sandy ground. This simulation environment is covered
with sand except the place where the height is h(x) ≥ 0.1.
As described above, hopping performance decreases on
sandy terrain in general. The simulation conditions are the

66704 VOLUME 11, 2023



K. Sakamoto, Y. Kunii: MDPs-Based Dynamic Path Planning in Unknown Environments for Hopping Locomotion

FIGURE 10. The simulation results: (a) - (c) the safety-critical case ((w1, w2) = (1, 0)), (d) - (f) S(x, u) and I(x, u) have the same level of effect
((w1, w2) = (0.5, 0.5)), and (g) - (h) the information gain-critical case ((w1, w2) = (0, 1)) on sandy terrain; Left figures: the initial state; Middle figures:
the halfway state; Right figures: the finish.

TABLE 7. The number of successes and the average steps ± s.d. of the
greedy algorithm on heterogeneous ground.

same as the Section IV-B1 and IV-B2. The environment is
shown in Fig. 9.
The results are shown in Fig. 10. The sandy terrains are

displayed as translucent grey. The computing time is about

62.1 ± 3.7 sec. These results are similar in spite of the
difference in the weight coefficients. The hopper tends to
approach the elevated places from sandy terrain to get better
rewards. In other words, the hopper go to only the hills to
get the reward because most of the terrains are covered with
sand. This may be deduced that the ratio changes of w1 and
w2 produce only the value changes of the reward on the
hills. Therefore, the hopper had chose the similar routes in all
cases.

From Table. 9, the success rate is a bit smaller and
the steps are larger than the other results. The reason is

VOLUME 11, 2023 66705



K. Sakamoto, Y. Kunii: MDPs-Based Dynamic Path Planning in Unknown Environments for Hopping Locomotion

FIGURE 11. The simulation results of the greedy algorithm: (a) - (c) the safety-critical case ((w1, w2) = (1, 0)), (d) - (f) S(x, u) and
I(x, u) have the same level of effect ((w1, w2) = (0.5, 0.5)), and (g) - (h) the information gain-critical case ((w1, w2) = (0, 1)) on
sandy terrain. t and p denote the number of steps and the hopper position, respectively; Left figures: the initial state; Middle
figures: the halfway state; Right figures: the finish. In the safety-critical case, the robot is in a deadlock and cannot reach the goal.

FIGURE 12. The complicated large environment. The translucent grey area
is sandy terrain.

indicated that the low performance of the hopping in sandy
environment increases the steps. In addition, the uncertainties

TABLE 8. The t-test results between the greedy algorithm and the
proposed algorithm on heterogeneous ground.

of motion are higher on sandy terrain than on hard ground
(the probabilities are described in the Sec. IV-B1 and IV-B2),
which deteriorates the performance of the path following.
Consequently, the steps increase and the robot cannot arrive
at the goal within 150 steps in some cases.

The results of the greedy algorithm are shown in Fig 11 and
Table. 10. The average computing time until reaching the goal
is about (7.0± 0.4)× 10−2 [sec] per once. The success rates
are smaller and the steps are rather larger than our method,
especially in the safety-critical case ((w1,w2) = (1, 0)).

66706 VOLUME 11, 2023



K. Sakamoto, Y. Kunii: MDPs-Based Dynamic Path Planning in Unknown Environments for Hopping Locomotion

FIGURE 13. The results of the greedy algorithm (left) and the proposed algorithm (right): (a), (b) the safety-critical case ((w1, w2) = (1, 0)), (c), (d) S(x, u)
and I(x, u) have the same level of effect ((w1, w2) = (0.5, 0.5)), and (e), (f) the information gain-critical case ((w1, w2) = (0, 1)). The blue, purple, red, and
black arrows denote the moving direction to north, south, east, and west, respectively. The red lines indicate the actual paths on which the hopper moved.

In such the case, the robot takes a detour, or reciprocating
motion because only safety is considered. As a result, the
steps increases and the robot cannot reach the goal within
the 150 steps as shown in Fig. 11c. In the other cases, the
increase of the steps also reduce the success rates. In terms

of the computational time, it is almost same as the other
results. The t-test result is shown in the Table 11, which also
rejects the null hypothesis. According to the above results, the
comparisons present the effectiveness of our method in sandy
environment.

VOLUME 11, 2023 66707



K. Sakamoto, Y. Kunii: MDPs-Based Dynamic Path Planning in Unknown Environments for Hopping Locomotion

FIGURE 14. The treasures on the artificial terrain. The treasures are
plotted as black star. The environment is same as Sec. IV-B1.

TABLE 9. The number of successes and the average steps ± s.d. of the
proposed algorithm on sandy terrain.

TABLE 10. The number of successes and the average steps ± s.d. of the
greedy algorithm on sandy terrain.

TABLE 11. The t-test results between the greedy algorithm and the
proposed algorithm on sandy terrain.

4) SIMULATIONS ON COMPLICATED LARGE ENVIRONMENT
In this section we present simulation studies in larger and
more complex environments. Figure 12 shows the simulation
environment. The translucent grey area indicates the sandy
terrain, and the color bar represents the height of the terrain.
The start point is at (1, 2) and the finish point is at
(48, 48). The upper limit of steps is 800. Other conditions
are the same as in the previous section. The simulation
results are shown in Fig. 13. The results of the greedy
algorithm are displayed on the left side, and the results of the
proposed algorithm are on the right side. Tables 12 and 13
represent the success numbers and steps for each case,
respectively. The average computing time of the proposed
algorithm and the greedy algorithm are 309.3 ± 4.3 sec.
and (7.5 ± 0.5) × 10−2 sec., respectively. These results
demonstrate that the proposed algorithm also performs better
than the greedy algorithm in this environment. In particular,
in the information gain-critical case and the intermediate
case, the success rate of the proposed method is significantly

TABLE 12. The number of successes and the average steps ± s.d. of the
proposed algorithm in the complicated large environment.

TABLE 13. The number of successes and the average steps ± s.d. of the
greedy algorithm in the complicated large environment.

TABLE 14. The t-test results between the greedy algorithm and the
proposed algorithm in the complicated large environment.

higher than that of the conventional method, and the number
of steps is less than half. Figure 13 also shows that the paths
reflect the distribution of the weight coefficients for each
evaluation function. In the safety-critical case, the greedy
algorithm failed to reach the goal in all cases and the
proposed algorithm succeeded only five times, which is a low
result. This is because the safety-critical evaluation function
generates conservative actions, and the feasibility of getting
stuck in a large area is considered to be higher than in the
small environment.

Table 14 presents the t-test results. The t-test rejects the
null hypothesis, which is defined in Sec. IV-B1.

5) TREASURE HUNTING ON HARD GROUND
This section presents the performance of treasure hunting.
In an actual planetary exploration mission, when a rover
finds an attractive object during locomotion to the goal, the
rover might be required to retrieve the object even if the
object is not on the path. In this case, the rover must decide
whether to re-generate a path to the object or to give up
getting the object because of the safety criteria. The tested
environment and the conditions of the hopper are the same
as in Sec. IV-B1, because the proposed algorithm and the
greedy method performwell in the environment. The treasure
positions are (12, 4), (10, 10), (4, 10), (15, 15), respectively.
The environment is shown in Fig. 14. The black stars denote
the treasures.

The results of the proposed algorithm are shown in Fig. 15
and Table 15. The average computing time is 50.7± 5.5 sec.
per one episode. Compared to the results presented in
Section IV-B1, it was observed that the average number of
steps and computational time increased, as the robot took
more steps to find the treasures. However, the goal-reaching
rate remained consistent with the results obtained using
the proposed algorithm in Section IV-B1. In all cases, the
most common outcome was the acquisition of two treasures.

66708 VOLUME 11, 2023



K. Sakamoto, Y. Kunii: MDPs-Based Dynamic Path Planning in Unknown Environments for Hopping Locomotion

FIGURE 15. The results of the treasure hunting by the proposed algorithm: (a) - (c) the safety-critical case ((w1, w2) = (1, 0)), (d) - (f) S(x, u) and I(x, u)
have the same level of effect ((w1, w2) = (0.5, 0.5)), and (g) - (h) the information gain-critical case ((w1, w2) = (0, 1)). The blue, purple, red, and black
arrows denote the moving direction to north, south, east, and west, respectively. The green lines indicate the correct paths on which the hopper moved.
t and p denote the number of steps and the hopper position, respectively; Left figures: the first treasure; Middle figures: the second treasure; Right
figures: the finish.

TABLE 15. The number of successes, getting treasures (and the number of episodes), and the average steps ± s.d. of the proposed algorithm on hard
ground.

TABLE 16. The number of successes, getting treasures (the number of episodes), and the average steps ± s.d. of the greedy algorithm on hard ground.

VOLUME 11, 2023 66709



K. Sakamoto, Y. Kunii: MDPs-Based Dynamic Path Planning in Unknown Environments for Hopping Locomotion

FIGURE 16. The results of the treasure hunting by the greedy algorithm: (a), (b) the safety-critical case ((w1, w2) = (1, 0)),
(c), (d) S(x, u) and I(x, u) have the same level of effect ((w1, w2) = (0.5, 0.5)), and (e), (f) the information gain-critical case
((w1, w2) = (0, 1)). The green lines express the actual routes which the hopper traverses. t and p denote the number of steps
and the hopper position, respectively; Left figures: the first treasure; Right figures: the finish.

TABLE 17. The t-test results of the number of getting treasures between
the greedy algorithm and the proposed algorithm.

In the information-gain critical scenario, there were two
cases where the robot successfully located three treasures.
Although Fig. 15 shows the route that the robot traversed

is similar to Fig. 4 in Sec.IV-B1, the robot took a winding
route in order to get the treasures. These results indicate
that the proposed algorithm can collect the treasures without
decreasing the goal-reaching rate.

Figure 16 and Table 16 show the results of the greedy
algorithm. The average computing time is (7.0 ± 0.2) ×
10−3 sec. The steps, computing time, and the goal-reaching
rate are almost the same as in Fig. 5 in Sec.IV-B1, except
for the goal-reaching rate in the safety-critical case. The
most frequent events were those in which one treasure was
obtained. Therefore, two results are shown in each instance

66710 VOLUME 11, 2023



K. Sakamoto, Y. Kunii: MDPs-Based Dynamic Path Planning in Unknown Environments for Hopping Locomotion

in Fig. 16. If the robot traverses adjacent to the treasure, the
robot obtains the treasure, owing to the characteristic of the
greedy algorithm. The routes are also similar to the results
of the greedy algorithm in Sec.IV-B1. The t-test results are
shown in Table 17. The result rejects the null hypothesis. The
comparisons of the results imply that the proposed algorithm
performs better than the greedy algorithm. Furthermore, the
proposed algorithm can deal with sudden requests such as
‘‘treasure hunts’’ without performance degradation.

V. CONCLUSION
This paper presents a hopping path planning algorithm for
exploration in unknown environments. The main contribu-
tions of this paper are the follows:
• The proposedmethod is a 2.5-dimensional path planning
method that takes into account hopping trajectories.

• This paper demonstrated the robustness of the proposed
method to generate paths in various unknown environ-
ments.

The proposed algorithm uses Markov Decision Processes
(MDPs) to determine the optimal action in all possible
observed states. One of the key features of the proposed
algorithm is its adaptive payoff function, which can be
adjusted to meet different mission requirements. The path is
generated by sequentially connecting actions in known areas,
using the robot’s locomotion capabilities. The algorithm is
defined as a 2.5D path planning method, as actions are
calculated in 2D and terrain heights are used for collision
detection. The effectiveness of the proposed algorithm is
evaluated through comparison of generated paths in virtual
environments, as well as through metrics such as goal
attainment rate, number of steps taken, and comparison
with greedy algorithms. The simulation results showed
the following contributions of the proposed algorithm:
it achieved a high success rate and was able to avoid
deadlocks in all cases. In contrast, the greedy algorithm
was unable to avoid deadlocks, especially in heterogeneous
environments. The proposed algorithm required fewer steps
to reach the goal than the greedy algorithm, especially on
sandy terrain. The proposed algorithm also outperformed the
greedy algorithm in more complicated large environments.
Furthermore, the proposed algorithm demonstrated superior
handling of sudden events, such as treasure hunts, compared
to the greedy algorithm. These contributions illustrate the
robustness of the proposed algorithm for path generation and
adaptive actions in unknown environments.

As future work, we plan to conduct physical experiments
on rough terrains, including sandy terrain, to validate the
effectiveness of our approach and identify areas for improve-
ment in real-world applications. One limitation of Markov
Decision Processes is the computational cost, which is
proportional to the size of the known area in which actions are
generated. For example, in the environment shown in Fig. 3,
when all the regions are known, the time taken to generate
the path from the start to the destination using the proposed
method, A* and D* Lite is 0.065 second, 0.005 seconds,

and 0.016 seconds respectively. This environment is not
assumed in this study and the advantage of the proposed
method - its ability to generate actions to the goal in an
unknown environment - is not utilized. Nevertheless, this
example illustrates the high computational load of MDP.
To address these issues, we aim to reduce the computational
cost or develop a new approach by improving MDPs or by
combining the approaches discussed in Section II.

REFERENCES
[1] H. Tsukagoshi,M. Sasaki, A. Kitagawa, and T. Tanaka, ‘‘Design of a higher

jumping rescue robot with the optimized pneumatic drive,’’ in Proc. IEEE
Int. Conf. Robot. Autom., Apr. 2005, pp. 1276–1283.

[2] R. G. Reid, L. Roveda, I. A. Nesnas, and M. Pavone, ‘‘Contact dynamics
of internally-actuated platforms for the exploration of small solar system
bodies,’’ in Proc. Int. Symp. Artif. Intell., Robot. Automat. Space (i-
SAIRAS), 2014, p. 9.

[3] D. Mège, J. Gurgurewicz, J. Grygorczuk, Ł. Wiśniewski, and G. Thornell,
‘‘The highland terrain hopper (HOPTER): Concept and use cases of a new
locomotion system for the exploration of low gravity solar system bodies,’’
Acta Astronautica, vol. 121, pp. 200–220, Apr. 2016.

[4] S. Montminy, E. Dupuis, and H. Champliaud, ‘‘Mechanical design of a
hopper robot for planetary exploration using SMA as a unique source of
power,’’ Acta Astronautica, vol. 62, nos. 6–7, pp. 438–452, Mar. 2008.

[5] T. Yoshimitsu, ‘‘Development of autonomous rover for asteroid surface
exploration,’’ in Proc. IEEE Int. Conf. Robot. Autom. (ICRA), Apr. 2004,
pp. 2529–2534.

[6] T. Yoshimitsu and T. Kubota, ‘‘Engineering challenges and results by
MINERVA-II asteroid surface rovers,’’ J. Robot. Soc. Jpn., vol. 38, no. 8,
pp. 754–761, 2020.

[7] Y. Nakauchi, T. Maeda, K. Saiki, T. Yoshimitsu, M. Ohtake, M. Otsuki, H.
Nagaoka, H. Sato, H. Shiraishi, C. Honda, K. Yoshikawa, C. Yamanaka,
Y. Ishihara, and Y. Kunii, ‘‘Development status of slim onboard near-
infrared spectrometer and small lunar probe,’’ Inst. Space Astron.
Sci., Japan Aerosp. Explor. Agency(JAXA)(ISAS), Tokyo, Japan,
Tech. Rep. sA6000163137, g24-2, 2021.

[8] Cabinet Office. (2023). Moonshot Goal 3 Realization of AI Robots That
Autonomously Learn, Adapt to Their Environment, Evolve in Intelligence
and Act Alongside Human Beings, by 2050. Accessed: May 18, 2023.
[Online]. Available: https://www8.cao.go.jp/cstp/moonshot/sub3.html

[9] Minerva-II1: Images From the Surface of Ryugu.
Accessed: May 20, 2023. [Online]. Available: http://www.hayabusa2.
jaxa.jp/en/topics/20180927e_MNRV/

[10] K. Sakamoto, M. Otsuki, T. Maeda, K. Yoshikawa, and T. Kubota,
‘‘Evaluation of hopping robot performance with novel foot pad design on
natural terrain for hopper development,’’ IEEE Robot. Autom. Lett., vol. 4,
no. 4, pp. 3294–3301, Oct. 2019.

[11] K. Sakamoto and T. Kubota, ‘‘Hopping path planning in uncertain
environments for planetary explorations,’’ ROBOMECH J., vol. 9, no. 1,
pp. 1–15, Dec. 2022.

[12] A. Stentz, ‘‘Optimal and efficient path planning for partially known envi-
ronments,’’ in Intelligent Unmanned Ground Vehicles. Cham, Switzerland:
Springer, 1997, pp. 203–220.

[13] S. Koenig and M. Likhachev, ‘‘D* lite,’’ in Proc. AAAI, vol. 15, 2002,
pp. 476–483.

[14] D. Ferguson and A. Stentz, ‘‘Using interpolation to improve path planning:
The field D* algorithm,’’ J. Field Robot., vol. 23, no. 2, pp. 79–101, 2006.

[15] J. Carsten, A. Rankin, D. Ferguson, and A. Stentz, ‘‘Global path planning
on board the Mars exploration rovers,’’ in Proc. IEEE Aerosp. Conf.,
Mar. 2007, pp. 1–11.

[16] J. Han, ‘‘A surrounding point set approach for path planning in unknown
environments,’’ Comput. Ind. Eng., vol. 133, pp. 121–130, Jul. 2019.

[17] B. D. Luders, S. Karaman, and J. P. How, ‘‘Robust sampling-based motion
planning with asymptotic optimality guarantees,’’ in Proc. AIAA Guid.,
Navigat., Control (GNC) Conf., Aug. 2013, p. 5097.

[18] L. Schmid, M. Pantic, R. Khanna, L. Ott, R. Siegwart, and J. Nieto,
‘‘An efficient sampling-based method for online informative path planning
in unknown environments,’’ IEEE Robot. Autom. Lett., vol. 5, no. 2,
pp. 1500–1507, Apr. 2020.

VOLUME 11, 2023 66711



K. Sakamoto, Y. Kunii: MDPs-Based Dynamic Path Planning in Unknown Environments for Hopping Locomotion

[19] K. Cai, C. Wang, S. Song, H. Chen, and M. Q.-H. Meng, ‘‘Risk-aware path
planning under uncertainty in dynamic environments,’’ J. Intell. Robotic
Syst., vol. 101, no. 3, pp. 1–15, Mar. 2021.

[20] J. Wang, T. Li, B. Li, and M. Q.-H. Meng, ‘‘GMR-RRT*: Sampling-based
path planning using Gaussian mixture regression,’’ IEEE Trans. Intell.
Vehicles, vol. 7, no. 3, pp. 690–700, Sep. 2022.

[21] D. Fox, W. Burgard, and S. Thrun, ‘‘The dynamic window approach to
collision avoidance,’’ IEEE Robot. Autom. Mag., vol. 4, no. 1, pp. 23–33,
Mar. 1997.

[22] K. Ok, S. Ansari, B. Gallagher, W. Sica, F. Dellaert, and M. Stilman, ‘‘Path
planning with uncertainty: Voronoi uncertainty fields,’’ in Proc. IEEE Int.
Conf. Robot. Autom., May 2013, pp. 4596–4601.

[23] B. Nakisa, M. N. Rastgoo, and M. Z. A. Nazri, ‘‘Target searching in
unknown environment of multi-robot system using a hybrid particle swarm
optimization,’’ J. Theor. Appl. Inf. Technol., vol. 96, no. 13, pp. 4055–4065,
2018.

[24] F. A. Raheem, ‘‘Path planning algorithm using D* heuristic method based
on PSO in dynamic environment,’’ Amer. Academic Sci. Res. J. Eng.,
Technol., Sci., vol. 49, no. 1, pp. 257–271, 2018.

[25] E. Krell, A. Sheta, A. P. R. Balasubramanian, and S. A. King, ‘‘Collision-
free autonomous robot navigation in unknown environments utilizing
PSO for path planning,’’ J. Artif. Intell. Soft Comput. Res., vol. 9, no. 4,
pp. 267–282, Oct. 2019.

[26] S. Hu, W. Chen, M. Wu, T. Liao, and H. Chou, ‘‘Graph-based path
planning and ABC-optimized IT2FLS for autonomous mobile robot
exploration within unknown environments,’’ in Proc. IEEE Int. Conf.
Robot. Biomimetics (ROBIO), Dec. 2021, pp. 1345–1350.

[27] B. Hockman and M. Pavone, ‘‘Stochastic motion planning for hopping
rovers on small solar system bodies,’’ in Robotics Research. Cham,
Switzerland: Springer, 2020, pp. 877–893.

[28] L. Chang, L. Shan, C. Jiang, and Y. Dai, ‘‘Reinforcement based mobile
robot path planning with improved dynamic window approach in unknown
environment,’’ Auto. Robots, vol. 45, no. 1, pp. 51–76, Jan. 2021.

[29] S. M. Sombolestan, A. Rasooli, and S. Khodaygan, ‘‘Optimal path-
planning for mobile robots to find a hidden target in an unknown
environment based on machine learning,’’ J. Ambient Intell. Humanized
Comput., vol. 10, no. 5, pp. 1841–1850, May 2019.

[30] X. Lei, Z. Zhang, and P. Dong, ‘‘Dynamic path planning of unknown
environment based on deep reinforcement learning,’’ J. Robot., vol. 2018,
pp. 1–10, Sep. 2018.

[31] S. Wen, Y. Zhao, X. Yuan, Z. Wang, D. Zhang, and L. Manfredi,
‘‘Path planning for active SLAM based on deep reinforcement learning
under unknown environments,’’ Intell. Service Robot., vol. 13, no. 2,
pp. 263–272, Apr. 2020.

[32] N. Ab Azar, A. Shahmansoorian, and M. Davoudi, ‘‘Uncertainty-aware
path planning using reinforcement learning and deep learning methods,’’
Comput. Knowl. Eng., vol. 3, no. 1, pp. 25–37, 2020.

[33] J. Hu, H. Niu, J. Carrasco, B. Lennox, and F. Arvin, ‘‘Voronoi-based
multi-robot autonomous exploration in unknown environments via deep
reinforcement learning,’’ IEEE Trans. Veh. Technol., vol. 69, no. 12,
pp. 14413–14423, Dec. 2020.

[34] L. Nardi and C. Stachniss, ‘‘Uncertainty-aware path planning for
navigation on road networks using augmented MDPs,’’ in Proc. Int. Conf.
Robot. Autom. (ICRA), May 2019, pp. 5780–5786.

[35] T. Peynot, S.-T. Lui, R. McAllister, R. Fitch, and S. Sukkarieh, ‘‘Learned
stochastic mobility prediction for planning with control uncertainty on
unstructured terrain,’’ J. Field Robot., vol. 31, no. 6, pp. 969–995,
Nov. 2014.

[36] R.McAllister, T. Peynot, R. Fitch, and S. Sukkarieh, ‘‘Motion planning and
stochastic control with experimental validation on a planetary rover,’’ in
Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., Oct. 2012, pp. 4716–4723.

[37] S. Feyzabadi and S. Carpin, ‘‘Risk-aware path planning using hirerachical
constrained Markov decision processes,’’ in Proc. IEEE Int. Conf. Autom.
Sci. Eng. (CASE), Aug. 2014, pp. 297–303.

[38] O. Khatib, ‘‘Real-time obstacle avoidance for manipulators and mobile
robots,’’ in Proc. IEEE Int. Conf. Robot. Autom., Mar. 1985, pp. 500–505.

[39] U. Orozco-Rosas, K. Picos, and O. Montiel, ‘‘Hybrid path planning
algorithm based on membrane pseudo-bacterial potential field for
autonomous mobile robots,’’ IEEE Access, vol. 7, pp. 156787–156803,
2019.

[40] U. Orozco-Rosas, O. Montiel, and R. Sepúlveda, ‘‘Mobile robot path
planning usingmembrane evolutionary artificial potential field,’’Appl. Soft
Comput., vol. 77, pp. 236–251, Apr. 2019.

[41] U. Orozco-Rosas, K. Picos, J. J. Pantrigo, A. S. Montemayor, and
A. Cuesta-Infante, ‘‘Mobile robot path planning using a QAPF learning
algorithm for known and unknown environments,’’ IEEE Access, vol. 10,
pp. 84648–84663, 2022.

[42] S. M. H. Rostami, A. K. Sangaiah, J. Wang, and X. Liu, ‘‘Obstacle
avoidance of mobile robots using modified artificial potential field
algorithm,’’ EURASIP J. Wireless Commun. Netw., vol. 2019, no. 1,
pp. 1–19, Dec. 2019.

[43] L. Zhou, L. Yang, and H. Tang, ‘‘Research on path planning algorithm and
its application based on terrain slope for slipping prediction in complex
terrain environment,’’ in Proc. Int. Conf. Secur., Pattern Anal., Cybern.
(SPAC), Dec. 2017, pp. 224–227.

[44] C. Saranya, M. Unnikrishnan, S. A. Ali, D. Sheela, and V. Lalithambika,
‘‘Terrain based d* algorithm for path planning,’’ IFAC-PapersOnLine,
vol. 49, no. 1, pp. 178–182, 2016.

[45] X. Wang, B. Hu, and M. Zhou, ‘‘OGBPS: Orientation and gradient based
path smoothing algorithm for various robot path planners,’’ in Proc. IEEE
Int. Conf. Robot. Biomimetics (ROBIO), Dec. 2019, pp. 1453–1458.

[46] B. Sebastian and P. Ben-Tzvi, ‘‘Physics based path planning for
autonomous tracked vehicle in challenging terrain,’’ J. Intell. Robotic Syst.,
vol. 95, no. 2, pp. 511–526, Aug. 2019.

[47] L. Drnach and Y. Zhao, ‘‘Robust trajectory optimization over uncertain
terrain with stochastic complementarity,’’ IEEE Robot. Autom. Lett., vol. 6,
no. 2, pp. 1168–1175, Apr. 2021.

KOSUKE SAKAMOTO (Member, IEEE) received
the B.S. and M.S. degrees in mechanical engi-
neering from Waseda University, Tokyo, Japan, in
2016 and 2018, respectively, and the Ph.D. degree
in electrical engineering from The University
of Tokyo, Tokyo, in 2021. Since 2021, he has
been an Assistant Professor with the Department
Electrical, Electronic and Communication Engi-
neering, Faculty of Science and Engineering, Chuo
University, Tokyo. His research interests include

motion control, path planning, terrain interaction, and mechanical design
optimization in robotics.

YASUHARU KUNII (Member, IEEE) received the
B.S. and M.S. degrees in electrical engineering
from Chuo University, Tokyo, Japan, in 1992 and
1994, respectively, and the Dr. (Eng.) degree
in electrical engineering from The University of
Tokyo, Japan, in 1997. He was a Research Fellow
DC1 of JSPS with the Institute of Industrial Sci-
ence, The University of Tokyo, from 1994 to 1997,
he has been joining the Science and Engineering
Department, Chuo University, as a Lecturer, since

1997, was an Associate Professor, from 1999 to 2014, and a Professor,
in 2014. From 2010 to 2011, he was a Visiting Professor with the Technical
University of Munich, Bayern, Germany. His research interests include field
and space robotics, especially in tele-control and tele-intelligence.

66712 VOLUME 11, 2023


