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ABSTRACT The human body releases several gases and volatile organic compounds through exhaled
breath. This compound can be used as markers of lung disease, including asthma. An electronic nose can
play a role in determining a patient’s condition. The main problem that often occurs is the selection of
appropriate sensors based on their characteristics and performance in detecting various gases to provide an
optimal system while still providing high accuracy. Genetic algorithms have a good advantage in applying
feature selection problems that can effectively solve noise and collinearity problems through three main
genetic operators: crossover, mutation, and selection. This study aims to apply this method to determine the
optimal number of gas sensors in identifying healthy people and asthma suspects through an exhaled breath.
Several classification methods are combined with selected gas sensor arrays to obtain an optimized electronic
nose, including support vector machine (SVM), random forest (RF), extreme gradient boosting (XGBoost),
artificial neural network (ANN), one-dimensional convolutional neural network (1D-CNN), long short-term
memory (LSTM), gated recurrent unit (GRU), 1D CNN-LSTM, and 1D CNN-GRU. These machine-learning
approaches are usually used for electronic nose systems as highly accurate classification methods depending
on the parameters. The experimental results showed that the genetic algorithm produced five gas sensors that
provided a certain sensor pattern on the exhaled breath from the asthma suspects. Meanwhile, the 1D-CNN
model was chosen as a classification method for the asthma dataset with an accuracy of 96.6%, a precision
of 96.1%, a recall of 95.5%, and an F1-score of 95.6%.

INDEX TERMS Asthma, diseases, electronic nose, genetic algorithm.

I. INTRODUCTION in children and adults and is increasing globally. Based on

Asthma is a type of chronic disease disorder that can make
the lungs unable to function properly. This disease can make it
difficult for people to breathe. Asthma can be caused by expo-
sure to cigarette smoke, dust, and environmental chemical
compounds [ 1] that enter the respiratory organs and attack the
lungs. This disease is not contagious. However, it is common
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the World Health Organization (WHO) statistics in 2018, this
disease affected more than 339 million people worldwide [2].
Around hundreds of thousands died in the same year, most in
low- and middle-income countries. Among the characteristics
of a person with this symptom are coughing, wheezing, chest
tightness, and shortness of breath.

Asthma biomarkers can be identified in several ways,
including a collection of blood cells, urine, sputum, and
exhaled breath [3]. Several biomarkers involve body contact
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that makes the patient feel irritated. Hence, the analysis
of exhaled breath can be an alternative to non-invasive
methods. Generally, a person’s breath contains chemical com-
pounds like oxygen (O3), carbon dioxide (CO;), water vapor
(H,0), nitric oxide (NO), hydrogen (H»), hydrogen sulfide
(H»S), and volatile organic compounds (VOCs) [4]. These
compounds can be measured by a specific tool called gas
chromatography. However, this requires a long time and is
expensive. As a result, it is only used in laboratories. For
this reason, an electronic nose can be offered as an alter-
native tool to measure and analyze chemical compounds’
content in exhaled breath [5]. The electronic nose has been
widely applied in various fields, such as the classification
of perfume [6], food quality [7], and diseases in the human
body [8], [9].

The volatile compounds in exhaled breath require a dif-
ferent sensor array with a good response signal. For this
reason, the sensor array in the electronic nose system needs
to be optimized while still providing high accuracy. Sensor
selection is a problem that often occurs in its application to
provide optimal sensors at lower costs [10]. As aresult, a sen-
sor selection method is needed. This method can eliminate
sensors with similar performance as well as sensors that do
not have a significant effect on the classification level. There-
fore, a system involving an optimal number of sensors can
produce a stable and reliable intelligent system. The sensor
selection method can be handled by using correlation coeffi-
cients and cluster analysis [11]. Correlation coefficients and
distinguishing performance value are calculated to remove
sensor redundancy. Then the independence of the sensors is
obtained through cluster analysis, and the number of sensors
is confirmed. However, this method lacks generalizability and
is difficult to implement.

Genetic algorithm (GA) is a global searching optimiza-
tion technique inspired by natural selection. The method is
like the process of genetic evolution, where genetics most
suitable to the environment can survive longer [12]. This
algorithm has the advantage of being able to solve both simple
and difficult problems that have many goals and constraints.
It exhibits obviously exceptional performance for a variety
of problems. GA keeps the benefits of both metaheuristic
search algorithms and stochastic optimization techniques.
Compared to other evolutionary algorithms, this combination
allows the genetic algorithm to achieve global optima in
relatively fewer generations [13]. GA seeks to identify the
individual with the best fitness value from a search space
containing numerous viable solutions. Genotypes represent
these solutions, and the genotypes with the best fitness val-
ues may be more likely to be selected as parents for the
upcoming generation [14]. Genetic algorithms have three
main operators, including selection, crossover and mutation.
Chromosomes with low cost have a high mating probability
by selection to bias the population to congregate towards the
best solution. GA employs crossover and mutation operators
to achieve information exchange between individuals and
local search and does not rely on gradient information in
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order to find optimal solutions globally [15]. In addition, the
method does not require domain knowledge or information
about the structure of the problem being optimized. Addi-
tionally, it works well even when the objective function is not
smooth, a circumstance in which derivative methods cannot
be applied [14]. As a result, the GA is the most widely used
evolutionary algorithm procedure for parameter optimization,
and it is known to be highly effective for feature selection and
reducing the dimensionality of the problem space.

In this study, the GA method was applied to obtain the
optimal number of sensors in the electronic nose system
without reducing the system’s performance in predicting
healthy people and asthma suspects. This paper is organized
as follows. Section I covers the background of this study.
Section II provides the proposed method and experimen-
tal setup. Section III presents the experimental results and
discussion. Section IV summarizes the essential results and
future research.

Il. METHODS AND MATERIALS

This section describes the methods and materials used in
this study, including subject descriptions, proposed research
design, electronic nose system, pattern recognition methods,
steps to determine the optimal model architecture, statistical
performance measurements, and sensor selection procedures.

A. SUBJECTS AND PROPOSED RESEARCH DESIGN

The exhaled breath data were obtained from 60 volunteer
subjects consisting of 30 healthy people and 30 asthma sus-
pects [16]. The subjects were between 30 and 60 years old,
had no acute or chronic disease, and were non-smokers. Var-
ious levels of asthma severity were obtained from the global
initiative for asthma (GINA) and asthma control test (ACT)
measurements [2]. The severity levels are divided into three
classes, namely controlled asthma, partly-controlled asthma,
and uncontrolled asthma, where each severity has different
symptom characteristics. Controlled asthma patients have
mild symptoms and do not require serious treatment. Partly-
controlled asthma patients have several severe symptoms
that limit their activities, thus requiring moderate treatment.
Patients with uncontrolled asthma need serious treatment and
medication.

This study proposed a research design shown in Figure 1.
The first step was preparing all volunteers to provide test
samples in 1L (liter) Tedlar bags, in which all subjects,
both healthy and asthma suspects, had been diagnosed by
a pulmonary specialist at the hospital. An electronic nose
consisting of seven gas sensors, a chamber, and an electric
pump has been developed and used as a test device. All
electronic components are implemented on a printed cir-
cuit board (PCB) to reduce circuit and environmental noise.
This instrument is equipped with a neural network pattern
recognition algorithm. Various configurations were tested
and evaluated to obtain the optimal neural network model.
The standardization and feature extraction of sensor signals
were used to represent the sample characteristics grouped into
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FIGURE 1. The proposed method.

three datasets, including binary and multi-class. The genetic
algorithm, equipped with a support vector machine (SVM)
as a fitness function, used the binary dataset to determine
the number of sensor groups consisting of different types of
sensors. All sensor groups were tested in the three datasets
using the optimal neural network model. Each dataset pro-
vided optimal sensors based on high accuracy values. The
dominant sensors were selected based on the type of sensors
that frequently appeared in each dataset. The final step was
testing the dominant sensors on the three datasets using dif-
ferent classification models, including SVM, random forest
(RF), extreme gradient boosting (XGBoost), artificial neural
network (ANN), one-dimensional convolutional neural net-
work (1D-CNN), long short-term memory (LSTM), gated
recurrent unit (GRU), 1D CNN-LSTM, and 1D CNN-GRU.
The model evaluation includes accuracy, precision, recall and
F1-score.

B. THE ELECTRONIC NOSE

The electronic nose system used in this study consists of an
array of gas sensors, a microcontroller, and a computer shown
in Figure 2. In this case, a type of metal oxide gas sensor
was used to record the exhaled breath. The advantages of
using metal oxide semiconductors as gas sensing materials
include mechanical robustness, low cost, simplicity of use,
long lifetime, short response time, and high sensitivity to
exhaled breath markers [17], [18]. The sensors are MQ-7,
MQ-8, MQ-131, MQ-136, MQ-137, MQ-138, and TGS4161
shown in Table 1. Each sensor can respond to certain gases
which are considered as biomarkers of lung disease. This is
based on previous studies [8], [9], and characteristics related
to the sensor’s sensitivity and selectivity to the type of gas
shown in their respective datasheets. The gas sensor array was
allocated in the chamber with a volume of 240 mL to avoid
ambient air to provide an accurate sensor response.

The sampling procedure began by flushing the sensor
chamber for 15 seconds. Then, the sampling stage of the
Tedlar bag was carried out for 40 seconds. The subsequent
chamber flushing was carried out for 95 seconds, which
can be used for the following sample. The output voltages
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FIGURE 2. Electronic nose used in experiment: (a) block diagram, (b)
realization.

TABLE 1. Types and characteristics of gas sensors.

Sensor Gas Manufacturer

MQ-7 Carbon monoxide

MQ-8 Hydrogen

MQ-131 Ozone, Nitric oxide Hanwei Electronics
MQ-136 Hydrogen sulfide Co., Ltd

MQ-137 Ammonia

MQ-138 Volatile organic compounds

TGS4161 Carbon dioxide Figaro Engineering Inc.

of the gas sensors were converted by the analog to digital
converter (ADC) on the microcontroller. Then, they were sent
to the computer via universal serial bus (USB) communica-
tion stored in an excel file format. The datasets represented
different response curves and were standardized using the
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TABLE 2. SVM'’s kernel functions.

Type of Formula Modified

kernel parameter

Linear file,x) =x-x C

RBF Ji(x,xi) = exp(= * [lx — xi]|) C.vy

Sigmoid Ji(x,x;) = tanh(~y * (x - x;) + coef ) C, v, coef

. C,v.d,

Polynomial | fi(x,x) = (v * (x - x;) + coef)? coe}
TABLE 3. SVM'’s parameter values range.

Parameter Description

Kernel Linear, RBF, sigmoid, and polynomial

C 1-100

y 0.001-1

d 2-4

coef 0.0,0.1
StandardScaler method expressed as (1).

X =
7= ey
o

where x is the sensor response, u is the average value, and o
is the standard deviation.

C. CLASSIFICATION MODEL ALGORITHMS

Previous studies have applied the SVM model to several sce-
narios, including differentiating healthy people from asthma
suspects and classifying asthma with different severity levels.
The highest results were obtained with an accuracy value of
89.5%. However, it is still possible to improve these results
by changing the model parameters. This method is known
as hyperparameter optimization [19] by applying the grid
search cross-validation (GridSearchCV) technique. The mod-
ule is part of the scikit-learn, a software machine learning
library for the Python programming language, which can help
determine the best model parameters based on the highest
accuracy. In this study, SVM, RF, GridSearchCV, and genetic
algorithm were obtained from the scikit-learn library, while
ANN, 1D-CNN, LSTM, and GRU were obtained from the
Keras library.

1) SUPPORT VECTOR MACHINE (SVM)

SVM can be used for classification or regression in linear
and non-linear cases based on the theory of statistical learn-
ing [20]. This model has a hyperplane function to separate
classes. It also has some mathematical functions to solve cer-
tain calculations, namely the kernel [21]. This function can be
linear, radial basis function (RBF), sigmoid, and polynomial,
shown in Table 2. Each kernel has different parameters which
can be modified, including the C function, gamma (y ), degree
(d), and coefficient (coef).

Table 3 describes the values for each SVM parameter used
in this study. The C function controls the classification error
by trading in the correct training data based on the decision
function’s margin size. With the bigger C value, the decision
function tries to separate the data classes by forming a tiny
margin on the decision line, leading the model to overfit.
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TABLE 4. RF’s parameter values range.

Parameter Description
Criterion Gini, Entropy
Max depth None

Max features sqrt

Min samples leaf 1-3

Min samples split 1-5

N estimators (trees) 1-200

However, the smaller C value results in a large margin,
making some data in certain classes inseparable. This causes
the model to become underfitting. Gamma is a parameter by
which SVM considers the points when it makes the decision
boundaries. High gamma only covers the data close to the
boundary line. On the other hand, low gamma can consider
distant data. SVM tries to cover all data using this decision
line. With high gamma, the line will form a curve approaching
each data class. This can provide better results. However,
in many cases, this can cause the model to become overfitting.
For this reason, the gamma value was set to less than one.
In some cases, it can be difficult to determine the value of
C and gamma parameters, which depend on the distribution
of the data involved. The degree controls flexibility to the
decision boundaries. The coefficient adjusts the independent
term in the kernel function. In this experiment, the degree and
coefficient values were set within a small range close to the
default.

2) RANDOM FOREST (RF)

RF is an ensemble model which builds a set of decision
trees to implement better performance in any classification or
regression task [22]. The calculation is performed to evaluate
the results of all decision trees and provide one output through
voting results, known as the majority voting technique. This
model has several parameters that can be modified, such
as the number of trees, depth of trees, number of samples,
feature types, and others [23]. The main parameter is the
impurity criterion, a function to measure the split quality of
the decision tree, namely gini and entropy. The gini calcula-
tion can be expressed by (2).

N
Gini =1-") (p)* )
i=1
where p; is the proportion of i class labels and N is the
number of class labels. The gini index can determine the
optimal splitter to build a pure decision tree. Table 4 describes
the values for each RF parameter used in this study. The
maximum depth was set to ‘“‘none”’. Deeper trees can provide
more data information. Likewise, more trees may allow better
results. Other parameters were set close to the default.

3) EXTREME GRADIENT BOOSTING (XGBOOST)

XGBoost has a similar architecture to RF. However, the
model can provide better accuracy by employing gradient
boosting [24]. This function is used as an optimization pro-
cess to minimize a loss function or error value using a gradient
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TABLE 5. XGBoost's parameter values range.

Parameter Description
Criterion Gini, Entropy
Gamma 0.1-1
Max depth None
Min child weight 1-4
Learning rate 0.01, 0.05, 0.1, 0.15, 0.2
N estimators (trees) 1-200

TABLE 6. Configuration of ANN models.
Model lljig?ebne{a(;fers Hidden layers with the neurons
ANN 1 [5]
ANN 2 1 [20]
ANN 3 [35]
ANN 4 [50]
ANN 5 [50] [5]
ANN 6 5 [50] [20]
ANN 7 [50] [35]
ANN 8 [50] [50]
ANN 9 [50] [50] [5]
ANN 10 3 [50] [50] [20]
ANN 11 [50] [50] [35]
ANN 12 [50] [50] [50]
ANN 13 [50] [50] [50] [5]
ANN 14 4 [507 [50] [50] [20]
ANN 15 [507 [50] [50] [35]
ANN 16 [507 [50] [50] [50]

descent algorithm. The additional parameters are learning
rate, gamma (y) [24], and others described in the eXtreme
Gradient Boosting (XGBoost) library as an open-source soft-
ware library that provides a regularizing gradient boosting for
Python programming language. The entropy calculation can
be expressed as (3).

N
Entropy($) = = _ piloga(pi) 3)
i=1
where S is a set of all instances in the dataset. Table 5 shows
the XGBoost parameters used in this study.

A higher learning rate can make the model calculate faster,
but most of the training data are not involved, which may
not be accurately predicted. Gamma determines the minimum
loss reduction to form a new tree split. The minimum value of
the instance weight is required for each child. The minimum
weight is applied to form a new node in a tree. These two
parameters were set close to the default.

4) ARTIFICIAL NEURAL NETWORK (ANN)

ANN is a non-linear model that mimics biological neu-
rons. This network consists of input, hidden, and output
layers. The term deep neural network (DNN) emerges by
applying many hidden layers between input and output [25].
The proposed ANN architecture is shown in Figure 3.
This architecture involves two different methods, namely
feed-forward and back-propagation [26]. The feed-forward
acts as a one-way computation applied at the testing phase.
As a result, this method cannot fix the weight value. Mean-
while, the back-propagation fixes the weight by returning
the value to the previous layer repeatedly. This method is
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implemented in the training phase and usually as a fine-tuning
of neural networks.

In this study, variations of the ANN architecture were
applied to obtain a model with more optimal performance.
This architecture consists of a number of hidden layers and
their neurons described in Table 6. All neurons in this hidden
layer are fully connected and implement the ReLu activation
function. ReLu has a gradient of 1 for positive and 0 for neg-
ative, which is a better solution for vanishing gradients [27].
On the other hand, neurons in the output layer involve Sig-
moid for the binary-class and Softmax for the multi-class.
In the training phase, the number of batch sizes was set to 5,
and the epoch was set to 250.

5) ONE-DIMENSIONAL CONVOLUTIONAL NEURAL
NETWORK (1D-CNN)
CNN is a type of classification model that has a convolu-
tional layer consisting of a set of filters or kernels. It is
used as a parameter for training image datasets in two or
three-dimensional formats [28]. In addition, CNN also serves
as a classification for the field of signal processing, which is
named 1D-CNN [9]. This method has been implemented to
classify diabetes [9].

In our study, 1D-CNN was applied because it has a more
efficient architecture. The proposed 1D-CNN architecture is
illustrated in Figure 4. This study determines the optimal
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TABLE 7. Configuration of 1D-CNN models.

TABLE 8. Configuration of LSTM and GRU models.

Model Number of Hidden layers with filters Model Hidden layer with the memory cell units
ode convolutional layers | and max pooling LSTM/GRU 1 [16]
ID-CNN 1 [16] LSTM/GRU 2 [32]
1D-CNN 2 [32] LSTM/GRU 3 [64]
1D-CNN 3 1 [64] LSTM/GRU 4 [128]
ID-CNN 4 [16] [MP]
1D-CNN 5 [32] [MP] . . .
ID-CNN G [64] [MP] numbers F)f m.emory cell units, 1nclud1.ng .16, 32, §4, and
D-CNN 7 [16] [16] 128 described in Table 8. The ReLu activation function was
ID-CNN 8 [32] [32] also involved in this layer. The results of the LSTM layer were
}gggg ?O 2 % E’g VP forwarded to the optimal ANN layers. The number of neurons
ID-CNN 11 321321 [MP] in the output layer were adjusted to the number of classes in
ID-CNN 12 [64] [64] [MP] each dataset.
LSTM/GRU  Optimized ANN
Input layer Iay/er hpidltrinelielayers Output layer 7) GATED RECURRENT FJNIT (GRU) L .
s Label GRU is the newer variant of RNN, built with a simpler
ensor ISTM/GRU e architecture than LSTM by removing the output gate. This
algorithm uses a single hidden state that combines the forget
LSTM/GRU e and input gates into one update gate [31]. The operations and
gates within the GRU are also different. To solve the RNN’s
- LR o Partly Controlled problems, GRU combines two gate operating mechanisms
: : T 7 d Asthma named update and reset gate. For this reason, the simpler
: - Controlled architecture makes GRU use less memory and is faster than
O WS archite
LSTM/GRU The proposed GRU architecture is similar to Figure 5,
replacing the LSTM layer with a GRU layer and varying

FIGURE 5. The proposed LSTM/GRU architecture.

architecture in the hidden layer of CNN. Table 7 shows
varying architectural specifications for the 1D-CNN model.
Each convolution layer involves several different filter sizes,
including 16, 32, and 64. The use of the max pooling layer
(MP) was also considered in this experiment. The kernel size
was set to 2, and the ReLu activation function was imple-
mented in each layer. Then, the output of the CNN hidden
layers was flattened to form a one-dimensional vector and
forwarded to the optimal ANN hidden layers. The output
layer is implemented to provide predictive results based on
the classes.

6) LONG SHORT-TERM MEMORY NETWORK (LSTM)
LSTM is a modified recurrent neural network (RNN) model
which can improve the ability to predict information based
on long periods [29]. LSTM can store and delete old data that
are no longer relevant. With several gates in the architecture,
this model can store and combine the collection of processed
information. RNN and LSTM are any neural networks that
contain one or more iterative (or cyclic) connections. There-
fore, this model can solve the problem of vanishing gradients.
LSTM is used to classify big data, which is usually in the
form of text, language, and data sequence such as sensor sig-
nals, electrocardiogram (ECG), and electroencephalography
(EEG) [30].

The proposed architecture of LSTM is shown in Figure 5.
This study implemented a single layer of LSTM with varying
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numbers of memory cell units, including 16, 32, 64, and
128, described in Table 8. The GRU layer was applied with
ReLu activation function. The results from the GRU layer are
forwarded to the optimal classification layer.

8) 1D CNN-LSTM/GRU

1D CNN-LSTM is a combination of 1D-CNN and LSTM
which can improve the ability of deep neural networks
modeling [32]. This method has been widely used because
it has several advantages, including increased performance
and sequential high dimensional input. This model has
been used to detect epileptic seizures based on EEG signal
analysis [33]. Whereas for 1D CNN-GRU has also been
implemented to analyze potential health medications and
generic molecules [34]. The 1D CNN-LSTM/GRU archi-
tecture proposed in our study is depicted in Figure 6. This
model consists of the optimal hidden layers of 1D-CNN,
LSTM/GRU, and ANN.

D. STATISTICAL PERFORMANCE MEASUREMENT

Performance measurement on the model requires a method
based on statistical calculations [26]. The model can pre-
dict and classify new data based on ground truth values.
In this study, the ground truth consisted of a collection of
medical record data labeled with healthy people and asthma
suspects. Confusion matrix, which is a method for measuring
performance in model classification algorithms, was applied
in this study. This method consists of four important ele-
ments, which can provide four different values, including
accuracy, precision, recall, and fl-score. These variables are
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true positive (TP), true negative (TN), false positive (FP), and
false negative (FN), which can determine the quality of the
classification model with the following conditions:
o True positive (TP) - the number of data points are cor-
rectly classified to the healthy class.
o True negative (TN) - the number of data points are
correctly classified to the asthmatic class.
« False positive (FP) - the number of healthy data points
are wrongly classified to the asthmatic class.
o False negative (FN) - the number of asthmatic data
points are wrongly classified to the healthy class.

Several calculations were applied in this study and are
explained as follows.

| TP + TN @
ccuracy =
Y= TP+ FN +1IN + FP

Accuracy (4) is the ratio of correct predictions to the total
test data. Models with high accuracy can predict new data
correctly.

L. TP
Precision = —— (5)
TP + FP

Precision (5) is the ability to identify relevant data. High
precision and accuracy can represent a better model.

P
Recall = —— 6)
TP + FN

Recall (6) is the ability to find all relevant cases in a dataset.
Recall can be explained by the success of the model in
retrieving information.

2 x Precision x Recall
F1 — Score = — @)
Precision + Recall

F1-Score (7) is an evaluation metric to determine the perfor-
mance of the model accuracy against the dataset. F1-score
is a calculation that involves a combination of precision and
recall values.

E. GENETIC ALGORITHM FOR SENSOR SELECTION

Genetic algorithm generates solutions for optimization based
on genetic evolution, such as mutation, crossover, and selec-
tion [12], [13], [14], [15]. In this study, a genetic algorithm
was applied to evaluate and eliminate gas sensors based on

74930

SVM using

Allcion GridSearchCV

Binary dataset Optimized SVM

FIGURE 7. SVM as a GA's fitness function.

All Sensors

Generate initial
population

Mutation

Evaluate fitness value
using optimized SVM

Crossover

Maximum

. Selection
generations ?

Selected sensors

FIGURE 8. Genetic algorithm procedure.

TABLE 9. Genetic algorithm structure.

Parameter type Parameter Values

Population size 100

Function of fitness Optimized SVM
Number of generations 50

Probability of crossover 0.7

Independent probability for 01

each attribute to be exchanged ’

Independent probability for 0.05

each attribute to be mutated ’

Probability of mutation 0.001
Tournament size 3

their fitness values. In this method, SVM was involved as
a fitness function. The technique for determining the SVM
model parameter is illustrated in Figure 7. This stage used
a binary dataset that were not standardized. All sensors
represent the dimensions of features and were involved in
this process. The number and types of candidate parameters
needed were based on Table 3.

The sampling proportion of the dataset was divided using
the stratified k-fold cross-validation by dividing the data of
each class with the same proportion. This method consists
of two parameters, namely random state and shuffle. In this
case, the random state was set to ‘“‘none” and the shuffle
was assigned the value of “False” or “True”. The results
were obtained by comparing the output from the use of these
scenarios. The GridSearchCV method helps determine the
best parameters based on the highest accuracy value. The
result of this process is the optimal SVM parameter as an
estimator of the genetic algorithm. Figure 8 describes the
sensor selection procedure using the genetic algorithm.

The first step involved all sensors as candidates. This pro-
cedure also used the binary dataset. The number of population
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FIGURE 10. The sampling points representing the dataset.

variables was determined to form many candidate solutions.
Each candidate has a group of chromosome genes that can
be mutated and changed. The fitness function evaluates all
candidates to form optimal solutions based on this problem.
This generation is also called iteration, which is used to
improve the value of fitness through selection, crossover,
and mutations in one cycle. Then, the process stopped until
the last generation. The sensors were selected based on this
genetic process, where the sensor with the smallest value was
eliminated. Table 9 shows the genetic algorithm parameters.

The population was set to 100. A large population can
allow the best solution. However, this process requires a
longer time. The fitness function used the optimal SVM
model. The number of generations was 50, which means this
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method processed 50 iterations. The crossover probability
was set to 0.7. Large values can potentially produce new solu-
tions by combining the features of both parents. Meanwhile,
the crossover does not occur at low values. The new solution
will be the same as the parents. The mutation probability was
set to 0.001. Low values ensure that only a small portion of
the population mutates in each generation [35]. The other
parameters correspond to the default values.

Ill. EXPERIMENTAL RESULTS

In this section, the dataset, sensor selection, dominant sensor
determination, and optimization of classification models are
explained.

A. DATASET
All subject data were compiled based on the analysis
of medical records. The asthma category involved three
different types of severity, including controlled asthma,
partly-controlled asthma, and uncontrolled asthma. All these
categories were labeled based on ACT scores. The high-
est score was 25, representing controlled asthma suspects.
The moderate score with a range of 20-24 was classified as
partly-controlled asthma suspects. The lowest score under
20 was categorized as uncontrolled asthma suspects.

Each type of asthma consisted of 10 subjects. For this rea-
son, all datasets were categorized into binary and multi-class
classes. The binary class consisted of healthy and asthma
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TABLE 10. The number of subjects to provide the dataset.

Class Total subjects Total data
Healthy 30 180
Controlled Asthma 10 60
Partly-Controlled Asthma 10 60
Uncontrolled Asthma 10 60
All 60 360

TABLE 11. SVM evaluation for GA's fitness function.

Kernel C ¥ coef | d Shuffle | Accuracy (%)
Linear 67 - - - False 88.6
RBF 67 | 0.185 | - - False 87.8
Sigmoid 95 | 0.086 | 0.1 - False 85.3
Polynomial | 39 | 0.99 0.0 2 False 88.8
Linear 61 - - - True 94.2
RBF 55 | 0.842 | - - True 95.0
Sigmoid 65 | 0.076 | 0.0 - True 93.3
Polynomial | 77 | 0.86 0.1 2 True 93.9

datasets. The multi-class consisted of healthy and asthma
with different severity levels datasets.

Examples of gas sensor responses for each class are shown
in Figure 9. Each category has a specific sensor response
curve. In this study, the dataset was represented by sev-
eral sampling points as a feature of each curve shown in
the Figure 10. The data were taken between the 45th and
55th seconds where each curve did not overlap. This period
is extracted into six samples (i.e., 45th, 47th, 49th, Slst,
53th and 55th seconds) representing the measurement data.
The total data can be seen in Table 10. This varied data is
needed to avoid overfitting problems in machine learning
algorithms [36].

B. SENSOR SELECTION USING GA

This study used the stratified k-fold cross-validation (k = 5),
which explains the proportion of data divided into five parts
with a percentage of 80% for training and 20% for testing.
The shuffle function was also applied, which was very useful
for the model to study the proportion of data that were divided
randomly. This was used to evaluate the best SVM model.
Table 11 shows the results of the SVM evaluation with various
parameters.

Based on these results, SVM with RBF kernel implement-
ing the shuffled data was chosen as a fitness function for
the genetic algorithm with an average accuracy of 95.0%.
The following step was the sensor selection using the genetic
algorithm. The stratified k-fold cross-validation with the
shuffled data was also applied to the binary class dataset.
Table 12 shows the number of sensors consisting of selected
gas sensor types. However, this method provides a sensor
group consisting of various gas sensors in each evaluation.
This uncertainty will increase as the number of sensors
decreases. For this reason, several evaluations were needed
based on the highest fitness value to ensure consistent sensor
compositions.

C. THE OPTIMAL ANN MODEL DETERMINATION
The performance of ANN depends on the selection of appro-
priate parameters. Therefore, it is necessary to find the
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TABLE 12. Selected sensors using the GA method.

No | Number of sensors | Sensors

1 7 MQ-7, MQ-8, MQ-131, MQ-136, MQ-137,
MQ-138, TGS4161

2 6 MQ-7, MQ-8, MQ-136, MQ-137, MQ-138,
TGS4161

3 5 MQ-8, MQ-136, MQ-137, MQ-138,
TGS4161

4 4 MQ-8, MQ-131, MQ-138, TGS4161

5 3 MQ-8, MQ-131, TGS4161

6 2 MQ-131, TGS4161

TABLE 13. Performance evaluation of each ANN model of binary class for
seven sensors.

Model Accuracy (%) Model Accuracy (%)
ANN 1 95.0 ANN 9 98.5
ANN 2 94.0 ANN 10 94.0
ANN 3 97.5 ANN 11 98.0
ANN 4 96.5 ANN 12 97.5
ANN 5 95.5 ANN 13 97.0
ANN 6 98.5 ANN 14 97.5
ANN 7 99.0 ANN 15 98.0
ANN 8 99.0 ANN 16 98.5

optimal architectural model. An evaluation was carried out
from the simplest to the more complex ANN architecture
to obtain the appropriate parameters described in Table 6.
For example, the simplest ANN architecture had one hidden
layer containing five neurons besides the input and output
layers. The more complex architecture had a higher number
of hidden layers and their neurons. For this purpose, a stan-
dardized binary class dataset was employed in each ANN
architecture to determine its performance, whose results are
shown in Table 13. In this case, all sensors were involved in
this evaluation process. The results indicated that ANN 7 and
ANN 8 had the highest accuracy of 99.0%. As a result, the
first architecture was chosen because it has a smaller number
of neurons.

D. DOMINANT SENSOR DETERMINATION

The optimal neural network model is used to evaluate the
sensors that often appear in each dataset for all sensor groups
selected by GA. Table 14 summarizes the performance of
ANN on all datasets in each sensor group. In the binary class,
the group of five sensors (i.e., MQ-8, MQ-136, MQ-137,
MQ-138, and TGS4161) had the highest average accuracy of
98.2%. Meanwhile, for the three-class and four-class datasets,
a group of seven sensors (i.e., MQ-7, MQ-8, MQ-131, MQ-
136, MQ-137, MQ-138, and TGS4161) had the highest
accuracy of 98.8%, and 95.0%, respectively. The results indi-
cated that the types of gas sensors that often appeared in
each dataset were MQ-8, MQ-136, MQ-137, MQ-138, and
TGS4161.

E. OPTIMIZATION OF CLASSIFICATION MODELS

After the five dominant sensors were determined, it is nec-
essary to evaluate them with several classification models
to obtain a reliable system. This study involved SVM,
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TABLE 16. Evaluations of prediction performance for each model.

The number Accuracy in each category (%) Model Average (%)
of sensors Two classes Three classes Four classes ode Accuracy | Precision | Recall [ FI-Score
7 98.2 98.8 95.0 Two classes
6 98.2 93.6 92.6 SVM 98.3 98.3 98.3 98.3
5 98.2 95.0 92.8 RF 96.3 96.3 96.3 96.3
4 95.2 87.4 90.6 XGBoost 95.6 96.0 95.6 95.6
3 90.6 78.8 85.6 ANN 98.2 98.2 98.2 98.2
2 90.0 51.2 69.2 1D-CNN 99.7 99.7 99.7 99.7
LSTM 98.5 98.5 98.5 98.5
1D CNN-LSTM 98.2 98.2 98.2 98.2
TABLE 15. Performance of 1D-CNN, LSTM and GRU models using the GRU 081 98.1 98.1 98.1
dominant sensors. 1D CNN-GRU 97.4 97.5 97.4 97.4
Three classes
Model Accuracy (%) Model Accuracy (%) SVM 955 0955 955 955
ID-CNN 1 99.5 1D-CNN 7 98.0 RE 835 34.0 835 3835
ID-CNN 2 917 ID-CNN 8 99.0 XGBoost 83.0 84.5 83.0 83.5
ID-CNN 3 99.0 ID-CNN 9 97.5 ANN 95.0 954 95.0 95.0
1D-CNN 4 97.2 1D-CNN 10 94.5 1D-CNN 96.0 96.5 96.0 96.0
ID-CNN 5 97.2 ID-CNN 11 94.5 LSTM 95.2 955 95.2 95.2
ID-CNN 6 98.2 ID-CNN 12 94.2 1D CNN-LSTM 96.2 96.2 96.2 96.0
LSTM 1 99.0 GRU 1 96.4 GRU 955 95.7 955 94.7
LSTM 2 98.5 GRU 2 96.6 1D CNN-GRU 94.3 94.9 94.8 94.8
LSTM 3 99.2 GRU 3 98.6 Four classes
LSTM 4 98.2 GRU 4 98.6 SVM 925 915 385 39.0
RF 93.0 93.5 90.5 91.5
XGBoost 92.5 94.0 89.0 91.0
ANN 92.8 90.6 91.2 90.8
RF, XGBoost, ANN, 1D-CNN, LSTM, GRU, 1D CNN- D-CNN 940 997 907 912
LSTM, and 1D CNN-GRU models with various parameters. LSTM 95.0 93.2 92.7 92.7
To obtain the best performance for each configuration, all 1D CNN-LSTM 93.7 91.2 91.7 912
models were tested in the binary class with the dominant GRU 93.3 91.8 9.3 0.7
Y D CNN-GRU 933 934 90.2 CIN]

Sensors.

The optimal SVM configuration was according to Table 3.
SVM with the parameters, namely RBF kernel, C = 11, and
Gamma = 0.706 gave the best performance for this model.
The best RF configuration was based on Table 4, using the
parameters, namely gini criteria (i.e., max depth = none; max
feature = sqrt; min sample leaf = 1; min sample split = 2;
estimator (tree) = 84).

XGboost, with the parameters described in Table 5, gave
the best performance (gamma = 0.4, learning rate = 0.1, min
child weight = 1, estimator = 52). Meanwhile, the perfor-
mance of the 1D-CNN, LSTM/GRU models was determined
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based on the architectures described in Table 7, and Table 8,
respectively. The fully connected layer in all three models
applied the optimal ANN architecture (ANN 7). Table 15
presents the accuracy of each architecture of the three models.
Among the candidates, ID-CNN 1 leads with an accuracy
score of 99.5%. In contrast, LSTM 3 has the highest percent-
age of 99.2%. GRU 3 and GRU 4 provide the same accuracy
value of 98.6%. For this reason, GRU 3 was chosen because it
has fewer memory cell units. In addition, the 1D CNN-LSTM
and 1D CNN-GRU models, each consisting of three optimal
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TABLE 17. Testing accuracy and training time for 1D-CNN, LSTM and their
combined models.

Model Accuracy (%) Training Time (s)
1D-CNN 96.6 154
LSTM 96.2 479
1D CNN-LSTM 96.0 48.5

architectures, are also involved in the evaluation purposes.
The nine selected models were tested with the entire asthma
dataset.

Table 16 shows the evaluation results of nine models for all
asthma datasets. In the binary class, ID-CNN demonstrated
superior performance with an accuracy of 99.7%. However,
all models tended to provide higher average accuracy com-
pared to other datasets due to the smaller number of classes.
In the three classes, the six models had accuracy above 95%,
including SVM, ANN, 1D-CNN, LSTM, 1D CNN-LSTM
and GRU.

On the other hand, in the four classes, 1D-CNN, LSTM,
and 1D CNN-LSTM dominated the accuracy scores. This
explains that the architecture of 1D-CNN and LSTM and
their combinations provided a more reliable level of clas-
sification. However, 1D-CNN was preferred because of its
simpler construction with shorter training time as described
in Table 17. LSTM involved more complex neurons which
include the forget gate. Therefore, the 1D-CNN model was
used to describe the confusion matrix for all dataset classes
presented in Figure 11.

IV. CONCLUSION

This study applied the electronic nose method to classify
healthy people and asthma suspects with different levels
of severity. The electronic nose system involved a sensor
array consisting of seven gas sensors. Meanwhile, the genetic
algorithm was used to determine the optimal number of sen-
sors that involved the SVM model as its fitness function.
Several classification models were used to evaluate the per-
formance of the selected sensors. The experimental results
showed that the genetic algorithm could generate five gas
sensors, namely MQ-8, MQ-136, MQ-137, MQ-138, and
TGS4161, producing a specific sensor pattern to the exhaled
breath of the asthma suspects. Meanwhile, for classification
purposes, the 1D-CNN, LSTM, and 1D CNN-LSTM models
had an accuracy of at least 96%. However, the 1D-CNN
model was preferred as a classifier for asthma datasets with a
high level of accuracy of 96.6%, a precision of 96.1%, a recall
of 95.5%, an Fl-score of 95.6% and the shortest training
time. This prototype still has a large size, including a sensor
chamber and computer. For future research, we will reduce
the size of the sensor chamber to accelerate the response
of the gas sensors. In addition, the classification model will
be implemented on a single board computer to provide a
compact and portable electronic nose system.
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