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ABSTRACT Lossless image compression is an important research field in image compression. Recently,
learning-based lossless image compression methods achieved impressive performance compared with
traditional lossless methods, such as WebP, JPEG2000, and FLIF. The aim of the lossless image compression
algorithms is to use shorter codelength to represent images. To encode an image with fewer bytes, eliminating
the redundancies among the pixels in the image is highly important. Hence, in this paper, we explore
the idea of combining an autoregressive model for the raw images based on the end-to-end lossless
architecture proposed to enhance the performance. Furthermore, inspired by the successful achievements of
Channel-conditioning models, we propose a Multivariant Mixture distribution Channel-conditioning model
(MMCC) in our network architecture to boost performance. The experimental results show that our approach
outperforms most classical lossless compression methods and existing learning-based lossless methods.

INDEX TERMS Lossless image compression, autoregressive model, channel-conditioning model.

I. INTRODUCTION

Image compression is an important task in many research
fields. Along with the development of technology, more
and more fields have greater demand for image compres-
sion. In many important technical fields, such as medicine,
remote sensing, details of the image are crucial. Compared
with lossy image compression, lossless image compression
can preserve all details in the picture. Therefore, lossless
compression is a crucial research topic in the above fields.
As well as lossy image compression, lossless compres-
sion tries to capture the spatial correlations of the image
to reduce the spatial redundancies in the compressed bit-
stream. Therefore, how to design the architecture of the
network to reduce redundancy is the main task of image
compression. JPEG2000 [1], WebP [2], and FLIF [3] are
representative traditional compression methods. They rely

The associate editor coordinating the review of this manuscript and

approving it for publication was Mohammad Shorif Uddin

on hand-crafted designed encoder and decoder to capture
the spatial correlation between pixels. For instance, FLIF is
the current state-of-the-art non-learned algorithm. It relies
on a well-designed entropy coding method called ‘““meta-
adaptive near-zero integer arithmetic coding” (MANIAC).
MANIAC is a dynamic data structure utilized as a context
model in FLIF. With MANIAC, FLIF achieves remarkable
performance.

With the development of deep learning in recent years,
learning-based image compression methods have achieved
a better performance than classical compression methods.
The critical aim of both traditional and learning-based loss-
less image compression methods is to find an appropriate
distribution that is as close to the real distribution as possi-
ble. Flow-based models admit exact likelihood optimization
with bijective mappings. iVPF [22] is one of the remark-
able flow-based methods. In [22], Zhang et al. proposed
the Modular Affine Transformation (MAT) algorithm, which
achieves exact bijective mapping without any numerical
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error. As for other learning-based lossless compression
methods, [10], [11] also obtain an impressive performance.
L3C [10] that can propose a fully parallel hierarchical prob-
abilistic model can outperform WebP, JPEG2000, and PNG.
n [11], RC leverages BPG to obtain a lossy reconstruction
and uses the proposed RC (Residual Compressor) network
to achieve lossless compression. In [12], it proposed an end-
to-end lossless image compression framework based on their
lossy image compression work [9]. Reference [12] utilized an
autoregressive model for the latents to lift the performance.
Utilizing the autoregressive model could help the model
to obtain an accurate probability by estimating the discrete
probability of the raw pixel values. The probability of pixels
in image is modelled in sequence. Although autoregressive
models are powerful methods, they are very time-consuming.

In this paper, we consider data compression with
channel-wise architecture and widely used architecture in
lossy image compression, such as [8], and [9], into our
framework. First, we utilize channel-conditional (CC) mod-
els [5] to replace the autoregressive context model for the
latents to solve the time-consuming disadvantage of utiliz-
ing the autoregressive model. CC is proposed to solve the
shortcoming that autoregressive models decode each symbol
in sequence. As well as autoregressive models, CC mod-
els capture the redundancies between pixels. Therefore,
CC models could be interpreted as efficient autoregres-
sive models along the channel dimension. Second, original
channel-conditioning models adopt the SGM-based entropy
model, the performance of SGM distribution is not as good
as multivariant mixture distribution, such as the Gaussian
mixture model (GMM). Therefore, in this paper, we propose
a multivariant mixture distributions CC model (MMCC) to
better approximate the real distribution.

We test our method on DIV2K [16], CLICP, and
CLICM [17]. The result shows that our method outperforms
most traditional lossless image compression methods, such
as PNG [6], JPEG 2000, and FLIF [3]. For learning-based
methods, our method achieved better performance compared
with L3C [10] and RC [11].

Il. RELATED WORKS

A. LOSSLESS COMPRESSION ALGORITHMS

According to Shannon’s source coding theory [23], the code-
length of lossless image compression could be formulated as:

H(p) = ]Ep(x)[_lOgZP(x)] €))

p(x) is the distribution of raw images x. The ideal situation
is that the distribution we choose is the real distribution of
raw images. However, the real distribution of raw images is
intractable. To use shorter codelength to encode raw images,
it is crucial that the distribution we choose is accurate. Gen-
erative models are often used to estimate the probability of
input data in lossless image compression. In addition, there
are several other methods that have been successfully applied
to lossless image compression.
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1) LOSSLESS CODING

The aim of data/image compression is that using fewer
bits to represents original data or images. The advan-
tages of data/image compression are the reduced data
transmission time and communication bandwidth. There
are several approaches to lossless code images. Tradi-
tional entropy coding methods include Hoffman coding [7],
AC (Arithmetic Coding) [24], and asymmetric numeral
system (ANS) [25]. [31] proposes a lossless data com-
pression method using machine learning. The model used
is a sequence-to-sequence recurrent neural network (RNN)
model for both compression and decompression.

2) GENERATIVE METHODS

Flow-based lossless compression methods like IDF [21],
and iVPF [22] achieve impressive performance. Lossless
compression requires discrete data for entropy coding,
while common flows are continuous. To address this issue,
IDF [21] proposed an invertible mapping between discrete
data and latent variables. iVPF [22] explored the effective-
ness of volume-preserving flow for lossless compression
with the proposed novel computation algorithm Modular
Affine Transformation (MAT). Experiments show that iVPF
achieves impressive performance among flow-based lossless
algorithms. However, most flow-based lossless compression
methods have some constraints on flow layers to ensure
bijections between input data and the latents, which limits the
feasibility of the performance.

3) AUTOREGRESSIVE METHODS

The autoregressive model is not only widely used in
image compression but also in image generation and super-
resolution. Gated PixelCNN [18], PixcelCNN [19], and
PixelCNN++ [20] are impressive works of the autoregres-
sive model. PixcelCNN [19] estimates the joint distribution
p(x) of the current pixel conditions on all the previously
generated pixels left and above the current pixel:

112
p@) = [[ptilxr, -+, xio1) )
i=1

The value p(x;|xy, - - - , x;—1) is the probability of the i — th
pixel x; given all the previous pixels xi, ..., x;_1. The aim
of utilizing autoregressive models is to capture the spatial
correlations between pixels and eliminate the redundancies
among the latents. With the help of autoregressive methods,
we could provide a more accurate distribution for the encoder
and decoder to compress images with less bits.

L3C [10] can be deemed as a VAE-based hierarchical
probabilistic model with auxiliary feature representations.
The proposed struct in [12] can be regarded as an optimized
VAE-based end-to-end framework for the lossless image
compression task.

The framework of GOLLIC [29] utilizes a three-level hier-
archical framework based on the L3C [10]. A self-supervised
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FIGURE 1. Network architecture.

clustering module is introduced in GOLLIC to capture the
long-term dependencies inside the image.

4) OTHER METHODS

RC [11] leverages BPG to compress raw images into lossy
images and calculates the residuals between the raw images
and lossy images. The residuals are then compressed with a
convolutional neural network. Recent works also introduce
classical machine learning methods like K-Mean clustering to
boost performance [29], [32]. Reference [33] employs a deep
learning-based approach which built on the ML concepts
of RESL framework for computing the residual-error for a
dual prediction method like RC. Reference [34] proposed a
lossy architecture plus residual coding which could achieve
both lossless and near-lossless image compression. Refer-
ence [35] proposed a lossless image compression framework
that decomposes an input image into low-frequency and
high-frequency regions, enabling a coarse-to-fine processing
approach. Reference [36] developed an efficient end-to-
end generative model-based architecture for lossless image
compression.

B. CONTEXT MODEL
The context model is used to predict the probability of
unknown codes based on latents that have already been
decoded. This method is boost in [8], where hyper latent and
context are used jointly to predict both the mean and scale
parameter of the entropy model. The adopted autoregressive
context model in [8] explores the spatial dimension. In their
following work, Channel-conditioning model (CC model) is
proposed in [5]. CC model could be regarded as a different
type of autoregressive model, in which explores the cor-
relations among pixels along the channel dimension rather
than the spatial dimensions. CC model first divides channels
into N slices. Then CC model compresses the first slide
solely based on the information provided by the hyperprior.
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And the hyperprior and decompressed first slide are utilized
to encoder and decoder the second slice, and so on. Finally, all
the decoded slices are concatenated to form the final output
and transformed into the final reconstructed image.

Inspired by the impressive performance achieved by the
CC model in lossy image compression. We proposed a multi-
variant mixture distribution CC model (MMCC) to boost the
performance of our lossless image compression work. The
details will be discussed in the Method section.

C. FORMULATION OF LEARNING-BASED IMAGE
COMPRESSION

Our framework is inspired by the framework widely adopted
in learning-based lossy compression methods [8], [9].
In the framework of a classical learning-based lossy image
compression, the operation can be formulated as [13]:

Yy =ga(x;9)
y=0()
X = gs(j}; 0) 3)

where x stands for the raw images, and X is the recon-
structed images. The latents presentation before quantization
and compressed codes are denoted as y and y, respectively.
¢ and 6 denote the parameters that need to be optimized for
analysis and synthesis transforms. Q denotes the quantiza-
tion, and U|Q represents quantization and entropy coding.
The input image x is first encoded as the latent represen-
tations y through an analysis transform g, (x; ¢). Then the
latents y are quantized to discrete values $, and y will be
losslessly coded with the hyperprior. On the decoder side, the
reconstructed image X can be recovered with the synthesis
transform gy(9; 6). In [27], a hyperprior entropy model is
proposed by adding a hierarchical autoencoder. In addition,
a conditional Gaussian scale mixture model with zero-mean
and scale parameters o> was also introduced to the model
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FIGURE 2. (a) The Workflow of MMCC. ENC stands for encoder block and DEC represents decoder block. (b) The architecture of LRP (latent residual
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y in [27]. Based on [27], an enhanced entropy model with
an autoregressive context model is proposed in [8]. Follow-
ing that, [9] proposed a learning-based image compression
with a discretized Gaussian mixture likelihoods and attention
modules.

Unlike lossy image compression, in lossless image com-
pression, errors are not acceptable. Therefore, in our frame-
work, instead of outputting reconstructed images, the output y
is the predicted probability for raw images x. Since we have
the probability of x, we could lossless encode the images x.
The structure we proposed can be deemed as a hierarchical
VAE-based compression method.

ill. METHOD

In this section, we first introduce the details of proposed
MMCC model and autoregressive model adopted for raw
image. Finally, we introduce the L2-norm that we utilized to
speed up training.

A. FORMULATION OF LOSSLESS IMAGE COMPRESSION
The workflow in this study follows a similar approach to that
of lossy image compression, as illustrated in Figure 1. The
lossless image compression consists of two components: the
main path and the hyper path. The main path can be described
as follows:

y = galx; ®)
y=0®)
(tx, Ox, Tx) = 8533 0) “4)

where the variables x, y, and y represent a raw image, a latent
presentation before quantization, and a quantized latent pre-
sentation, respectively. ¢ and 6 are trainable parameters of
the encoder g, and decoder g;.
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The latent representation, denoted as y, is generated by
feeding the raw images x into the encoder g,. To encode
the latent representation y, it needs to undergo a quantiza-
tion process denoted by Q. The output of the quantization
operator Q is represented as y. To achieve lossless encoding
and decoding of y, we model its distribution as a Gaussian
mixture distribution with parameters ji,, oy, and 7, which are
generated by the proposed Multivariate Mixture CC Model
(MMCQC). Subsequently, y is transmitted to the decoder g;.
Unlike lossy image compression, the output of the decoder g
consists of parameters that are used for lossless encoding of
the raw images.

The hyperprior path is consisted of the hyper encoder 7,
and the hyper decoder /. It can be formulated as follows:

Z2 = ha(y; Pp)
z2=0(®
(ity, 6y, 7ty) = hs(Z; 6p) 5)

where z and Z represent a hyperprior presentation before quan-
tization and a quantized hyperprior presentation, respectively.
The parameters [iy, 6y, and 7, are generated by the hyper
decoder and will later be used as inputs for the proposed
Multivariate Mixture CC Model (MMCC) along with the
sliced y. The detailed explanation of MMCC will be provided
in the next section.

To modify the quantization errors (y — y), we employ the
Latent Residual Prediction (LRP) method, which is further
elaborated in Figure 2.

B. MULTIVARIATE MIXTURE CC MODEL
The context model plays a crucial role in estimating the

feature parameters. In Figure 2, we present the workflow of
the Multivariate Mixture CC Model (MMCC). The input to
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MMCC consists of the parameters generated by the hyper
decoder and the quantized latents y. The latents y are evenly
split into N slices along the channel dimensions, with each
slice containing W x H x C/N values.

The encoding and decoding process of the slices in
MMCC follows a sequential dependency. The first slice, yo,
is encoded and decoded solely based on the hyperprior. The
second slice, y1, is encoded and decoded considering both the
first slice and the hyperprior, and so on. This process can be
formulated as:

y=1{o,y1, .., ynv-1}

(Kyis 0y, 1y,) = MMCC (fiy, Gy, Ty, 5’<i)
yi = LRP(y;)
y="{0,y1,.-.,In-1}

Wy = concat(iy,)
oy = concat(oy,)

7y = concat(my,) (6)

where y represents the latents, yg, y1, ..., yv—1 denote the
individual slices of y, y; denotes the output of the LRP,
which signifies the variable y; modified by incorporating the
quantization error using the LRP method. Additionally, y_;
represents the slices before the i — i index that have been
modified by the quantization error. uy,, oy, and 7y, denote
the slice of .y, oy, and 7y, respectively. 1y, oy, and 7, denote
the parameters of the Gaussian mixture distribution utilized
for the encoding and decoding of the latents y. This process
shares similarities with the autoregressive context model,
although the autoregressive model operates among spatial
dimensions. The original CC model, proposed earlier, used
the Signal Gaussian distribution for the hyperprior model.
However, previous research has demonstrated the effective-
ness of multivariate mixture distributions [12]. Therefore,
in our work, we introduce the Multivariate Mixture CC
Model (MMCC) to further enhance the performance of our
model.

The motivation behind considering a Gaussian Mixture
Model (GMM) is to create a more flexible parameterized
model capable of achieving arbitrary likelihoods. GMMs
can provide improved accuracy in complex areas such as
boundaries and edges, which makes them well-suited for our
purposes.

C. AUTOREGRESSIVE CONTEXT MODEL FOR RAW IMAGE

Autoregressive context model can effectively capture spatial
correlations to predict current pixel, which is like classi-
cal intra prediction. Autoregressive context model is usually
implemented in the format of a N x N mask convolution.
More details about mask convolution could be found in [8].
Different with the latents y, the input image x only has
three channels. The redundancies mostly exist in spatial
dimensions. We tried to increase the number of channels
of x by imply space-to-depth operation [21]. However, the
performance becomes worse, we speculate the reason is that
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space-to-depth operation destroy the structure of the original
image and the model could not learn an accurate distribu-
tion. Therefore, to eliminate the redundancies in raw image,
we adopt an 7 x 7 autoregressive context model to x.

D. LOSS FUNCTION

Different lossy image compression, if we use the lossy loss
function to train our lossless image compression model.
It takes quite a long time to find a proper and accurate
distribution during the training. To speed up this process,
we leverage the L2-norm. L2-norm calculates the difference
between the ground-truth value and the predicted mean value,
the formulation is shown in the following:

L=l e —x P+ Ity =51 7

Hence, the loss function for training could be formulated
as:

L = E[~log; (px (x13))] + E[~log, (p5 (712))]
+E[~logy (p: (218))]+2 - Ul me—x 1P+ y—3 I*)
(8)

A responses to control the weights of L2-norm term. Nor-
mally, A sets as 0.6 for the first 20 epochs. After 20 epochs,
we choose to set A as 0. This L2-norm shares the same
idea with mean square error (MSE) loss in lossy image
compression. The details of L2-norm are discussed in [12].

IV. EXPERIMENTS

A. TRAINING DETAILS

Our model is built on the architecture of Cheng2020 in
CompressAl platform [30]. It is worth noting that the output
channel number of g, is 3 x 3 x K, where K represents the
parameter chosen for GMM. For the purposes of this paper,
the value of K for GMM has been set to 3. For training,
we choose about 40000 images from the ImageNet [14] and
cropped the size to 256 x 256 before randomly feeding them
into the network. The total number of parameters is 709M in
our model. These images are not ideal for the lossless com-
pression task, but we are not aware of a similarly large-scale
lossless training data set. We set the number of channels
N =192 for main path and M = 320 for hyper path. The
number of slices is 10. During the training, the number of K
for GMM is set as 3.

The model was optimized using Adam [15] with a batch
size of 8, and the learning rate was set to 1 x 107* at
the beginning of training. After 100 epochs, the learning
rate dropped to 1 x 107, Our model was trained about
400 epochs to obtain stable performance. We ran all the exper-
iments by the machine equipped with an NVIDIA GeForce
RTX 3090 with 24GBs of memory.

B. EVALUATION
For comparison, we evaluate our model on three widely

used lossless high-resolution image compression datasets,
CLIC.pro (CLIC.P), CLIC.mobile (CLIC.M), DIV2K.
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TABLE 1. Compression performance on different datasets.

Model CLICP CLICM DIV2K  CIFARI0O  Kodak
(bpsp) (bpsp) (bpsp) (bpsp) (bpsp)
Ours 2.63 2.43 2.74 4.89 2.94
Cheng [12] 3.36 3.23 3.48 - -
RC [10] 2.93 2.54 3.08 - -
L3C[11] 2.94 2.64 3.09 - 3.26
iVPF [22] 2.39 2.54 2.68 3.20 -
GOLLIC [29] 2.83 2.62 3.07 - -
FLIF [3] 2.78 2.49 2.91 4.19 2.90
PNG [4] 4.00 3.90 4.24 5.87 435

In addition, we also evaluate our model on Kodak [6] and
CIFARI10. All the results are measured by bits per sub-pixel
(bpsp) in our paper.

CLIC.mobile and CLIC.pro are released as part of the
“Workshop and Challenge on Learned Image Compression’
(CLIC). CLIC.mobile contains 61 images taken using cell
phones, while CLIC.pro contains 41 images from DSLRs,
retouched by professionals. DIV2K is a super-resolution
dataset with high-quality images. Kodak dataset [6] consists
of 24 uncompressed 768 x 512 color images, widely used in
evaluating lossy image compression methods. The CIFAR10
is a low-resolution dataset consists of 60000 32 x 32 color
images in 10 classes, with 6000 images per class. There are
50000 training images and 10000 test images.

The models shown in the Table 1, we only report the
compression performance published by their authors, because
their codes are either difficult to be generalized to arbitrary
datasets or unavailable.

It can be observed from Table 1 that our method outper-
forms the classical methods PNG [4] for all datasets. FLIF is
the state-of-art classical lossless image compression method.
Our proposed model lift about 5.4% performance com-
pared with FLIF among the three high-resolution datasets.
As for Kodak and CIFARI10, FILF outperform our model
slightly.

For the learning-based methods, we lift about 30%
and 12% performance compared with Cheng et al. [12]
and L3C [10] in high-resolution datasets, respectively.
GOLLIC [29] and RC [11] are both an enhanced work based
on L3C [10], the results show that our work outperforms RC
and GOLLIC for all three high-resolution datasets. As for
the state-of-the-art flow-based model iVPF, it outperforms
our model. For high-resolution datasets, our model is slightly
worse compared with iVPF. As for CIFARI0 dataset, the
performance of our model is not ideal. It’s worth noting that
iVPF is trained on low-resolution datasets with 64 x 64 patch
size while our model is trained on 256 x 256 patch size.
Since iVPF has not open source, we are unable to compare
the inference time with it. In Table 5, we compare inference
time with another flow-based model IDF [21]. Inference time
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measures evaluation of 10,000 test images with a batch size
of 100. It can be observed that our model has less inference
time.

V. ABLATION STUDY

A. AUTOREGRESSIVE CONTEXT MODEL

From Table 2, it can be observed that the model with an
extra autoregressive model for x lifts the performance of
compression.

TABLE 2. Performance of different models.

Model CLIC.P CLIC.M DIV2K
(bpsp) _ (bpsp) _ (bpsp)
[12] 3282 3134 3392

[12] + 7x7 autoregressive
model for x 2.839 2.632 2.942

MMCC + 7x7
autoregressive model for 2.621 2.414 2.729
x (ours)

TABLE 3. Performance of SGM-based CC models and MMCC models.

Models CLICP CLICM DIV2K
(bpsp) (bpsp) (bpsp)
SGM-based CC 3.015 2.824 3.125
MMCC (K=3) 2.621 2.414 2.729
MMCC (K=5) 2.721 2.528 2.822

In Table 4, we shown the performance with different size of
autoregressive context model. The baseline in Table 4 is [12].
Compared with 5 x 5 masked convolution, 7 x 7 masked
convolution achieves better performance. We only explore
the size of 5 x 5 and 7 x 7 masked convolution which are
normally adopted size of masked convolution.

B. MMCC MODEL
GMM is sensitive to the selection of the value of K. In Table 3,
we explore the different setting number K of GMM. In the
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TABLE 4. Bits allocation for different parts.

Models CLICP CLICM DIV2K
(bpsp) (bpsp) (bpsp)
[12] + 5%5
autoregressive 2.942 2.759 3.064
model for x
[12] +7x7
autoregressive 2.839 2.632 2.942
model for x
TABLE 5. Inference time on CIFAR10.
Models Our IDF
Time (s) 0.23 20.58

first row, SGM-based CC means the value of K is 1. From
the table that we could observed that the best performance is
when K equal to 3.

VI. CONCLUSION

In this paper, we explore the idea of adding an autoregressive
model for the raw images to reduce the redundancies between
pixels. Furthermore, inspired by the impressive performance
the CC model achieved. We proposed the MMCC model
for the latents. Experiments demonstrate that our proposed
method outperforms classical lossless image compression
methods, such as PNG and FLIF. For learning-based methods,
we outperform L3C and RC for all test datasets. Further-
more, the image size of evaluation datasets for lossless image
compression is much larger compared with lossy image com-
pression. Hence, to further improve our work, we could
investigate different forms of context models to capture
global-scope spatial correlations and cross-channel relation-
ships between the pixels. Moreover, it would be interesting to
explore domain-specific applications, e.g., for medical image
data and remote sensing.
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